Skip to main content

Acetylcholine Receptor

Some Methods Developed to Study a Membrane-Bound Regulatory Protein

  • Chapter
Cell Membranes

Abstract

The acetylcholine receptor protein, found in the synaptic membranes of many nerve cells, at the neuromuscular junction, and in the electric organ of several fish, plays a key role in the transmission of nerve impulses (Katz, 1969; Nachmansohn, 1973; Nachmansohn and Neumann, 1975) and is being studied in many ways in many laboratories (Karlin, 1980; Changeux, 1981; Conti-Tronconi and Raftery, 1982). The electroplax of various fish (E. electricus and Torpedo spp.) has been used extensively in studies of the receptor protein. Here we will concentrate on methods developed in this laboratory to investigate the receptor and membrane-bound proteins in general. For studies of other membrane-bound proteins and the methods developed to study them, the reader is referred to Racker (1970), Kaback (1970), and Dewey and Hammes (1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D. J., Gage, P. W., Hamill, O. P., 1977, Ethabol reduces excitatory postsynaptic current duration at a crustacean neuromuscular junction, Nature 266: 739–741.

    Article  PubMed  CAS  Google Scholar 

  • Adams, P. R., and Feltz, A., 1977, Interaction of a fluorescent probe with acetylcholine-activated synaptic membrane, Nature 269: 609–611.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, C. R., and Stevens, C. F., 1973, Voltage clamp analysis of acetylcholine produced endplate current fluctuations at frog neuromuscular junction, J. Physiol. 235: 655–691.

    PubMed  CAS  Google Scholar 

  • Aoshima, H., Cash, D. J., and Hess, G. P., 1980, Acetylcholine receptor-controlled ion flux in electroplax membrane vesicles: A minimal mechanism based on rate measurements in the millisecond to minute time region, Biochem. Biophys. Res. Commun. 92: 896–904.

    Article  PubMed  CAS  Google Scholar 

  • Aoshima, H., Cash, D. J., and Hess, G. P., 1981, Mechanisms of Inactivation (Desentization) of Acetylcholine Receptor. Investigations by Fast Reaction Techniques with Membrane Vesicles, Biochemistry 20: 3467–3474.

    Article  PubMed  CAS  Google Scholar 

  • Barnard, E. A., Wieckowski, J., and Chiu, T. H., 1971, Cholinergic receptor molecules and cholinesterase molecules at skeletal muscle junctions, Nature 234: 207–209.

    Article  PubMed  CAS  Google Scholar 

  • Baxter, J. D., and Tompkins, G. M., 1971, Specific cytoplasmic glucocorticoid hormone receptors in hepatoma tissue culture cells, Proc. Natl. Acad. Sci. USA 68: 932–937.

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt, J., and Neumann, E., 1978, Kinetic analysis of receptor-controlled tracer efflux from sealed membrane fragments, Proc. Natl. Acad. Sci. USA 75: 3756–3760.

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt, J., and Neumann, E., 1980, Physical factors determining gated flux from or into sealed membrane fragments, in: Molecular Aspects of Bioelectricity ( E. Schoffeniels and E. Neumann eds.), Pergamon Press, Oxford, pp. 243–251.

    Google Scholar 

  • Biesecker, G., 1973, Molecular properties of the cholinergic receptor purified from Electrophorus electricus, Biochemistry 12: 4403–4409.

    Article  PubMed  CAS  Google Scholar 

  • Blanchard, S. G., Quast, U., Reed, K., Lee, T., Schimerlik, M. I., Vandlen, R., Claudio, T., Strader, C. D., Moore, H.-P. H., and Raftery, M. A., 1979, Interaction of [125I]-a-bungarotoxin with acetylcholine receptor from Torpedo californica, Biochemistry 18: 1875–1883.

    Article  PubMed  CAS  Google Scholar 

  • Böhlen, P., Stein, S., Dairman, W., and Udenfriend, S., 1973, Fluorometric assay of proteins in the nanogram range, Arch. Biochem. Biophys. 155: 213–220.

    Article  PubMed  Google Scholar 

  • Bonting, S. L., Simon, K. A., and Hawkins, N. M., 1961, Studies on sodium-potassium-activated adenosine triphosphatase I. Quantitative distribution in several tissues of the cat, Arch. Biochem. Biophys. 95: 416–423.

    Article  PubMed  CAS  Google Scholar 

  • Brockes, J. P., and Hall, Z. W., 1975a, Acetylcholine receptors in normal and denervated rat diaphragm muscle. I. Purification and interaction with [1251]-a-bungarotoxin, Biochemistry 14: 2092–2099.

    Article  PubMed  CAS  Google Scholar 

  • Brockes, J. P., and Hall, Z. W., 1975b, Acetylcholine receptors in normal and denervated rat diaphragm muscle II Comparison of junctional and extrajunctional receptors, Biochemistry 14: 2100–2106.

    Article  PubMed  CAS  Google Scholar 

  • Bulger, J. E., and Hess, G. P., 1973, Evidence for separate initiation and inhibitory sites in the regulation of membrane potential of electroplax. I. Kinetic studies with a-bungarotoxin, Biochem. Biophys. Res. Commun. 54: 677–684.

    Article  PubMed  CAS  Google Scholar 

  • Bulger, J. E., Fu, J. L., Hindy, E. F., Silberstein, R. J., and Hess, G. P., 1977, Allosteric interactions between the membrane-bound acetylcholine receptor and chemical mediators. Kinetic studies, Biochemistry 16: 684–692.

    Article  PubMed  CAS  Google Scholar 

  • Busch, K. W., and Malloy, B., 1979, in: Multichannel Image Detectors (Y. Talmi, ed.), American Chemical Society, Washington, D. C., pp. 27–58.

    Google Scholar 

  • Busch, K. W., and Morrison, G. H., 1973, Simultaneous determination of electrolytes in serum using a vidicon flame spectrophotometer, Anal. Chem. 45: 712A - 722A.

    Article  CAS  Google Scholar 

  • Cash, D. J., and Hess, G. P., 1980, Molecular mechanism of acetylcholine receptor-controlled ion translocation across cell membranes, Proc. Natl. Acad. Sci. USA 77: 842–846.

    Article  PubMed  CAS  Google Scholar 

  • Cash, D. J., and Hess, G. P., 1981, Quenched flow technique with plasma membrane vesicles: acetylcholine receptor-mediated transmembrane ion flux, Analyt. Biochem. 112: 39–51.

    Article  PubMed  CAS  Google Scholar 

  • Cash, D. J., Aoshima, H., and Hess, G. P., 1980, Acetylcholine-induced receptor-controlled ion flux investigated by flow quench techniques, Biochem. Biophys. Res. Comm. 95: 1010–1016.

    Article  PubMed  CAS  Google Scholar 

  • Cash, D. J., Aoshima, H., and Hess, G. P., 1981, Acetylcholine-induced cation translocation across cell membranes and inactivation of the acetylcholine receptor: Chemical kinetic measurements in the millisecond time region, Proc. Natl. Acad. Sci. USA 78: 3318–3322.

    Article  PubMed  CAS  Google Scholar 

  • Chance, B., 1974, in: Techniques of Chemistry, 3rd ed., Volume VI(II) (G. G. Hammes, ed. ), p. 5.

    Google Scholar 

  • Chance, B., Eisenhardt, R. H., Gibson, Q. H., and Lonberg-Holm, K. K. (eds.), 1964, Rapid Mixing and Sampling Techniques in Biochemistry, Academic Press, New York.

    Google Scholar 

  • Chang, C. C., and Lee, C. Y., 1963, Isolation of neurotoxins from the venom of Bungarus multicinctus and their modes of neuromuscular blocking action, Arch. Intern. Pharmacodyn. Ther. 144: 241–257.

    CAS  Google Scholar 

  • Chang, H. W., 1974, Purification and characterization of acetylcholine receptor from Electrophorus electricus, Proc. Natl. Acad. Sci. USA 71: 2113–2117.

    Article  PubMed  CAS  Google Scholar 

  • Changeux, J.-P., 1981, AcChR, an allosteric protein, Harvey Lect. 75: 85–254.

    CAS  Google Scholar 

  • Changeux, J.-P., Podleski, T. R., and Meunier, J.-C., 1969, On some structural analogies between acetylcholinesterase and the macromolecular receptor of acetylcholine, J. Gen. Physiol. 54: 225–244.

    Article  PubMed  CAS  Google Scholar 

  • Clark, D. G., Macmurchie, D. D., Elliott, E., Wolcott, R. G., Landel, A. M., and Raftery, M. A., 1972, Elapid neurotoxins. Purification, characterization, and immunochemical studies of a-bungarotoxin, Biochemistry 11: 1663–1668.

    Article  PubMed  CAS  Google Scholar 

  • Claudio, T., and Raftery, M. A., 1977, Immunological comparison of acetylcholine receptors and their subunits from species of electric ray, Arch. Biochem. Biophys. 181: 484–489.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, S. R., 1969, A rapid sensitive semimicro gel filtration procedure for detecting and removing low molecular weight fragments from [3H]- or [14C]-labeled inulin, Analyt. Biochem. 31: 539–544.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, J. B., and Changeux, J.-P., 1973, Interaction of a fluorescent ligand with membrane-bound cholinergic receptor from Torpedo mormorata, Biochemistry 12: 4855–4863.

    Article  PubMed  CAS  Google Scholar 

  • Conti-Tronconi, B. M., and Raftery, M. A., 1982, The nicotinic cholinergic receptor: Correlation of molecular structure with functional properties, Ann. Rev. Biochem. 51: 491–530.

    Article  PubMed  CAS  Google Scholar 

  • Conway, A., and Koshland, D. E., 1968, Negative cooperativity in enzyme action. The binding of diphosphopyridine nucleotide to glyceraldehyde 3-phosphate dehydrogenase, Biochemistry 7: 4011–4023.

    Article  PubMed  CAS  Google Scholar 

  • Davis, B. V., 1964, Ann. N.Y. Acad. Sci. 121: 404.

    Article  PubMed  CAS  Google Scholar 

  • Delegeane, A. M., and McNamee, M. G., 1980, Independent activation of the acetylcholine receptor from Torpedo californica at two sites, Biochemistry 19: 890–895.

    Article  PubMed  CAS  Google Scholar 

  • Dewey, T. G., and Hammes, G. G., 1981, Proc. Natl. Acad. Sci. U.S.A. 78: 7422–7425.

    Article  PubMed  CAS  Google Scholar 

  • Donner, D., Fu, J., and Hess, G. P., 1976, Equilibrium dialysis of the membrane-bound acetylcholine receptor: A simple method to avoid common errors, Anal. Biochem. 75: 454–463.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, S. M. J., and Raftery, M. A., 1982, Multiple binding sites for agonists on Torpedo californica acetylcholine receptor, Biochemistry 21: 6264–6272.

    Article  PubMed  CAS  Google Scholar 

  • Eigen, M., 1967, Kinetics of reaction controls and information transfer in enzymes and nucleic acids, Nobel Symp. 5: 333–369.

    Google Scholar 

  • Eldefrawi, M. E., and Eldefrawi, A. T., 1973, Purification and molecular properties of acetylcholine receptor from Torpedo electroplax, Arch. Biochem. Biophys. 159: 362–373.

    Article  PubMed  CAS  Google Scholar 

  • Eldefrawi, M. E., and Eldefrawi, A. T., 1977, Acetylcholine receptors in: Receptors and Recognition IV, (A. P. Cuatrecasas and M. F. Greaves, eds.), Chapman and Hall, London, pp. 197–258.

    Google Scholar 

  • Eldefrawi, M. E., Britten, A. G., and O’Brien, R. D., 1971a, Action of organophosphates on binding of cholinergic ligands, Pest. Biochem. Physiol. 1: 101–108.

    Article  CAS  Google Scholar 

  • Eldefrawi, M. E., Britten, A. G., and Eldefrawi, A. T., 1971b, Acetylcholine binding to Torpedo electroplax: Relationships to acetylcholine receptors, Science 173: 338–340.

    Article  PubMed  CAS  Google Scholar 

  • Eldefrawi, M. E., Eldefrawi, A. T., and Shamoo, A. E., 1975, Molecular and functional properties of the acetylcholine-receptor, Ann. N.Y. Acad. Sci. 264: 183–202.

    Article  PubMed  CAS  Google Scholar 

  • Ellman, G. L., Courtney, K. D., Andres, V. A., Jr., and Featherstone, R. M., 1961, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacology 7: 88–95.

    Article  CAS  Google Scholar 

  • Fcrsht, A. R., and Jakes, R., 1975, Demonstration of two reaction pathways for the aminoacylation of tRNA. Application of the pulsed quenched flow technique, Biochemistry 14: 3350–3356.

    Article  Google Scholar 

  • Franklin, G. I., and Potter, L. T., 1972, Studies of the binding of a-bungarotoxin to membrane-bound and detergent-dispersed acetylcholine receptors from Torpedo electric tissue, FEBS Lett. 28: 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Froehlich, J. P., and Tayler, E. W., 1976, Transient state kinetic effects of calcium ion on sarcoplasmic reticulum adenosine triphosphatase, J. Biol. Chem. 251: 2307–2315.

    PubMed  CAS  Google Scholar 

  • Fu, J. j. L., Dormer, D. B., and Hess, G. P., 1974, Half-of-the-sites reactivity of the membrane-bound Electrophorus electricus acetylcholine receptor, Biochem. Biophys. Res. Commun. 60: 1072–1080.

    Article  PubMed  CAS  Google Scholar 

  • Fu, J. j. L., Donner, D. B., Moore, D. E., and Hess, G. P., 1977, Allosteric interactions between the membrane-bound acetylcholine receptor and chemical mediators: Equilibrium measurements, Biochemistry 16: 678–684.

    Article  PubMed  CAS  Google Scholar 

  • Fulpius, B., Cha, S., Klett, R., and Reich, E., 1972, Properties of the nicotinic acetylcholine receptor macromolecule of Electrophorus electricus, FEBS Lett. 24: 323–326.

    Article  PubMed  CAS  Google Scholar 

  • Furlong, C. E., Morris, R. G., Kandrach, M., and Rosen, B. P., 1972, A multichamber equilibrium dialysis apparatus, Analyt. Biochem. 47: 514–526.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, Q., 1966, Ann. Rev. Biochem. 35: 435–456.

    Article  CAS  Google Scholar 

  • Hannes, G. G., 1982, Enzyme Catalysis and Regulation, Academic Press, New York.

    Google Scholar 

  • Hammes, G. G., and Wu, C. W., 1974, Kinetics of allosteric enzymes, Ann. Rev. Biophys. Bioeng. 3: 1–33.

    Article  CAS  Google Scholar 

  • Hazelbauer, G. H., and Changeux, J.-P., 1974, Reconstitution of a chemically excitable membrane, Proc. Natl. Acad. Sci. U.S.A. 71: 1479–1483.

    Article  PubMed  CAS  Google Scholar 

  • Heidmann, T., and Changeux, J.-P., 1978, Structural and functional properties of the acetylcholine receptor protein in its purified and membrane-bound states, Ann. Rev. Biochem. 47: 315–357.

    Article  Google Scholar 

  • Hess, G. P., and Rupley, J. A., 1971, Structure and function of proteins, Ann. Rev. Biochem. 40: 1013–1044.

    Article  PubMed  CAS  Google Scholar 

  • Hess, G. P., Bulger, J. E., Fu, J. j. L., Hindy, E. F., and Silberstein, R. J., 1975b, Allosteric interactions of the membrane-bound acetylcholine receptor: Kinetic studies with a-bungarotoxin, Biochem. Biophys. Res. Commun. 64: 1018–1027.

    Article  PubMed  CAS  Google Scholar 

  • Hess, G. P., Andrews, J. P., and Struve, G. P., 1976, Apparent cooperative effects in acetylcholine receptor-mediated ion flux in electroplax membrane preparations, Biochem. Biophys. Res. Comm. 69: 830–837.

    Article  PubMed  CAS  Google Scholar 

  • Hess, G. P., and Andrews, J. P., 1977, Functional acetylcholine receptor-electroplax membrane microsacs (vesicles): Purification and characterization, Proc. Natl. Acad. Sci. U.S.A. 74: 482–486.

    Article  PubMed  CAS  Google Scholar 

  • Hess, G. P., Lipkowitz, S., and Struve, G. E., 1978, Acetylcholine-receptor-mediated ion flux in electroplac membrane microsacs (vesicles): Change in mechanism produced by asymmetrical distribution of sodium and potassium ions, Proc. Natl. Acad. Sci. USA 75: 1703–1707.

    Article  PubMed  CAS  Google Scholar 

  • Hess, G. P., Cash, D. J., and Aoshima, H., 1979, Acetylcholine receptor-controlled ion fluxes in membrane vesicles investigated by fast reaction techniques, Nature 282: 329–331.

    Article  PubMed  CAS  Google Scholar 

  • Hess, G. P., Cash, D. J., Aoshima, H., 1980, In Molecular Aspects of Bioelectricity (E. Schoffeniels and E. Neumann, eds.), pp. 233–242, Pergamon, Oxford.

    Google Scholar 

  • Hess, G. P., Aoshima, H., Cash, D. J., and Lenchitz, B., 1981, Specific reaction rate of acetylcholine receptor-controlled ion translocation: A comparison of measurements with membrane vesicles and muscle cells, Proc. Natl. Acad. Sci. U.S.A. 78: 1361–1365.

    Article  PubMed  CAS  Google Scholar 

  • Hess, G. P., Pasquale, E. B., Walker, J. W., and McNamee, M. G., 1982, Comparison of acetylcholine receptor-controlled cation flux in membrane vesicles from Torpedo californica and Electrophorus electricus: Chemical kinetic measurements in the millisecond region, Proc. Natl. Acad. Sci. USA 79: 963–967.

    Article  PubMed  CAS  Google Scholar 

  • Hess, G. P., Cash, D. J., and Aoshima, H., 1983, Acetylcholine receptor-controlled ion translocation: Chemical kinetic investigations of the mechanism. Ann. Rev. Biophys. Bioeng. 12: 443–473.

    Article  CAS  Google Scholar 

  • Hess, G. P., Cash, D. J., Aoshima, H., 1980, In Molecular Aspects of Bioelectricity (E. Schoffeniels and E. Neumann, eds.), pp. 233–242, Pergamon, Oxford.

    Google Scholar 

  • Higman, H. B., Podleski, T. R., and Bartels, E., 1963, Apparent dissociation constants between carbamylcholine, d-tubocurarine and the receptor, Biochim. Biophys. Acta 75: 187–193.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1976, Ann. Rev. Physiol. 38: 139–152.

    Article  CAS  Google Scholar 

  • Holler, E., Rupley, J. A., and Hess, G. P., 1975a, Productive and unproductive lysozyme-chitosaccharide complexes. Equilibrium measurements, Biochemistry 14: 1088–1094.

    Article  PubMed  CAS  Google Scholar 

  • Holler, E., Rupley, J. A., and Hess, G. P., 1975b, Productive and unproductive lysozyme-chitosaccharide complexes. Kinetic investigations, Biochemistry 14: 2377–2385.

    Article  PubMed  CAS  Google Scholar 

  • Kaback, H. R., 1970, Transport, Ann. Rev. Biochem. 39: 561–598.

    Article  PubMed  CAS  Google Scholar 

  • Karlin, A., 1967a, Chemical distinctions between acetylcholinesterase and the acetylcholine receptor, Biochim. Biophys. Acta 139: 358–362.

    Article  PubMed  CAS  Google Scholar 

  • Karlin, A., 1967b, On application of “a plausible model” of allosteric proteins to the receptor for acetylcholine, J. Theor. Biol. 16: 306–320.

    Article  PubMed  CAS  Google Scholar 

  • Karlin, A., 1974, The acetylcholine receptor: Progress report, Life Sciences 14: 1385–1415.

    Article  PubMed  CAS  Google Scholar 

  • Karlin, A., 1980, Molecular properties of nicotinic acetylcholine receptors, in: The Cell Surface and Neuronal Function ( C. W. Cotman, G. Poste, and G. L. Nicolson, eds.), Elsevier/North Holland, Amsterdam, pp. 191–260.

    Google Scholar 

  • Karlin, A., Weill, C. L., McNamee, M. G., and Valderrama, R., 1975, Facets of the structures of acetylcholine receptors from Electrophorus and Torpedo, Cold Spring Harbor Sympos. XL:203–210.

    Google Scholar 

  • Karlsson, E., Heilbronn, E., and Widlund, L., 1972, Isolation of the nicotinic acetylcholine receptor by biospecific chromatography on insolubilized Naja naja neurotoxin, FEBS Lett. 28: 107–111.

    Article  PubMed  CAS  Google Scholar 

  • Karpen, J. W., Aoshima, H., Abood, L. G., and Hess, G. P., 1982, Cocaine and phencyclidine inhibition of the acetylcholine receptor: Analysis of the mechanisms of action based on measurements of ion flux in the millisecond-to-minute time region, Proc. Natl. Acad. Sci. USA 79: 2509–2513.

    Article  PubMed  CAS  Google Scholar 

  • Karpen, J. W., Sachs, A. B., Cash, D. J., Pasquale, E. B., and Hess, G. P., 1983, Direct spectrophotometric detection of cation flux in membrane vesicles: Stopped-flow measurements of acetylcholine-receptor-mediated ion flux, Analyt. Biochem. 135: 83–94.

    Article  PubMed  CAS  Google Scholar 

  • Kasai, M, and Changeux, J.-P., 1971a, In vitro excitation of purified membrane fragments by cholinergic agonists. I. Pharmacological properties of the excitable membrane fragments, J. Membr. Biol. 6: 1–23.

    Article  CAS  Google Scholar 

  • Kasai, M., and Changeux, J.-P., 1971b, In vitro excitation of purified membrane fragments by cholinergic agonists. II. The permeability change caused by cholinergic agonists, J. Membr. Biol. 6: 24–57.

    Article  CAS  Google Scholar 

  • Kasai, M., and Changeux, J.-P., 1971c, In vitro excitation of purified membrane fragments by cholinergic agonists. III. Comparison of the dose-response curves to decamethonium with the corresponding binding curves of decamethonium to the cholinergic receptor, J. Membr. Biol. 6: 58–80.

    Article  CAS  Google Scholar 

  • Katz, B., 1966, Nerve, Muscle and Synapse, McGraw-Hill, New York.

    Google Scholar 

  • Katz, B. 1969, The Release of Neural Transmiter Substances, Liverpool University Press, Liverpool.

    Google Scholar 

  • Katz, B., and Miledi, R., 1972, The statistical nature of the acetylcholine potential and its molecular components, J. Physiol. (London) 224: 665–699.

    Google Scholar 

  • Katz, B., and Thesleff, S., 1957, A study of the “desensitization” produced by acetylcholine at the motor end-plate, J. Physiol. (London) 138: 63–80.

    CAS  Google Scholar 

  • Keynes, R. D., and Martins-Ferreira, H., 1953, Membrane potentials in the electroplates of the electric eel, J. Physiol. (London) 119: 315–351.

    CAS  Google Scholar 

  • Kim, P. S., and Hess, G. P., 1981, Acetylcholine receptor-controlled ion flux in electroplax membrane vesicles: Identification and characterization of membrane properties that affect ion flux measurements, J. Membr. Biol. 58: 203–211.

    Article  PubMed  CAS  Google Scholar 

  • Klett, R. P., Fulpius, B. W., Cooper, D., Smith, M., Reich, E., and Possani, L. D., 1973, The acetylcholine receptor I Purification and characterization of a macromolecule isolated Electrophorus electricus, J. Biol. Chem. 248: 6841–6853.

    CAS  Google Scholar 

  • Koblin, D. D., and Lester, H. A., 1979, Voltage-dependent and voltage-independent blockage of acetylcholine receptors by local anesthetics in Electrophorus electroplaques, Mol. Pharmacol. 15: 559–580.

    PubMed  CAS  Google Scholar 

  • Kohanski, R., Andrews, J., Wins, P., Eldefrawi, M., and Hess, G. P., 1977, A simple quantitative assay of 125I-labeled a-bungarotoxin binding to soluble and membrane-bound acetylcholine receptor protein, Anal. Biochem. 80: 531–539.

    Article  PubMed  CAS  Google Scholar 

  • Koshland, D. E., 1970, The molecular basis for enzyme regulation, Enzymes 1: 341–396.

    Article  CAS  Google Scholar 

  • Koshland, D. E., Jr., Nemethy, G., and Filmer, D., 1966, Comparison of experimental binding data and theoretical models in proteins containing subunits, Biochemistry 5: 365–385.

    Article  PubMed  CAS  Google Scholar 

  • Kurzmack, M., Verjovski-Almeida, S., and Inesi, G., 1977, Detection of an initial burst of Cat+ translocation in sarcoplasmic reticulum, Biochem. Biophys. Res. Commun. 78: 772–776.

    Article  PubMed  CAS  Google Scholar 

  • Kumar Ash, S., and Rohatgi-Mukherjee, K. K., 1979, Ind. J. Biochem. Biophys. 16: 28–31.

    Google Scholar 

  • Lee, C. Y., 1972, Chemistry and pharmacology of polypeptide toxins in snake venom, Ann. Rev. Pharmacol. 12: 265–286.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C. Y., and Chang, C. Y., 1966, Memb. Inst. Butanton Symp. Int. 33: 555.

    CAS  Google Scholar 

  • Lee, C. Y., Tseng, L. F., and Chiu, T. H., 1967, Influence of denervation on localization of neurotoxins from clapin venoms in rat diaphragm, Nature 215: 1177–1178.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C. Y., Chang, S. L., Kau, S. T., and Luh, S.-H., 1972, Chromatographic separation of the venom of Bungarus multicinctus and characterization of its components, J. Chromatogr. 72: 71–82.

    Article  PubMed  CAS  Google Scholar 

  • Leprince, P., Noble, R. L., and Hess, G. P., 1981, Comparison of the interactions of a specific neurotoxin (a-bungarotoxin) with the acetylcholine receptor in Torpedo californica and Electrophorus electricus, Biochemistry 20: 5565–5570.

    CAS  Google Scholar 

  • Lester, H. A., Changeux, J.-P., and Sheridan, R. E., 1975, Conductance increases produced by bath application of cholinergic agonists to Electrophorus electricus, J. Gen. Physiol. 65: 797–816.

    Article  CAS  Google Scholar 

  • Li, N., 1968, Arch. Pharm. Exp. Path. 259: 360.

    Article  Google Scholar 

  • Lindstrom, J., and Patrick, J., 1974, Purification of the acetylcholine receptor by affinity chromatography, in: Synaptic Transmission and Neuronal Interaction ( M. V. Bennett, ed.), Raven Press, New York, pp. 191–216.

    Google Scholar 

  • Lindstrom, J., Cooper, J., and Tzartos, S., 1980, Acetylcholine receptors from Torpedo and Electrophorus have similar subunit structures, Biochemistry 19: 1454–1458.

    Article  PubMed  CAS  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., 1951, Protein measurements with the Folin phenol reagent, J. Biol. Chem. 193: 265–275.

    PubMed  CAS  Google Scholar 

  • Lymn, R. W., and Taylor, E. W., 1970, Transient state phosphate production in the hydrolysis of nucleoside triphosphate by myosin. Biochemistry 9: 2975–2983.

    Article  PubMed  CAS  Google Scholar 

  • MacQuarrie, R. A., and Bernhard, S. A., 1971a, Mechanism of alkylation of rabbit muscle glyceraldehyde 3-phosphate dehydrogenase, Biochemistry 10: 2456–2466.

    Article  PubMed  CAS  Google Scholar 

  • MacQuarrie, R. A., and Bernhard, S. A., 1971b, Subunit conformation and catalytic function in rabbit-muscle glyceraldehyde-3-phosphate dehydrogenase, J. Mol. Biol. 55: 181–192.

    Article  PubMed  CAS  Google Scholar 

  • Martonosi, A., Lagwinska, E., and Oliver, M., 1974, Elementary processes in the hydrolysis of ATP by sarcoplasmic reticulum membranes, Ann. N.Y. Acad. Sci. 227: 549–567.

    Article  PubMed  CAS  Google Scholar 

  • Meunier, J.-C., Olsen, R. W., Menez, A., Fromageot, P., Boguet, P., and Chaneux, J.-P., 1972, Some physical properties of the cholinergic receptor protein from Electrophorus electricus revealed by a tritiated a-toxin from Naja nigricollis venom, Biochemistry 11: 1200–1210.

    Article  PubMed  CAS  Google Scholar 

  • Meunier, J.-C., Sealock, R., Olsen, R., and Changeux, J.-P., 1974, Purification and properties of the cholinergie receptor protein from Electrophorus electricus electric tissue, Eur. J. Biochem. 45: 371–394.

    Article  PubMed  CAS  Google Scholar 

  • Miledi, R., and Potter, L. T., 1971, Acetylcholine receptors in muscle fibers, Nature 233: 599–603.

    Article  PubMed  CAS  Google Scholar 

  • Miledi, R., Molinoff, P., and Potter, L. P., 1971, Isolation of the cholinergic receptor protein of Torpedo electric tissue, Nature 229: 554–557.

    Article  PubMed  CAS  Google Scholar 

  • Miller, D. L., Moore, H.-P. H., Hartig, P., and Raftery, M. A., 1978, Fast cation flux from Torpedo californica membrane preparations: Implications for a functional role for acetylcholine receptor dimers, Biochem. Biophys. Res. Commun. 85: 632–640.

    Article  PubMed  CAS  Google Scholar 

  • Monod, J., Wyman, J., and Changeux, J.-P., 1965, On the nature of allosteric transition: a plausible model, J. Mol. Biol. 12: 88–118.

    Article  PubMed  CAS  Google Scholar 

  • Moore, H.-P. J., and Raftery, M. A., 1980, Direct spectroscopic studies of cation translocation by Torpedo acetylcholine receptor on a time-scale of physiological relevance, Proc. Natl. Acad. Sci. USA 77: 4509–4513.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, G. H., 1979, Elemental trace analysis of biological materials, CRC Crit. Rev. Anal. Chem. 8: 287–320.

    Article  CAS  Google Scholar 

  • Nachmansohn, D., 1973, in: The Structure and Function of Muscle 2nd ed., Volume 3 (G. H. Boume, ed.), Academic Press, New York, pp. 32–116.

    Google Scholar 

  • Nachmansohn, D., and Neumann, E., 1975, Chemical and Molecular Basis of Nerve Activity, Academic Press, New York.

    Google Scholar 

  • Neher, E., and Sakmann, B., 1975a. Single-channel currents recorded from membrane of denervated frog muscle fibers, Nature 260: 779–802.

    Google Scholar 

  • Neher, E., and Sakmann, B., 1976b, Noise analysis of drug-induced voltage clamp currents in denervated frog muscle fibres, J. Physiol. 258: 705–729.

    PubMed  CAS  Google Scholar 

  • Neher, E., and Steinbach, J. H., 1978, Local anesthetics transiently block currents through single acetylcholine-receptor channels, J. Physiol. 277: 153–176.

    PubMed  CAS  Google Scholar 

  • Neher, E., and Stevens, C. F., 1977, Conductance fluctuations and ionic pores in membranes, Ann. Rev. Biophys. Bioeng. 6: 345–381.

    Article  CAS  Google Scholar 

  • Neubig, R. R. and Cohen, J. B., 1979, Equilibrium binding of [3H]-tubocurarine and [3H]-acetylcholine by Torpedo postsynaptic membranes: Stoichiometry and ligand interactions, Biochemistry 18: 5464–5475.

    Article  PubMed  CAS  Google Scholar 

  • Neubig, R. R., and Cohen, J. B., 1980, Permeability control by cholinergic receptors in Torpedo postsynaptic membranes: Agonist dose-response relations measured at second and millisecond times, Biochemistry 19: 2770–2779.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, R. D., and Gilmour, L. P., 1969, A muscarone-binding material in electroplax and its relation to the acetylcholine receptor, I. Centrifugal assay, Proc. Natl. Acad. Sci. USA 63: 496–503.

    Article  PubMed  Google Scholar 

  • Palfrey, C., and Littauer, U. Z., 1976, Sodium-dependent efflux of K and Rb+ through the activated sodium channel neuroblastoma cells, Biochem. Biophys. Res. Commun. 72: 209–215.

    Article  PubMed  CAS  Google Scholar 

  • Pasquale, E. B., Takeyasu, K., Udgaonkar, J. B., Cash, D. J., Severski, M. C., and Hess, G. P., (1984), Acetylcholine receptor: Evidence for a regulatory binding site in investigations of suberyldicholine-induced transmembrane ion flux in Electrophorus electricus membrane vesicles, Biochemistry 22: 5967–5978.

    Article  Google Scholar 

  • Patrick, J., and Stallcup, W. B, 1979, Immunological distinction between acetylcholine receptor and the a-bungarotoxin binding component on sympathetic neurons, Proc. Natl. Acad. Sci. U.S.A. 74: 4689–4692.

    Article  Google Scholar 

  • Peterson, G. L., 1979, Reviews of the Folin-Phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall, Anal. Biochem. 100: 201–220.

    Article  PubMed  CAS  Google Scholar 

  • Phelps, C. F., 1965, The physical properties of inulin solutions. Biochem. J. 95: 41–47.

    CAS  Google Scholar 

  • Popot, J.-L., Sugiyama, H. J., and Changeux, J.-P., 1974, Demonstration de la densensibilisation pharmacologique du recepteur de l’acetylcholine in vitro avec des fragments de membranes excitable de Torpille, C.R. Acad. Sci. Paris, Ser. D. 279: 1721–1724.

    CAS  Google Scholar 

  • Quast, U., Schimerlik, M., Lee, T., Witzmemann, V., Blanchard, S., and Raftery, M. A., 1978, Ligand-induced conformation changes in Torpedo californica membrane-bound acetylcholine receptor, Biochemistry 17: 2405–2414.

    Article  PubMed  CAS  Google Scholar 

  • Rabon, E. C., and Sachs, G., 1981, J. Membr. Biol. 62: 19–27.

    Article  PubMed  CAS  Google Scholar 

  • Racker, E. (ed.), 1970, Membranes of Mitochondria and Chloroplasts, Van Nostrand-Reinhold, New York.

    Google Scholar 

  • Ramseyer, G. O., Morrison, G. H., Aoshima, H., and Hess, G. P., 1981, Vidicon flame emission spectroscopy of Li+, Na +, and K+ fluxes mediated by acetylcholine receptor in Electrophorus electricus membrane vesicles, Analyst. Biochem. 115: 34–41.

    Article  CAS  Google Scholar 

  • Reif, A. E., 1967, A simple procedure for high efficiency radioiodination of proteins, J. Nucl. Med. 9: 148–155.

    Google Scholar 

  • Reynolds, J., and Karlin, A., 1978, Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica, Biochemistry 17: 2035.

    Article  CAS  Google Scholar 

  • Rought;:ri, F. J. W., and Chance, B., 1963, in: Technique of Organic Chemistry, 2nd ed. Volume 8 (S. L. Friess, E. S. Lewis, and A. Weissberger, eds.), Wiley, p. 2.

    Google Scholar 

  • Rübsamen, H., Eldefrawi, A. T., Eldefrawi, M. E., and Hess, G. P., 1978, Characterization of the calcium-binding sites of the purified acetylcholine receptor and identification of the calcium-binding subunit, Biochemistry 17: 3818–3825.

    Article  PubMed  Google Scholar 

  • Sachs, A., 1982, Honors Thesis, Cornell University. The acetylcholine receptor: Characterization of a-bungarotoxin sites in Electrophorus electricus membrane preparations, development of fluorescent quenching techniques to measure ion flux and the effects of phencyclidine on the receptor in living cells.

    Google Scholar 

  • Sachs, A. B., Lenchitz, B., Noble, R. L., and Hess, G. P., 1982, A convenient large-scale method for the isolation of membrane vesicle permeable to a specific inorganic ion: Isolation and characterization of functional acetylcholine receptor-containing vesicles from the electric organ of Electrophorus electricus, Analyt. Biochem. 124: 185–190.

    CAS  Google Scholar 

  • Sakmann, B., and Adams, P. R., 1979, Advances in Pharmacology and Therapeutics 1, Receptors. Biophysical aspects of agonist action at frog endplate.

    Google Scholar 

  • Sakmann, B., and Neher, E. (eds.), (1983) Single-Channel Recording, Plenum Press, New York.

    Google Scholar 

  • Scatchard, G., 1949, The attractions of proteins for small molecules and ions, Ann. N.Y. Acad. Sci. 50: 660–672.

    Article  Google Scholar 

  • Schmidt, J., and Raftery, M. A., 1972, Use of affinity chromotography for acetylcholine receptor purification, Biochem. Biophys. Res. Commun. 49: 572–578.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, J., and Raftery, M. A., 1973, A simple assay for the study of solubilized acetylcholine receptors, Anal. Biochem. 52: 349–354.

    Article  PubMed  CAS  Google Scholar 

  • Schoffeniels, E., 1957, An isolated single electroplax preparation. II Improved preparation for studying ion flux, Biochim. Biophys, Acta 26: 585–596.

    Article  CAS  Google Scholar 

  • Schoffeniels, E., 1959, Ion movements studied with single isolated electroplax, Annals N.Y. Acad. Sci. 81: 285–306.

    Article  CAS  Google Scholar 

  • Schoffeniels, E., and Nachmansohn, D., 1957, An isolated single electroplax preparation. I. New data on the effect of acetylcholine and related compounds, Biochim. Biophys. Acta 26: 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Sears, D. A., Reed, C. F., and Helmkamp, R. W., 1971, A radioactive label for the erythrocyte membrane. Biochim. Biophys. Acta 233: 716–719.

    Article  PubMed  CAS  Google Scholar 

  • Sheridan, R. E., and Lester, H. E., 1975, Relaxation measurements on the acetylcholine receptor, Proc. Natl. Acad. Sci. USA 72: 3496–3500.

    Article  PubMed  CAS  Google Scholar 

  • Silman, H. I., and Karlin, A., 1967, Effect of local pH changes caused by substrated hydrolysis on the activity of membrane-bound acetylcholinesterase, Proc. Natl. Acad. Sci. USA 58: 1664–1675.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama, H., Popot, R. L., Cohen, J. B., Weber, M., and Changeux, J.-P., 1975, in: Protein-Ligand interactions (H. Sund and G. Blauer, eds.), De Guyter, Berlin, pp. 289–503.

    Google Scholar 

  • Sugiyama, H. J., Popot, J.-L., and Changeux, J.-P., 1976, Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. III Pharmacological desensitization in vitro of the receptor-rich membrane fragments by cholinergic agonists, J. Mol. Biol. 106:469–483.

    Google Scholar 

  • Sumida, M., Wang, T., Mandel, F., Froehlich, J. P., and Schartz, A., 1978, Transient kinetics of Ca“ transport of sarcoplasmic reticulum. A comparison of cardiac and skeletal muscle, J. Biol. Chem. 253: 8772–8777.

    PubMed  CAS  Google Scholar 

  • Takeyasu, K., Udgaonkar, J. B., and Hess, G. P., 1983, Acetylcholine receptor: Evidence for a voltage-dependent regulatory site for acetylcholine. Chemical kinetic measurements in membrane vesicles using a voltage-clamp, Biochemistry 22: 5973–5978.

    Article  PubMed  CAS  Google Scholar 

  • Thayer, W. S., and Hinkle, P. C., 1975, Kinetics of adenosine triphosphate synthesis in bovine heart submitochondrial particles, J. Biol. Chem. 250: 5336–5342.

    PubMed  CAS  Google Scholar 

  • Verjovski-Almeida, S., and Inesi, G., 1979, Fast kinetic evidence for an activating effect of ATP on the Ca’ transport of sarcoplasmic reticulum ATPase, J. Biol. Chem. 254: 18–21.

    PubMed  CAS  Google Scholar 

  • Walker, J. W., McNamee, M. G., Pasquale, E., Cash, D. J., and Hess, G. P., 1981, Acetylcholine receptor inactivation in T. californica electroplax membrane vesicles. Detection of two processes in the millisecond and second time processes, Biochem. Biophys. Res. Commun. 100: 86–90.

    Article  PubMed  CAS  Google Scholar 

  • Weber, M., and Changeux, J.-P., 1974, Binding of Naja nigricollis [3H]-a-toxin to membrane fragments from Electrophorus and Torpedo electric organs. II. Effect of cholinergic agonists and antagonists on the binding of the tritiated a-neurotoxins, Mol. Pharmacol. 10: 15–34.

    PubMed  CAS  Google Scholar 

  • Weiland, G., Georgia, B., Wee, V. T., Chignell, C. F., and Taylor, P., 1976, Ligand interactions with cholinergic receptor-enriched membranes from Torpedo: Influence of agonist exposure on receptor proteins, Mol. Pharm. 12: 1091–1105.

    CAS  Google Scholar 

  • Weiland, G., Georgia, B., Lappi, S., Chignell, C. F., and Taylor, P., 1977, Kinetics of agonistmediated transitions in state of the cholinergic receptor, J. Biol. Chem. 252: 7648–7656.

    PubMed  CAS  Google Scholar 

  • Weill, C. L., McNamee, M. G., and Karlin, A., 1974, Affinity-labeling of purified acetylcholine receptor from Torpedo californica, Biochem. Biophys. Res. Commun. 61: 997–1003.

    Article  CAS  Google Scholar 

  • Wennogle, L. P., 1984, The endplate acetylcholine receptor. Structure and function, in: Handbook of Experimental Pharmacology ( D. A. Kharkevich, ed.), Springer, Berlin.

    Google Scholar 

  • Wilson, I. B., Ginsburg, S., and Quan, C., 1958, Molecular complimentariness as basis for reactivation of akyl phosphate-inhibited enzyme, Arch. Biochem. Biophys 77: 286–296.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Coombs, S.E., Hess, G.P. (1984). Acetylcholine Receptor. In: Elson, E., Frazier, W., Glaser, L. (eds) Cell Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4823-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4823-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4825-2

  • Online ISBN: 978-1-4684-4823-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics