The Cytoskeleton

  • Lan Bo Chen
  • Sharon Rosenberg
  • Karen K. Nadakavukaren
  • Elizabeth S. Walker
  • Elizabeth L. Shepherd
  • Glenn D. SteeleJr.


One of the active areas in cell biology involves the attempt to identify, characterize, and localize cytoskeletal components in nonmuscle cells. The standard approaches in this field have been the detection of a protein by gel electrophoresis or chromatography, the purification to homogeneity, the preparation of specific antibodies, and the localization by immunocytochem-istry. The number of cytoskeleton-associated proteins is on the order of 1000. The rate-limiting step has been the isolation of individual components to a sufficient purity for raising highly specific antibodies.


Intermediate Filament SW13 Cell Intermediate Filament Protein Stratify Squamous Epithelium Rous Sarcoma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256:495–497.PubMedCrossRefGoogle Scholar
  2. 2.
    Bernai, S. D., and Chen, L. B., 1982, Induction of cytoskeleton-associated proteins during differentiation of human myeloid leukemic cell lines, Cancer Res. 42:5106–5116.Google Scholar
  3. 3.
    Cervera, M., Dreyfuss, G., and Penman, S., 1981, Messenger RNA is translated when associated with the cytoskeletal framework in normal and VSV infected HeLa cells, Cell 23:113–120.PubMedCrossRefGoogle Scholar
  4. 4.
    Cheng, Y.-S. and Chen, L. B., 1981, Detection of phosphotyrosine-containing 34,000-dalton protein in the framework of cells transformed with Rous sarcoma virus, Proc. Natl. Acad. Sci. 78:2388–2392.PubMedCrossRefGoogle Scholar
  5. 5.
    Giloh, H., and Sedat, J. W., 1982, Fluorescence microscopy: Reduced photobleaching of rho-damine and fluorescein protein conjugates by n-propyl gallate, Science 217:1252–1255.PubMedCrossRefGoogle Scholar
  6. 6.
    Shi, S.-R., Bhan, A. K., Pilch, B. Z., Chen, L. B., and Goodman, M. L., 1984, Immunohisto-chemical localization of keratin in head and neck neoplasms and normal tissues, Am. J. Pathol. 117:53–63.PubMedGoogle Scholar
  7. 7.
    Lazarides, E., and Weber, K., 1974, Actin antibody: The specific visualization of actin filaments in non-muscle cells, Proc. Natl. Acad. Sci. USA 71:2268–2272.PubMedCrossRefGoogle Scholar
  8. 8.
    Lin, J. J. C., 1981, Monoclonal antibodies against myofibrillar components of rat skeletal muscle decorate the intermediate filaments of cultured cells, Proc. Natl. Acad. Sci. USA 78:2335–2339.PubMedCrossRefGoogle Scholar
  9. 9.
    Simpson, P. A., Spudich, J. A., and Parham, P., 1984, Monoclonal antibodies prepared against Dictyostelium actin: Characterization and interactions with actin, J. Cell Biol. 99:287–295.PubMedCrossRefGoogle Scholar
  10. 10.
    Pollack, R., Osborn, M., and Weber, K., 1976, Patterns of organization of actin and myosin in normal and transformed cultured cells, Proc. Natl. Acad. Sci. USA 73:994–998.Google Scholar
  11. 11.
    Cleveland, D. W., Pittenger, M. F., and Feramisco, J. R., 1983, Elevation of tubulin levels by microinjection suppresses new tubulin synthesis, Nature 305:738–740.PubMedCrossRefGoogle Scholar
  12. 12.
    Wang, E., and Goldman, R. D., 1978, Functions of cytoplasmic fibers in intracellular movements in BHK-21 cells, J. Cell Biol. 79:708–726.PubMedCrossRefGoogle Scholar
  13. 13.
    Heggeness, M. J., Simon, M., and Singer, S. J., 1978, Association of mitochondria with microtubules in cultured cells, Proc. Natl. Acad. Sci. USA 75:3863–3866.PubMedCrossRefGoogle Scholar
  14. 14.
    Summerhayes, I. C., Wong, D., and Chen, L. B., 1983, Effect of microtubules and intermediate filaments on mitochondrial distribution, J. Cell Sci. 61:87–105.PubMedGoogle Scholar
  15. 15.
    Brinkley, B. R., Fuller, G. M., and Highfield, D. P., 1975, Cytoplasmic microtubules in normal and transformed cells in culture: Analysis by tubulin antibody immunofluorescence, Proc. Natl. Acad. Sci. USA 73:4981–4985.CrossRefGoogle Scholar
  16. 16.
    Osborn, M., and Weber, K., 1977, The display of microtubules in transformed cells, Cell 12:561–571.PubMedCrossRefGoogle Scholar
  17. 17.
    Osborn, M., Altmannsberger, M., Shaw, G., Schauer, A., and Weber, K., 1982, Various sympathetic derived human tumors differ in neurofilament expression: Use in diagnosis of neuroblastoma, ganglioneuroblastoma and pheochroblastoma, Virchows Arch. B Cell Pathol. Mol. Pathol. 40:141–152.CrossRefGoogle Scholar
  18. 18.
    Moll, R., Franke, W. W., Schiller, D. L., Geiger, B., and Krepier, R., 1982, The catalogue of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells, Cell 31:11–24.PubMedCrossRefGoogle Scholar
  19. 19.
    Tseng, S. C. G., Jarvinen, M. J., Nelson, W. G., Huang, J.-W., Woodcock-Mitchell, J., and Sun, T.-T., 1982, Correlation of specific keratins with different types of epithelial differentiation: Monoclonal antibody studies, Cell 30:361–372.PubMedCrossRefGoogle Scholar
  20. 20.
    Pruss, R. M., Mirsky, R., Raff, M. C., Thorpe, R., Dowding, A. J., and Anderton, B. H., 1981, All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody, Cell 27:419–428.PubMedCrossRefGoogle Scholar
  21. 21.
    Nadakavukaren, K. K., Summerhayes, I. C., Salcedo, B. F., Rheinwald, J. G., and Chen, L. B., 1984, A monoclonal antibody recognizing a keratin filament protein in a subset of transitional and glandular epithelia, Differentiation 27:209–220.PubMedCrossRefGoogle Scholar
  22. 22.
    Debus, E., Weber, K., and Osborn, M., 1982, Monoclonal cytokeratin antibodies that distinguish simple from stratified squamous epithelia: Characterization on human tissues, EMBO J. 1:1641–1647.PubMedGoogle Scholar
  23. 23.
    Gown, A. M., and Vogel, A. M., 1982, Monoclonal antibodies to intermediate filament proteins of human cells: Unique and cross-reacting antibodies, J. Cell Biol. 95:414–424.PubMedCrossRefGoogle Scholar
  24. 24.
    Lane, E. B., 1982, Monoclonal antibodies provide specific intramolecular markers for the study of epithelial tonofilament organization, J. Cell Biol. 92:665–673.PubMedCrossRefGoogle Scholar
  25. 25.
    Summerhayes, I. C., and Chen, L. B., 1982, Localization of a MW 52,000 keratin in basal epithelial cells of the mouse bladder and expression throughout neoplastic progression, Cancer Res. 42:4098–4109.PubMedGoogle Scholar
  26. 26.
    Summerhayes, I. C., Cheng, Y.-S., Sun, T.-T., and Chen, L. B., 1981, Expression of keratin and vimentin intermediate filaments in rabbit bladder epithelial cells at different stages of benzo(a)pyrene induced neoplastic progression, J. Cell Biol. 90:63–69.PubMedCrossRefGoogle Scholar
  27. 27.
    Sun, T.-T., and Green, H., 1978, Immunofluorescent staining of keratin fibers in cultured cells, Cell 14:469–476.PubMedCrossRefGoogle Scholar
  28. 28.
    Lin, J. J. C., and Feramisco, J. R., 1981, Disruption of the in vivo distribution of the intermediate filaments in fibroblasts through the microinjection of a specific monoclonal antibody, Cell 24:185–193.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Lan Bo Chen
    • 1
  • Sharon Rosenberg
    • 1
  • Karen K. Nadakavukaren
    • 1
  • Elizabeth S. Walker
    • 1
  • Elizabeth L. Shepherd
    • 1
  • Glenn D. SteeleJr.
  1. 1.Division of Cell Growth and RegulationDana-Farber Cancer Institute Harvard Medical SchoolBostonUSA

Personalised recommendations