Skip to main content

Abstract

One of the active areas in cell biology involves the attempt to identify, characterize, and localize cytoskeletal components in nonmuscle cells. The standard approaches in this field have been the detection of a protein by gel electrophoresis or chromatography, the purification to homogeneity, the preparation of specific antibodies, and the localization by immunocytochem-istry. The number of cytoskeleton-associated proteins is on the order of 1000. The rate-limiting step has been the isolation of individual components to a sufficient purity for raising highly specific antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Köhler, G., and Milstein, C., 1975, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256:495–497.

    Article  PubMed  Google Scholar 

  2. Bernai, S. D., and Chen, L. B., 1982, Induction of cytoskeleton-associated proteins during differentiation of human myeloid leukemic cell lines, Cancer Res. 42:5106–5116.

    Google Scholar 

  3. Cervera, M., Dreyfuss, G., and Penman, S., 1981, Messenger RNA is translated when associated with the cytoskeletal framework in normal and VSV infected HeLa cells, Cell 23:113–120.

    Article  PubMed  CAS  Google Scholar 

  4. Cheng, Y.-S. and Chen, L. B., 1981, Detection of phosphotyrosine-containing 34,000-dalton protein in the framework of cells transformed with Rous sarcoma virus, Proc. Natl. Acad. Sci. 78:2388–2392.

    Article  PubMed  CAS  Google Scholar 

  5. Giloh, H., and Sedat, J. W., 1982, Fluorescence microscopy: Reduced photobleaching of rho-damine and fluorescein protein conjugates by n-propyl gallate, Science 217:1252–1255.

    Article  PubMed  CAS  Google Scholar 

  6. Shi, S.-R., Bhan, A. K., Pilch, B. Z., Chen, L. B., and Goodman, M. L., 1984, Immunohisto-chemical localization of keratin in head and neck neoplasms and normal tissues, Am. J. Pathol. 117:53–63.

    PubMed  CAS  Google Scholar 

  7. Lazarides, E., and Weber, K., 1974, Actin antibody: The specific visualization of actin filaments in non-muscle cells, Proc. Natl. Acad. Sci. USA 71:2268–2272.

    Article  PubMed  CAS  Google Scholar 

  8. Lin, J. J. C., 1981, Monoclonal antibodies against myofibrillar components of rat skeletal muscle decorate the intermediate filaments of cultured cells, Proc. Natl. Acad. Sci. USA 78:2335–2339.

    Article  PubMed  CAS  Google Scholar 

  9. Simpson, P. A., Spudich, J. A., and Parham, P., 1984, Monoclonal antibodies prepared against Dictyostelium actin: Characterization and interactions with actin, J. Cell Biol. 99:287–295.

    Article  PubMed  CAS  Google Scholar 

  10. Pollack, R., Osborn, M., and Weber, K., 1976, Patterns of organization of actin and myosin in normal and transformed cultured cells, Proc. Natl. Acad. Sci. USA 73:994–998.

    Google Scholar 

  11. Cleveland, D. W., Pittenger, M. F., and Feramisco, J. R., 1983, Elevation of tubulin levels by microinjection suppresses new tubulin synthesis, Nature 305:738–740.

    Article  PubMed  CAS  Google Scholar 

  12. Wang, E., and Goldman, R. D., 1978, Functions of cytoplasmic fibers in intracellular movements in BHK-21 cells, J. Cell Biol. 79:708–726.

    Article  PubMed  CAS  Google Scholar 

  13. Heggeness, M. J., Simon, M., and Singer, S. J., 1978, Association of mitochondria with microtubules in cultured cells, Proc. Natl. Acad. Sci. USA 75:3863–3866.

    Article  PubMed  CAS  Google Scholar 

  14. Summerhayes, I. C., Wong, D., and Chen, L. B., 1983, Effect of microtubules and intermediate filaments on mitochondrial distribution, J. Cell Sci. 61:87–105.

    PubMed  CAS  Google Scholar 

  15. Brinkley, B. R., Fuller, G. M., and Highfield, D. P., 1975, Cytoplasmic microtubules in normal and transformed cells in culture: Analysis by tubulin antibody immunofluorescence, Proc. Natl. Acad. Sci. USA 73:4981–4985.

    Article  Google Scholar 

  16. Osborn, M., and Weber, K., 1977, The display of microtubules in transformed cells, Cell 12:561–571.

    Article  PubMed  CAS  Google Scholar 

  17. Osborn, M., Altmannsberger, M., Shaw, G., Schauer, A., and Weber, K., 1982, Various sympathetic derived human tumors differ in neurofilament expression: Use in diagnosis of neuroblastoma, ganglioneuroblastoma and pheochroblastoma, Virchows Arch. B Cell Pathol. Mol. Pathol. 40:141–152.

    Article  CAS  Google Scholar 

  18. Moll, R., Franke, W. W., Schiller, D. L., Geiger, B., and Krepier, R., 1982, The catalogue of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells, Cell 31:11–24.

    Article  PubMed  CAS  Google Scholar 

  19. Tseng, S. C. G., Jarvinen, M. J., Nelson, W. G., Huang, J.-W., Woodcock-Mitchell, J., and Sun, T.-T., 1982, Correlation of specific keratins with different types of epithelial differentiation: Monoclonal antibody studies, Cell 30:361–372.

    Article  PubMed  CAS  Google Scholar 

  20. Pruss, R. M., Mirsky, R., Raff, M. C., Thorpe, R., Dowding, A. J., and Anderton, B. H., 1981, All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody, Cell 27:419–428.

    Article  PubMed  CAS  Google Scholar 

  21. Nadakavukaren, K. K., Summerhayes, I. C., Salcedo, B. F., Rheinwald, J. G., and Chen, L. B., 1984, A monoclonal antibody recognizing a keratin filament protein in a subset of transitional and glandular epithelia, Differentiation 27:209–220.

    Article  PubMed  CAS  Google Scholar 

  22. Debus, E., Weber, K., and Osborn, M., 1982, Monoclonal cytokeratin antibodies that distinguish simple from stratified squamous epithelia: Characterization on human tissues, EMBO J. 1:1641–1647.

    PubMed  CAS  Google Scholar 

  23. Gown, A. M., and Vogel, A. M., 1982, Monoclonal antibodies to intermediate filament proteins of human cells: Unique and cross-reacting antibodies, J. Cell Biol. 95:414–424.

    Article  PubMed  CAS  Google Scholar 

  24. Lane, E. B., 1982, Monoclonal antibodies provide specific intramolecular markers for the study of epithelial tonofilament organization, J. Cell Biol. 92:665–673.

    Article  PubMed  CAS  Google Scholar 

  25. Summerhayes, I. C., and Chen, L. B., 1982, Localization of a MW 52,000 keratin in basal epithelial cells of the mouse bladder and expression throughout neoplastic progression, Cancer Res. 42:4098–4109.

    PubMed  CAS  Google Scholar 

  26. Summerhayes, I. C., Cheng, Y.-S., Sun, T.-T., and Chen, L. B., 1981, Expression of keratin and vimentin intermediate filaments in rabbit bladder epithelial cells at different stages of benzo(a)pyrene induced neoplastic progression, J. Cell Biol. 90:63–69.

    Article  PubMed  CAS  Google Scholar 

  27. Sun, T.-T., and Green, H., 1978, Immunofluorescent staining of keratin fibers in cultured cells, Cell 14:469–476.

    Article  PubMed  CAS  Google Scholar 

  28. Lin, J. J. C., and Feramisco, J. R., 1981, Disruption of the in vivo distribution of the intermediate filaments in fibroblasts through the microinjection of a specific monoclonal antibody, Cell 24:185–193.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Chen, L.B., Rosenberg, S., Nadakavukaren, K.K., Walker, E.S., Shepherd, E.L., Steele, G.D. (1985). The Cytoskeleton. In: Springer, T.A. (eds) Hybridoma Technology in the Biosciences and Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4964-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4964-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4966-2

  • Online ISBN: 978-1-4684-4964-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics