Energy Cost of Incubation to the Parent Seabird

  • Gilbert S. Grant


Our knowledge of incubation energetics has increased dramatically in the last decade since King (1973) and Kendeigh (1963, 1973) first presented their cost-of-incubation theories. Kendeigh’s model assumes that the heat lost from the egg must be balanced by extra heat production by the parent bird while King argues that the heat produced as a by-product of metabolism could substitute at least part of the heat needed to maintain egg temperature. Much of the recent data on this subject stem from elaborate and extensive studies combining both field and laboratory methods conducted on seabirds nesting on remote oceanic islands. The tameness of the birds, the size of nesting colonies, and the ability to carry Scholander micro-gas analyzers, Haldane apparatus, sensitive balances, and radioactive water to nesting colonies have made such studies posnible. Long fasting periods and long incubation periods of seabirds have facilitated these studies.


Basal Metabolic Rate Zebra Finch Standard Metabolic Rate Evaporative Water Loss Weight Loss Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Biebach, H., 1979, Energetik des Brutens beim Star (Sturnus vulgaris), J. Ornithol., 120: 121.CrossRefGoogle Scholar
  2. Biebach, H., 1981, Energetic costs of incubation on different clutch sizes in Starlings (Sturnus vulgaris), Ardea, 69:141. Google Scholar
  3. Black, C. P., 1975, The ecology and bioenergetics of the Northern Black-throated Blue Warbler (Dendroica caerulescens caerulescens), Unpubl. Ph.D. dissertation. Darmouth College, Hanover, N.H.Google Scholar
  4. Brisbin, I. L. Jr., 1969, Bioenergetics of the breeding cycle of the Ring Dove, Auk, 86: 54.Google Scholar
  5. Brown, C. R., In press, Resting metabolic rate and energetic cost of incubation in Macaroni Penguins (Eudyptes chrysolophus) and Rockhopper Penguins (E. chrysocome), Comp. Biochem. Physiol.Google Scholar
  6. Brown, C. R. and N. J. Adams, In press, Basal metabolic rate and energetic cost of incubation in the Wandering Albatross, (Diomedea exulans), Condor.Google Scholar
  7. Cooper, J., 1978, Moult of the Black-footed Penguin Spheniscus demersus, International Zoo Yearbook, 18: 22.CrossRefGoogle Scholar
  8. Crawford, E. C., Jr. and R. C. Lasiewski, 1968, Oxygen consumption and respiratory evaporation of the Emu and Rhea, Condor, 70: 333.CrossRefGoogle Scholar
  9. Croxall, J. P., 1982, Energy costs of incubation and moult in petrels and penguins, J. Animal Ecol., 51: 177.CrossRefGoogle Scholar
  10. Dol’nik, V. R. and V. M. Gavrilov, 1975, A comparison of the seasonal and daily variations of bioenergetics, locomotor activities and major body composition in the sedentary House Sparrow (Passer d. domesticus (L.) and the migratory ‘Hindian’ sparrow (P. d. bactrianus Zar et Kudasch), Ekologia Polska, 23: 211.Google Scholar
  11. Drent, R., 1972, Adaptive aspects of the physiology of incubation, Proc. XVth Intern. Ornithol. Congr., p. 255.Google Scholar
  12. El-Wailly, A. J., 1966, Energy requirements for egg-laying and incubation in the Zebra Finch, Taeniopygia castanotis, Condor, 68: 582.CrossRefGoogle Scholar
  13. Fisher, H. I., 1967, Body weights in Laysan Albatrosses, Diomedea immutabilis, Ibis, 109: 373.CrossRefGoogle Scholar
  14. Flint, E. N. and K. A. Nagy, In press, Flight energetics of free-living Sooty Terns, Auk. Gessaman, J. A. and P. R. Findell, 1979, Energy cost of incubation in the American Kestrel, Comp. Biochem. Physiol., 63A: 57.Google Scholar
  15. Grant, G. S. and G. C. Whittow, 1983, Metabolic cost of incubation in the Laysan Albatross and Bonin Petrel, Comp. Biochem. Physiol., 74A: 77.CrossRefGoogle Scholar
  16. Groscolas, R. and C. Clement, 1976, Utilisation des reserves energetiques au cours de jeune de la reproduction chez le manchot empereur Aptenodytes fosteri, Comptes Rendus, Academic des Sciences, Paris. Serie D, 282: 297.Google Scholar
  17. Hamilton, K. L. and J. A. Gessaman, 1981, Energetic cost of incubation of the Barn Owl: a preliminary report, Am. Zool., 21: 964.Google Scholar
  18. Kendeigh, S. C., 1963, Thermodynamics of incubation in the House Wren, Troglodytes aedon, Proc. Intern. Ornithol. Congr., 13: 884.Google Scholar
  19. Kendeigh, S. C., 1973, Discussion, In Breeding Biology of Birds ( D. S. Farner, ed.), pp. 311, Natl. Acad. Sci., Washington, D.C.Google Scholar
  20. King, J. R., 1973, Energetics of reproduction in birds. In Breeding Biology of Birds ( D. S. Farner, ed.), pp. 78, Natl. Acad. Sci., Washington, D.C.Google Scholar
  21. Lasiewski, R. C. and W. R. Dawson, 1967, A re-examination of the relation between standard metabolic rate and body weight in birds, Condor, 69: 12.CrossRefGoogle Scholar
  22. LeFebvre, E. A., 1964, The use of D20i8 for measuring energy metabolism in Columba livia at rest and in flight, Auk, 81: 403.Google Scholar
  23. Lifson, N., G. B. Gordon, and R. McClintock, 1955, Mnsurement of total carbon dioxide production by means of D2O, J. Appl. Physiol., 7: 704.PubMedGoogle Scholar
  24. Lifson, N. and J. S. Lee, 1961, Estimation of material balance of totally fasted rats by doubly labeled water, Am. J. Physiol., 200: 85.PubMedGoogle Scholar
  25. MacMillen, R. E., G. C. Whittow, E. A. Christopher, and R. J. Ebisu, 1977, Oxygen consumption, evaporative water loss, and body temperature in the Sooty Tern, Auk, 94: 72.Google Scholar
  26. Mertens, J. A. L., 1977, The energy requirements for incubation in Great Tits, Parus major L., Ardea, 65: 184.Google Scholar
  27. Mertens, J. A. L., 1980, The energy requirements for incubation in Great Tits and other bird species, Ardea, 68: 185.Google Scholar
  28. Mugaas, J. N., 1976, Thermal energy exchange, microclimate analysis, and behavioral energetics of Black-billed Magpies, Pica pica hudsonia, Unpubl. Ph.D. dissertation. Washington State Univ., Pullman.Google Scholar
  29. Mugaas, J. N. and J. R. King, 1981, Annual variation of daily energy expenditure by the Black-billed Magpie: A study of thermal and behavior energetics, Studies in Avian Biology No. 5, Cooper Ornithol. Society.Google Scholar
  30. Nagy, K. A., 1980, CO production in animals: analysis of potential errors in the doubly labeled water method, Am. J. Physiol., 238: R466.PubMedGoogle Scholar
  31. Nagy, K. A. and D. P. Costa, 1980, Water flux in animals: analysis of potential errors in the tritiated water method, Am. J. Physiol., 238: R454.PubMedGoogle Scholar
  32. Norton, D. W., 1973, Ecological energetics of calidridine sandpipers breeding in northern Alaska, Unpubl. Ph.D. dissertation, Univ. of Alaska.Google Scholar
  33. Rice, D. W. and K. W. Kenyon, 1962, Breeding cycles and behavior of Laysan and Black-footed Albatrosses, Auk, 79: 517.Google Scholar
  34. Ricklefs, R. E., 1974, Energetics of reproduction in birds, In Avian Energetics ( R. A. Paynter, ed.) pp. 152, Nuttall Ornithol. Club, Cambridge, MA.Google Scholar
  35. Ricklefs, R. E., S. C. White, and J. Cullen, 1980, Energetics of postnatal growth in Leach’s Storm-Petrel, Auk, 97: 566.Google Scholar
  36. Riddle, 0. and P. F. Braucher, 1934, Studies on the physiology of reproduction in birds. XXXIII. Body size changes in doves and pigeons incident to stages of the reproductive cycle, Am. J. Physiol., 107: 343.Google Scholar
  37. Vleck, C. M., 1981, Energetic cost of incubation in the Zebra Finch, Condor, 83: 229.CrossRefGoogle Scholar
  38. Walsberg, G. E., 1977, Ecology and energetics of contrasting social systems in Phainopepla nitens (Ayes: Ptilogonatidae), Univ. Calif. Publ. Zool., No. 108.Google Scholar
  39. Walsberg, G. E. and J. R. King, 1978a, The heat budget of incubating mountain white-crowned sparrows (Zonotrichia leucophrys oriantha) in Oregon, Physiol. Zool., 51: 92.Google Scholar
  40. Walsberg, G. E. and J. R. King, 1977, The energetic consequences of incubation for two passerine species. Auk, 95: 644.Google Scholar
  41. West, G. C., 1960, Seasonal variation in the energy balance of the Tree Sparrow in relation to migration, Auk, 77: 306.Google Scholar
  42. Withers, P. C., 1977, Energetic aspects of reproduction by the Cliff Swallow, Auk, 94: 718.Google Scholar
  43. Williams, A. J., W. R. Siegfried, A. E. Burger, and A. Berruti, 1977, Body composition and energy metabolism of moulting eudyptid penguins, Comp. Biochem. Physiol., 56AGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Gilbert S. Grant
    • 1
  1. 1.North Carolina State Museum of Natural HistoryRaleighUSA

Personalised recommendations