Advertisement

Cell Membranes pp 295-364 | Cite as

Acetylcholine Receptor

Some Methods Developed to Study a Membrane-Bound Regulatory Protein
  • Susan E. Coombs
  • George P. Hess

Abstract

The acetylcholine receptor protein, found in the synaptic membranes of many nerve cells, at the neuromuscular junction, and in the electric organ of several fish, plays a key role in the transmission of nerve impulses (Katz, 1969; Nachmansohn, 1973; Nachmansohn and Neumann, 1975) and is being studied in many ways in many laboratories (Karlin, 1980; Changeux, 1981; Conti-Tronconi and Raftery, 1982). The electroplax of various fish (E. electricus and Torpedo spp.) has been used extensively in studies of the receptor protein. Here we will concentrate on methods developed in this laboratory to investigate the receptor and membrane-bound proteins in general. For studies of other membrane-bound proteins and the methods developed to study them, the reader is referred to Racker (1970), Kaback (1970), and Dewey and Hammes (1981).

Keywords

Acetylcholine Receptor Membrane Preparation Functional Receptor Unspecific Binding Receptor Inactivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D. J., Gage, P. W., Hamill, O. P., 1977, Ethabol reduces excitatory postsynaptic current duration at a crustacean neuromuscular junction, Nature 266: 739–741.PubMedCrossRefGoogle Scholar
  2. Adams, P. R., and Feltz, A., 1977, Interaction of a fluorescent probe with acetylcholine-activated synaptic membrane, Nature 269: 609–611.PubMedCrossRefGoogle Scholar
  3. Anderson, C. R., and Stevens, C. F., 1973, Voltage clamp analysis of acetylcholine produced endplate current fluctuations at frog neuromuscular junction, J. Physiol. 235: 655–691.PubMedGoogle Scholar
  4. Aoshima, H., Cash, D. J., and Hess, G. P., 1980, Acetylcholine receptor-controlled ion flux in electroplax membrane vesicles: A minimal mechanism based on rate measurements in the millisecond to minute time region, Biochem. Biophys. Res. Commun. 92: 896–904.PubMedCrossRefGoogle Scholar
  5. Aoshima, H., Cash, D. J., and Hess, G. P., 1981, Mechanisms of Inactivation (Desentization) of Acetylcholine Receptor. Investigations by Fast Reaction Techniques with Membrane Vesicles, Biochemistry 20: 3467–3474.PubMedCrossRefGoogle Scholar
  6. Barnard, E. A., Wieckowski, J., and Chiu, T. H., 1971, Cholinergic receptor molecules and cholinesterase molecules at skeletal muscle junctions, Nature 234: 207–209.PubMedCrossRefGoogle Scholar
  7. Baxter, J. D., and Tompkins, G. M., 1971, Specific cytoplasmic glucocorticoid hormone receptors in hepatoma tissue culture cells, Proc. Natl. Acad. Sci. USA 68: 932–937.PubMedCrossRefGoogle Scholar
  8. Bernhardt, J., and Neumann, E., 1978, Kinetic analysis of receptor-controlled tracer efflux from sealed membrane fragments, Proc. Natl. Acad. Sci. USA 75: 3756–3760.PubMedCrossRefGoogle Scholar
  9. Bernhardt, J., and Neumann, E., 1980, Physical factors determining gated flux from or into sealed membrane fragments, in: Molecular Aspects of Bioelectricity ( E. Schoffeniels and E. Neumann eds.), Pergamon Press, Oxford, pp. 243–251.Google Scholar
  10. Biesecker, G., 1973, Molecular properties of the cholinergic receptor purified from Electrophorus electricus, Biochemistry 12: 4403–4409.PubMedCrossRefGoogle Scholar
  11. Blanchard, S. G., Quast, U., Reed, K., Lee, T., Schimerlik, M. I., Vandlen, R., Claudio, T., Strader, C. D., Moore, H.-P. H., and Raftery, M. A., 1979, Interaction of [125I]-a-bungarotoxin with acetylcholine receptor from Torpedo californica, Biochemistry 18: 1875–1883.PubMedCrossRefGoogle Scholar
  12. Böhlen, P., Stein, S., Dairman, W., and Udenfriend, S., 1973, Fluorometric assay of proteins in the nanogram range, Arch. Biochem. Biophys. 155: 213–220.PubMedCrossRefGoogle Scholar
  13. Bonting, S. L., Simon, K. A., and Hawkins, N. M., 1961, Studies on sodium-potassium-activated adenosine triphosphatase I. Quantitative distribution in several tissues of the cat, Arch. Biochem. Biophys. 95: 416–423.PubMedCrossRefGoogle Scholar
  14. Brockes, J. P., and Hall, Z. W., 1975a, Acetylcholine receptors in normal and denervated rat diaphragm muscle. I. Purification and interaction with [1251]-a-bungarotoxin, Biochemistry 14: 2092–2099.PubMedCrossRefGoogle Scholar
  15. Brockes, J. P., and Hall, Z. W., 1975b, Acetylcholine receptors in normal and denervated rat diaphragm muscle II Comparison of junctional and extrajunctional receptors, Biochemistry 14: 2100–2106.PubMedCrossRefGoogle Scholar
  16. Bulger, J. E., and Hess, G. P., 1973, Evidence for separate initiation and inhibitory sites in the regulation of membrane potential of electroplax. I. Kinetic studies with a-bungarotoxin, Biochem. Biophys. Res. Commun. 54: 677–684.PubMedCrossRefGoogle Scholar
  17. Bulger, J. E., Fu, J. L., Hindy, E. F., Silberstein, R. J., and Hess, G. P., 1977, Allosteric interactions between the membrane-bound acetylcholine receptor and chemical mediators. Kinetic studies, Biochemistry 16: 684–692.PubMedCrossRefGoogle Scholar
  18. Busch, K. W., and Malloy, B., 1979, in: Multichannel Image Detectors (Y. Talmi, ed.), American Chemical Society, Washington, D. C., pp. 27–58.Google Scholar
  19. Busch, K. W., and Morrison, G. H., 1973, Simultaneous determination of electrolytes in serum using a vidicon flame spectrophotometer, Anal. Chem. 45: 712A - 722A.CrossRefGoogle Scholar
  20. Cash, D. J., and Hess, G. P., 1980, Molecular mechanism of acetylcholine receptor-controlled ion translocation across cell membranes, Proc. Natl. Acad. Sci. USA 77: 842–846.PubMedCrossRefGoogle Scholar
  21. Cash, D. J., and Hess, G. P., 1981, Quenched flow technique with plasma membrane vesicles: acetylcholine receptor-mediated transmembrane ion flux, Analyt. Biochem. 112: 39–51.PubMedCrossRefGoogle Scholar
  22. Cash, D. J., Aoshima, H., and Hess, G. P., 1980, Acetylcholine-induced receptor-controlled ion flux investigated by flow quench techniques, Biochem. Biophys. Res. Comm. 95: 1010–1016.PubMedCrossRefGoogle Scholar
  23. Cash, D. J., Aoshima, H., and Hess, G. P., 1981, Acetylcholine-induced cation translocation across cell membranes and inactivation of the acetylcholine receptor: Chemical kinetic measurements in the millisecond time region, Proc. Natl. Acad. Sci. USA 78: 3318–3322.PubMedCrossRefGoogle Scholar
  24. Chance, B., 1974, in: Techniques of Chemistry, 3rd ed., Volume VI(II) (G. G. Hammes, ed. ), p. 5.Google Scholar
  25. Chance, B., Eisenhardt, R. H., Gibson, Q. H., and Lonberg-Holm, K. K. (eds.), 1964, Rapid Mixing and Sampling Techniques in Biochemistry, Academic Press, New York.Google Scholar
  26. Chang, C. C., and Lee, C. Y., 1963, Isolation of neurotoxins from the venom of Bungarus multicinctus and their modes of neuromuscular blocking action, Arch. Intern. Pharmacodyn. Ther. 144: 241–257.Google Scholar
  27. Chang, H. W., 1974, Purification and characterization of acetylcholine receptor from Electrophorus electricus, Proc. Natl. Acad. Sci. USA 71: 2113–2117.PubMedCrossRefGoogle Scholar
  28. Changeux, J.-P., 1981, AcChR, an allosteric protein, Harvey Lect. 75: 85–254.Google Scholar
  29. Changeux, J.-P., Podleski, T. R., and Meunier, J.-C., 1969, On some structural analogies between acetylcholinesterase and the macromolecular receptor of acetylcholine, J. Gen. Physiol. 54: 225–244.PubMedCrossRefGoogle Scholar
  30. Clark, D. G., Macmurchie, D. D., Elliott, E., Wolcott, R. G., Landel, A. M., and Raftery, M. A., 1972, Elapid neurotoxins. Purification, characterization, and immunochemical studies of a-bungarotoxin, Biochemistry 11: 1663–1668.PubMedCrossRefGoogle Scholar
  31. Claudio, T., and Raftery, M. A., 1977, Immunological comparison of acetylcholine receptors and their subunits from species of electric ray, Arch. Biochem. Biophys. 181: 484–489.PubMedCrossRefGoogle Scholar
  32. Cohen, S. R., 1969, A rapid sensitive semimicro gel filtration procedure for detecting and removing low molecular weight fragments from [3H]- or [14C]-labeled inulin, Analyt. Biochem. 31: 539–544.PubMedCrossRefGoogle Scholar
  33. Cohen, J. B., and Changeux, J.-P., 1973, Interaction of a fluorescent ligand with membrane-bound cholinergic receptor from Torpedo mormorata, Biochemistry 12: 4855–4863.PubMedCrossRefGoogle Scholar
  34. Conti-Tronconi, B. M., and Raftery, M. A., 1982, The nicotinic cholinergic receptor: Correlation of molecular structure with functional properties, Ann. Rev. Biochem. 51: 491–530.PubMedCrossRefGoogle Scholar
  35. Conway, A., and Koshland, D. E., 1968, Negative cooperativity in enzyme action. The binding of diphosphopyridine nucleotide to glyceraldehyde 3-phosphate dehydrogenase, Biochemistry 7: 4011–4023.PubMedCrossRefGoogle Scholar
  36. Davis, B. V., 1964, Ann. N.Y. Acad. Sci. 121: 404.PubMedCrossRefGoogle Scholar
  37. Delegeane, A. M., and McNamee, M. G., 1980, Independent activation of the acetylcholine receptor from Torpedo californica at two sites, Biochemistry 19: 890–895.PubMedCrossRefGoogle Scholar
  38. Dewey, T. G., and Hammes, G. G., 1981, Proc. Natl. Acad. Sci. U.S.A. 78: 7422–7425.PubMedCrossRefGoogle Scholar
  39. Donner, D., Fu, J., and Hess, G. P., 1976, Equilibrium dialysis of the membrane-bound acetylcholine receptor: A simple method to avoid common errors, Anal. Biochem. 75: 454–463.PubMedCrossRefGoogle Scholar
  40. Dunn, S. M. J., and Raftery, M. A., 1982, Multiple binding sites for agonists on Torpedo californica acetylcholine receptor, Biochemistry 21: 6264–6272.PubMedCrossRefGoogle Scholar
  41. Eigen, M., 1967, Kinetics of reaction controls and information transfer in enzymes and nucleic acids, Nobel Symp. 5: 333–369.Google Scholar
  42. Eldefrawi, M. E., and Eldefrawi, A. T., 1973, Purification and molecular properties of acetylcholine receptor from Torpedo electroplax, Arch. Biochem. Biophys. 159: 362–373.PubMedCrossRefGoogle Scholar
  43. Eldefrawi, M. E., and Eldefrawi, A. T., 1977, Acetylcholine receptors in: Receptors and Recognition IV, (A. P. Cuatrecasas and M. F. Greaves, eds.), Chapman and Hall, London, pp. 197–258.Google Scholar
  44. Eldefrawi, M. E., Britten, A. G., and O’Brien, R. D., 1971a, Action of organophosphates on binding of cholinergic ligands, Pest. Biochem. Physiol. 1: 101–108.CrossRefGoogle Scholar
  45. Eldefrawi, M. E., Britten, A. G., and Eldefrawi, A. T., 1971b, Acetylcholine binding to Torpedo electroplax: Relationships to acetylcholine receptors, Science 173: 338–340.PubMedCrossRefGoogle Scholar
  46. Eldefrawi, M. E., Eldefrawi, A. T., and Shamoo, A. E., 1975, Molecular and functional properties of the acetylcholine-receptor, Ann. N.Y. Acad. Sci. 264: 183–202.PubMedCrossRefGoogle Scholar
  47. Ellman, G. L., Courtney, K. D., Andres, V. A., Jr., and Featherstone, R. M., 1961, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacology 7: 88–95.CrossRefGoogle Scholar
  48. Fcrsht, A. R., and Jakes, R., 1975, Demonstration of two reaction pathways for the aminoacylation of tRNA. Application of the pulsed quenched flow technique, Biochemistry 14: 3350–3356.CrossRefGoogle Scholar
  49. Franklin, G. I., and Potter, L. T., 1972, Studies of the binding of a-bungarotoxin to membrane-bound and detergent-dispersed acetylcholine receptors from Torpedo electric tissue, FEBS Lett. 28: 101–106.PubMedCrossRefGoogle Scholar
  50. Froehlich, J. P., and Tayler, E. W., 1976, Transient state kinetic effects of calcium ion on sarcoplasmic reticulum adenosine triphosphatase, J. Biol. Chem. 251: 2307–2315.PubMedGoogle Scholar
  51. Fu, J. j. L., Dormer, D. B., and Hess, G. P., 1974, Half-of-the-sites reactivity of the membrane-bound Electrophorus electricus acetylcholine receptor, Biochem. Biophys. Res. Commun. 60: 1072–1080.PubMedCrossRefGoogle Scholar
  52. Fu, J. j. L., Donner, D. B., Moore, D. E., and Hess, G. P., 1977, Allosteric interactions between the membrane-bound acetylcholine receptor and chemical mediators: Equilibrium measurements, Biochemistry 16: 678–684.PubMedCrossRefGoogle Scholar
  53. Fulpius, B., Cha, S., Klett, R., and Reich, E., 1972, Properties of the nicotinic acetylcholine receptor macromolecule of Electrophorus electricus, FEBS Lett. 24: 323–326.PubMedCrossRefGoogle Scholar
  54. Furlong, C. E., Morris, R. G., Kandrach, M., and Rosen, B. P., 1972, A multichamber equilibrium dialysis apparatus, Analyt. Biochem. 47: 514–526.PubMedCrossRefGoogle Scholar
  55. Gibson, Q., 1966, Ann. Rev. Biochem. 35: 435–456.CrossRefGoogle Scholar
  56. Hannes, G. G., 1982, Enzyme Catalysis and Regulation, Academic Press, New York.Google Scholar
  57. Hammes, G. G., and Wu, C. W., 1974, Kinetics of allosteric enzymes, Ann. Rev. Biophys. Bioeng. 3: 1–33.CrossRefGoogle Scholar
  58. Hazelbauer, G. H., and Changeux, J.-P., 1974, Reconstitution of a chemically excitable membrane, Proc. Natl. Acad. Sci. U.S.A. 71: 1479–1483.PubMedCrossRefGoogle Scholar
  59. Heidmann, T., and Changeux, J.-P., 1978, Structural and functional properties of the acetylcholine receptor protein in its purified and membrane-bound states, Ann. Rev. Biochem. 47: 315–357.CrossRefGoogle Scholar
  60. Hess, G. P., and Rupley, J. A., 1971, Structure and function of proteins, Ann. Rev. Biochem. 40: 1013–1044.PubMedCrossRefGoogle Scholar
  61. Hess, G. P., Bulger, J. E., Fu, J. j. L., Hindy, E. F., and Silberstein, R. J., 1975b, Allosteric interactions of the membrane-bound acetylcholine receptor: Kinetic studies with a-bungarotoxin, Biochem. Biophys. Res. Commun. 64: 1018–1027.PubMedCrossRefGoogle Scholar
  62. Hess, G. P., Andrews, J. P., and Struve, G. P., 1976, Apparent cooperative effects in acetylcholine receptor-mediated ion flux in electroplax membrane preparations, Biochem. Biophys. Res. Comm. 69: 830–837.PubMedCrossRefGoogle Scholar
  63. Hess, G. P., and Andrews, J. P., 1977, Functional acetylcholine receptor-electroplax membrane microsacs (vesicles): Purification and characterization, Proc. Natl. Acad. Sci. U.S.A. 74: 482–486.PubMedCrossRefGoogle Scholar
  64. Hess, G. P., Lipkowitz, S., and Struve, G. E., 1978, Acetylcholine-receptor-mediated ion flux in electroplac membrane microsacs (vesicles): Change in mechanism produced by asymmetrical distribution of sodium and potassium ions, Proc. Natl. Acad. Sci. USA 75: 1703–1707.PubMedCrossRefGoogle Scholar
  65. Hess, G. P., Cash, D. J., and Aoshima, H., 1979, Acetylcholine receptor-controlled ion fluxes in membrane vesicles investigated by fast reaction techniques, Nature 282: 329–331.PubMedCrossRefGoogle Scholar
  66. Hess, G. P., Cash, D. J., Aoshima, H., 1980, In Molecular Aspects of Bioelectricity (E. Schoffeniels and E. Neumann, eds.), pp. 233–242, Pergamon, Oxford.Google Scholar
  67. Hess, G. P., Aoshima, H., Cash, D. J., and Lenchitz, B., 1981, Specific reaction rate of acetylcholine receptor-controlled ion translocation: A comparison of measurements with membrane vesicles and muscle cells, Proc. Natl. Acad. Sci. U.S.A. 78: 1361–1365.PubMedCrossRefGoogle Scholar
  68. Hess, G. P., Pasquale, E. B., Walker, J. W., and McNamee, M. G., 1982, Comparison of acetylcholine receptor-controlled cation flux in membrane vesicles from Torpedo californica and Electrophorus electricus: Chemical kinetic measurements in the millisecond region, Proc. Natl. Acad. Sci. USA 79: 963–967.PubMedCrossRefGoogle Scholar
  69. Hess, G. P., Cash, D. J., and Aoshima, H., 1983, Acetylcholine receptor-controlled ion translocation: Chemical kinetic investigations of the mechanism. Ann. Rev. Biophys. Bioeng. 12: 443–473.CrossRefGoogle Scholar
  70. Hess, G. P., Cash, D. J., Aoshima, H., 1980, In Molecular Aspects of Bioelectricity (E. Schoffeniels and E. Neumann, eds.), pp. 233–242, Pergamon, Oxford.Google Scholar
  71. Higman, H. B., Podleski, T. R., and Bartels, E., 1963, Apparent dissociation constants between carbamylcholine, d-tubocurarine and the receptor, Biochim. Biophys. Acta 75: 187–193.PubMedCrossRefGoogle Scholar
  72. Hille, B., 1976, Ann. Rev. Physiol. 38: 139–152.CrossRefGoogle Scholar
  73. Holler, E., Rupley, J. A., and Hess, G. P., 1975a, Productive and unproductive lysozyme-chitosaccharide complexes. Equilibrium measurements, Biochemistry 14: 1088–1094.PubMedCrossRefGoogle Scholar
  74. Holler, E., Rupley, J. A., and Hess, G. P., 1975b, Productive and unproductive lysozyme-chitosaccharide complexes. Kinetic investigations, Biochemistry 14: 2377–2385.PubMedCrossRefGoogle Scholar
  75. Kaback, H. R., 1970, Transport, Ann. Rev. Biochem. 39: 561–598.PubMedCrossRefGoogle Scholar
  76. Karlin, A., 1967a, Chemical distinctions between acetylcholinesterase and the acetylcholine receptor, Biochim. Biophys. Acta 139: 358–362.PubMedCrossRefGoogle Scholar
  77. Karlin, A., 1967b, On application of “a plausible model” of allosteric proteins to the receptor for acetylcholine, J. Theor. Biol. 16: 306–320.PubMedCrossRefGoogle Scholar
  78. Karlin, A., 1974, The acetylcholine receptor: Progress report, Life Sciences 14: 1385–1415.PubMedCrossRefGoogle Scholar
  79. Karlin, A., 1980, Molecular properties of nicotinic acetylcholine receptors, in: The Cell Surface and Neuronal Function ( C. W. Cotman, G. Poste, and G. L. Nicolson, eds.), Elsevier/North Holland, Amsterdam, pp. 191–260.Google Scholar
  80. Karlin, A., Weill, C. L., McNamee, M. G., and Valderrama, R., 1975, Facets of the structures of acetylcholine receptors from Electrophorus and Torpedo, Cold Spring Harbor Sympos. XL:203–210.Google Scholar
  81. Karlsson, E., Heilbronn, E., and Widlund, L., 1972, Isolation of the nicotinic acetylcholine receptor by biospecific chromatography on insolubilized Naja naja neurotoxin, FEBS Lett. 28: 107–111.PubMedCrossRefGoogle Scholar
  82. Karpen, J. W., Aoshima, H., Abood, L. G., and Hess, G. P., 1982, Cocaine and phencyclidine inhibition of the acetylcholine receptor: Analysis of the mechanisms of action based on measurements of ion flux in the millisecond-to-minute time region, Proc. Natl. Acad. Sci. USA 79: 2509–2513.PubMedCrossRefGoogle Scholar
  83. Karpen, J. W., Sachs, A. B., Cash, D. J., Pasquale, E. B., and Hess, G. P., 1983, Direct spectrophotometric detection of cation flux in membrane vesicles: Stopped-flow measurements of acetylcholine-receptor-mediated ion flux, Analyt. Biochem. 135: 83–94.PubMedCrossRefGoogle Scholar
  84. Kasai, M, and Changeux, J.-P., 1971a, In vitro excitation of purified membrane fragments by cholinergic agonists. I. Pharmacological properties of the excitable membrane fragments, J. Membr. Biol. 6: 1–23.CrossRefGoogle Scholar
  85. Kasai, M., and Changeux, J.-P., 1971b, In vitro excitation of purified membrane fragments by cholinergic agonists. II. The permeability change caused by cholinergic agonists, J. Membr. Biol. 6: 24–57.CrossRefGoogle Scholar
  86. Kasai, M., and Changeux, J.-P., 1971c, In vitro excitation of purified membrane fragments by cholinergic agonists. III. Comparison of the dose-response curves to decamethonium with the corresponding binding curves of decamethonium to the cholinergic receptor, J. Membr. Biol. 6: 58–80.CrossRefGoogle Scholar
  87. Katz, B., 1966, Nerve, Muscle and Synapse, McGraw-Hill, New York.Google Scholar
  88. Katz, B. 1969, The Release of Neural Transmiter Substances, Liverpool University Press, Liverpool.Google Scholar
  89. Katz, B., and Miledi, R., 1972, The statistical nature of the acetylcholine potential and its molecular components, J. Physiol. (London) 224: 665–699.Google Scholar
  90. Katz, B., and Thesleff, S., 1957, A study of the “desensitization” produced by acetylcholine at the motor end-plate, J. Physiol. (London) 138: 63–80.Google Scholar
  91. Keynes, R. D., and Martins-Ferreira, H., 1953, Membrane potentials in the electroplates of the electric eel, J. Physiol. (London) 119: 315–351.Google Scholar
  92. Kim, P. S., and Hess, G. P., 1981, Acetylcholine receptor-controlled ion flux in electroplax membrane vesicles: Identification and characterization of membrane properties that affect ion flux measurements, J. Membr. Biol. 58: 203–211.PubMedCrossRefGoogle Scholar
  93. Klett, R. P., Fulpius, B. W., Cooper, D., Smith, M., Reich, E., and Possani, L. D., 1973, The acetylcholine receptor I Purification and characterization of a macromolecule isolated Electrophorus electricus, J. Biol. Chem. 248: 6841–6853.Google Scholar
  94. Koblin, D. D., and Lester, H. A., 1979, Voltage-dependent and voltage-independent blockage of acetylcholine receptors by local anesthetics in Electrophorus electroplaques, Mol. Pharmacol. 15: 559–580.PubMedGoogle Scholar
  95. Kohanski, R., Andrews, J., Wins, P., Eldefrawi, M., and Hess, G. P., 1977, A simple quantitative assay of 125I-labeled a-bungarotoxin binding to soluble and membrane-bound acetylcholine receptor protein, Anal. Biochem. 80: 531–539.PubMedCrossRefGoogle Scholar
  96. Koshland, D. E., 1970, The molecular basis for enzyme regulation, Enzymes 1: 341–396.CrossRefGoogle Scholar
  97. Koshland, D. E., Jr., Nemethy, G., and Filmer, D., 1966, Comparison of experimental binding data and theoretical models in proteins containing subunits, Biochemistry 5: 365–385.PubMedCrossRefGoogle Scholar
  98. Kurzmack, M., Verjovski-Almeida, S., and Inesi, G., 1977, Detection of an initial burst of Cat+ translocation in sarcoplasmic reticulum, Biochem. Biophys. Res. Commun. 78: 772–776.PubMedCrossRefGoogle Scholar
  99. Kumar Ash, S., and Rohatgi-Mukherjee, K. K., 1979, Ind. J. Biochem. Biophys. 16: 28–31.Google Scholar
  100. Lee, C. Y., 1972, Chemistry and pharmacology of polypeptide toxins in snake venom, Ann. Rev. Pharmacol. 12: 265–286.PubMedCrossRefGoogle Scholar
  101. Lee, C. Y., and Chang, C. Y., 1966, Memb. Inst. Butanton Symp. Int. 33: 555.Google Scholar
  102. Lee, C. Y., Tseng, L. F., and Chiu, T. H., 1967, Influence of denervation on localization of neurotoxins from clapin venoms in rat diaphragm, Nature 215: 1177–1178.PubMedCrossRefGoogle Scholar
  103. Lee, C. Y., Chang, S. L., Kau, S. T., and Luh, S.-H., 1972, Chromatographic separation of the venom of Bungarus multicinctus and characterization of its components, J. Chromatogr. 72: 71–82.PubMedCrossRefGoogle Scholar
  104. Leprince, P., Noble, R. L., and Hess, G. P., 1981, Comparison of the interactions of a specific neurotoxin (a-bungarotoxin) with the acetylcholine receptor in Torpedo californica and Electrophorus electricus, Biochemistry 20: 5565–5570.Google Scholar
  105. Lester, H. A., Changeux, J.-P., and Sheridan, R. E., 1975, Conductance increases produced by bath application of cholinergic agonists to Electrophorus electricus, J. Gen. Physiol. 65: 797–816.CrossRefGoogle Scholar
  106. Li, N., 1968, Arch. Pharm. Exp. Path. 259: 360.CrossRefGoogle Scholar
  107. Lindstrom, J., and Patrick, J., 1974, Purification of the acetylcholine receptor by affinity chromatography, in: Synaptic Transmission and Neuronal Interaction ( M. V. Bennett, ed.), Raven Press, New York, pp. 191–216.Google Scholar
  108. Lindstrom, J., Cooper, J., and Tzartos, S., 1980, Acetylcholine receptors from Torpedo and Electrophorus have similar subunit structures, Biochemistry 19: 1454–1458.PubMedCrossRefGoogle Scholar
  109. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., 1951, Protein measurements with the Folin phenol reagent, J. Biol. Chem. 193: 265–275.PubMedGoogle Scholar
  110. Lymn, R. W., and Taylor, E. W., 1970, Transient state phosphate production in the hydrolysis of nucleoside triphosphate by myosin. Biochemistry 9: 2975–2983.PubMedCrossRefGoogle Scholar
  111. MacQuarrie, R. A., and Bernhard, S. A., 1971a, Mechanism of alkylation of rabbit muscle glyceraldehyde 3-phosphate dehydrogenase, Biochemistry 10: 2456–2466.PubMedCrossRefGoogle Scholar
  112. MacQuarrie, R. A., and Bernhard, S. A., 1971b, Subunit conformation and catalytic function in rabbit-muscle glyceraldehyde-3-phosphate dehydrogenase, J. Mol. Biol. 55: 181–192.PubMedCrossRefGoogle Scholar
  113. Martonosi, A., Lagwinska, E., and Oliver, M., 1974, Elementary processes in the hydrolysis of ATP by sarcoplasmic reticulum membranes, Ann. N.Y. Acad. Sci. 227: 549–567.PubMedCrossRefGoogle Scholar
  114. Meunier, J.-C., Olsen, R. W., Menez, A., Fromageot, P., Boguet, P., and Chaneux, J.-P., 1972, Some physical properties of the cholinergic receptor protein from Electrophorus electricus revealed by a tritiated a-toxin from Naja nigricollis venom, Biochemistry 11: 1200–1210.PubMedCrossRefGoogle Scholar
  115. Meunier, J.-C., Sealock, R., Olsen, R., and Changeux, J.-P., 1974, Purification and properties of the cholinergie receptor protein from Electrophorus electricus electric tissue, Eur. J. Biochem. 45: 371–394.PubMedCrossRefGoogle Scholar
  116. Miledi, R., and Potter, L. T., 1971, Acetylcholine receptors in muscle fibers, Nature 233: 599–603.PubMedCrossRefGoogle Scholar
  117. Miledi, R., Molinoff, P., and Potter, L. P., 1971, Isolation of the cholinergic receptor protein of Torpedo electric tissue, Nature 229: 554–557.PubMedCrossRefGoogle Scholar
  118. Miller, D. L., Moore, H.-P. H., Hartig, P., and Raftery, M. A., 1978, Fast cation flux from Torpedo californica membrane preparations: Implications for a functional role for acetylcholine receptor dimers, Biochem. Biophys. Res. Commun. 85: 632–640.PubMedCrossRefGoogle Scholar
  119. Monod, J., Wyman, J., and Changeux, J.-P., 1965, On the nature of allosteric transition: a plausible model, J. Mol. Biol. 12: 88–118.PubMedCrossRefGoogle Scholar
  120. Moore, H.-P. J., and Raftery, M. A., 1980, Direct spectroscopic studies of cation translocation by Torpedo acetylcholine receptor on a time-scale of physiological relevance, Proc. Natl. Acad. Sci. USA 77: 4509–4513.PubMedCrossRefGoogle Scholar
  121. Morrison, G. H., 1979, Elemental trace analysis of biological materials, CRC Crit. Rev. Anal. Chem. 8: 287–320.CrossRefGoogle Scholar
  122. Nachmansohn, D., 1973, in: The Structure and Function of Muscle 2nd ed., Volume 3 (G. H. Boume, ed.), Academic Press, New York, pp. 32–116.Google Scholar
  123. Nachmansohn, D., and Neumann, E., 1975, Chemical and Molecular Basis of Nerve Activity, Academic Press, New York.Google Scholar
  124. Neher, E., and Sakmann, B., 1975a. Single-channel currents recorded from membrane of denervated frog muscle fibers, Nature 260: 779–802.Google Scholar
  125. Neher, E., and Sakmann, B., 1976b, Noise analysis of drug-induced voltage clamp currents in denervated frog muscle fibres, J. Physiol. 258: 705–729.PubMedGoogle Scholar
  126. Neher, E., and Steinbach, J. H., 1978, Local anesthetics transiently block currents through single acetylcholine-receptor channels, J. Physiol. 277: 153–176.PubMedGoogle Scholar
  127. Neher, E., and Stevens, C. F., 1977, Conductance fluctuations and ionic pores in membranes, Ann. Rev. Biophys. Bioeng. 6: 345–381.CrossRefGoogle Scholar
  128. Neubig, R. R. and Cohen, J. B., 1979, Equilibrium binding of [3H]-tubocurarine and [3H]-acetylcholine by Torpedo postsynaptic membranes: Stoichiometry and ligand interactions, Biochemistry 18: 5464–5475.PubMedCrossRefGoogle Scholar
  129. Neubig, R. R., and Cohen, J. B., 1980, Permeability control by cholinergic receptors in Torpedo postsynaptic membranes: Agonist dose-response relations measured at second and millisecond times, Biochemistry 19: 2770–2779.PubMedCrossRefGoogle Scholar
  130. O’Brien, R. D., and Gilmour, L. P., 1969, A muscarone-binding material in electroplax and its relation to the acetylcholine receptor, I. Centrifugal assay, Proc. Natl. Acad. Sci. USA 63: 496–503.PubMedCrossRefGoogle Scholar
  131. Palfrey, C., and Littauer, U. Z., 1976, Sodium-dependent efflux of K and Rb+ through the activated sodium channel neuroblastoma cells, Biochem. Biophys. Res. Commun. 72: 209–215.PubMedCrossRefGoogle Scholar
  132. Pasquale, E. B., Takeyasu, K., Udgaonkar, J. B., Cash, D. J., Severski, M. C., and Hess, G. P., (1984), Acetylcholine receptor: Evidence for a regulatory binding site in investigations of suberyldicholine-induced transmembrane ion flux in Electrophorus electricus membrane vesicles, Biochemistry 22: 5967–5978.CrossRefGoogle Scholar
  133. Patrick, J., and Stallcup, W. B, 1979, Immunological distinction between acetylcholine receptor and the a-bungarotoxin binding component on sympathetic neurons, Proc. Natl. Acad. Sci. U.S.A. 74: 4689–4692.CrossRefGoogle Scholar
  134. Peterson, G. L., 1979, Reviews of the Folin-Phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall, Anal. Biochem. 100: 201–220.PubMedCrossRefGoogle Scholar
  135. Phelps, C. F., 1965, The physical properties of inulin solutions. Biochem. J. 95: 41–47.Google Scholar
  136. Popot, J.-L., Sugiyama, H. J., and Changeux, J.-P., 1974, Demonstration de la densensibilisation pharmacologique du recepteur de l’acetylcholine in vitro avec des fragments de membranes excitable de Torpille, C.R. Acad. Sci. Paris, Ser. D. 279: 1721–1724.Google Scholar
  137. Quast, U., Schimerlik, M., Lee, T., Witzmemann, V., Blanchard, S., and Raftery, M. A., 1978, Ligand-induced conformation changes in Torpedo californica membrane-bound acetylcholine receptor, Biochemistry 17: 2405–2414.PubMedCrossRefGoogle Scholar
  138. Rabon, E. C., and Sachs, G., 1981, J. Membr. Biol. 62: 19–27.PubMedCrossRefGoogle Scholar
  139. Racker, E. (ed.), 1970, Membranes of Mitochondria and Chloroplasts, Van Nostrand-Reinhold, New York.Google Scholar
  140. Ramseyer, G. O., Morrison, G. H., Aoshima, H., and Hess, G. P., 1981, Vidicon flame emission spectroscopy of Li+, Na +, and K+ fluxes mediated by acetylcholine receptor in Electrophorus electricus membrane vesicles, Analyst. Biochem. 115: 34–41.CrossRefGoogle Scholar
  141. Reif, A. E., 1967, A simple procedure for high efficiency radioiodination of proteins, J. Nucl. Med. 9: 148–155.Google Scholar
  142. Reynolds, J., and Karlin, A., 1978, Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica, Biochemistry 17: 2035.CrossRefGoogle Scholar
  143. Rought;:ri, F. J. W., and Chance, B., 1963, in: Technique of Organic Chemistry, 2nd ed. Volume 8 (S. L. Friess, E. S. Lewis, and A. Weissberger, eds.), Wiley, p. 2.Google Scholar
  144. Rübsamen, H., Eldefrawi, A. T., Eldefrawi, M. E., and Hess, G. P., 1978, Characterization of the calcium-binding sites of the purified acetylcholine receptor and identification of the calcium-binding subunit, Biochemistry 17: 3818–3825.PubMedCrossRefGoogle Scholar
  145. Sachs, A., 1982, Honors Thesis, Cornell University. The acetylcholine receptor: Characterization of a-bungarotoxin sites in Electrophorus electricus membrane preparations, development of fluorescent quenching techniques to measure ion flux and the effects of phencyclidine on the receptor in living cells.Google Scholar
  146. Sachs, A. B., Lenchitz, B., Noble, R. L., and Hess, G. P., 1982, A convenient large-scale method for the isolation of membrane vesicle permeable to a specific inorganic ion: Isolation and characterization of functional acetylcholine receptor-containing vesicles from the electric organ of Electrophorus electricus, Analyt. Biochem. 124: 185–190.Google Scholar
  147. Sakmann, B., and Adams, P. R., 1979, Advances in Pharmacology and Therapeutics 1, Receptors. Biophysical aspects of agonist action at frog endplate.Google Scholar
  148. Sakmann, B., and Neher, E. (eds.), (1983) Single-Channel Recording, Plenum Press, New York.Google Scholar
  149. Scatchard, G., 1949, The attractions of proteins for small molecules and ions, Ann. N.Y. Acad. Sci. 50: 660–672.CrossRefGoogle Scholar
  150. Schmidt, J., and Raftery, M. A., 1972, Use of affinity chromotography for acetylcholine receptor purification, Biochem. Biophys. Res. Commun. 49: 572–578.PubMedCrossRefGoogle Scholar
  151. Schmidt, J., and Raftery, M. A., 1973, A simple assay for the study of solubilized acetylcholine receptors, Anal. Biochem. 52: 349–354.PubMedCrossRefGoogle Scholar
  152. Schoffeniels, E., 1957, An isolated single electroplax preparation. II Improved preparation for studying ion flux, Biochim. Biophys, Acta 26: 585–596.CrossRefGoogle Scholar
  153. Schoffeniels, E., 1959, Ion movements studied with single isolated electroplax, Annals N.Y. Acad. Sci. 81: 285–306.CrossRefGoogle Scholar
  154. Schoffeniels, E., and Nachmansohn, D., 1957, An isolated single electroplax preparation. I. New data on the effect of acetylcholine and related compounds, Biochim. Biophys. Acta 26: 1–15.PubMedCrossRefGoogle Scholar
  155. Sears, D. A., Reed, C. F., and Helmkamp, R. W., 1971, A radioactive label for the erythrocyte membrane. Biochim. Biophys. Acta 233: 716–719.PubMedCrossRefGoogle Scholar
  156. Sheridan, R. E., and Lester, H. E., 1975, Relaxation measurements on the acetylcholine receptor, Proc. Natl. Acad. Sci. USA 72: 3496–3500.PubMedCrossRefGoogle Scholar
  157. Silman, H. I., and Karlin, A., 1967, Effect of local pH changes caused by substrated hydrolysis on the activity of membrane-bound acetylcholinesterase, Proc. Natl. Acad. Sci. USA 58: 1664–1675.PubMedCrossRefGoogle Scholar
  158. Sugiyama, H., Popot, R. L., Cohen, J. B., Weber, M., and Changeux, J.-P., 1975, in: Protein-Ligand interactions (H. Sund and G. Blauer, eds.), De Guyter, Berlin, pp. 289–503.Google Scholar
  159. Sugiyama, H. J., Popot, J.-L., and Changeux, J.-P., 1976, Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. III Pharmacological desensitization in vitro of the receptor-rich membrane fragments by cholinergic agonists, J. Mol. Biol. 106:469–483.Google Scholar
  160. Sumida, M., Wang, T., Mandel, F., Froehlich, J. P., and Schartz, A., 1978, Transient kinetics of Ca“ transport of sarcoplasmic reticulum. A comparison of cardiac and skeletal muscle, J. Biol. Chem. 253: 8772–8777.PubMedGoogle Scholar
  161. Takeyasu, K., Udgaonkar, J. B., and Hess, G. P., 1983, Acetylcholine receptor: Evidence for a voltage-dependent regulatory site for acetylcholine. Chemical kinetic measurements in membrane vesicles using a voltage-clamp, Biochemistry 22: 5973–5978.PubMedCrossRefGoogle Scholar
  162. Thayer, W. S., and Hinkle, P. C., 1975, Kinetics of adenosine triphosphate synthesis in bovine heart submitochondrial particles, J. Biol. Chem. 250: 5336–5342.PubMedGoogle Scholar
  163. Verjovski-Almeida, S., and Inesi, G., 1979, Fast kinetic evidence for an activating effect of ATP on the Ca’ transport of sarcoplasmic reticulum ATPase, J. Biol. Chem. 254: 18–21.PubMedGoogle Scholar
  164. Walker, J. W., McNamee, M. G., Pasquale, E., Cash, D. J., and Hess, G. P., 1981, Acetylcholine receptor inactivation in T. californica electroplax membrane vesicles. Detection of two processes in the millisecond and second time processes, Biochem. Biophys. Res. Commun. 100: 86–90.PubMedCrossRefGoogle Scholar
  165. Weber, M., and Changeux, J.-P., 1974, Binding of Naja nigricollis [3H]-a-toxin to membrane fragments from Electrophorus and Torpedo electric organs. II. Effect of cholinergic agonists and antagonists on the binding of the tritiated a-neurotoxins, Mol. Pharmacol. 10: 15–34.PubMedGoogle Scholar
  166. Weiland, G., Georgia, B., Wee, V. T., Chignell, C. F., and Taylor, P., 1976, Ligand interactions with cholinergic receptor-enriched membranes from Torpedo: Influence of agonist exposure on receptor proteins, Mol. Pharm. 12: 1091–1105.Google Scholar
  167. Weiland, G., Georgia, B., Lappi, S., Chignell, C. F., and Taylor, P., 1977, Kinetics of agonistmediated transitions in state of the cholinergic receptor, J. Biol. Chem. 252: 7648–7656.PubMedGoogle Scholar
  168. Weill, C. L., McNamee, M. G., and Karlin, A., 1974, Affinity-labeling of purified acetylcholine receptor from Torpedo californica, Biochem. Biophys. Res. Commun. 61: 997–1003.CrossRefGoogle Scholar
  169. Wennogle, L. P., 1984, The endplate acetylcholine receptor. Structure and function, in: Handbook of Experimental Pharmacology ( D. A. Kharkevich, ed.), Springer, Berlin.Google Scholar
  170. Wilson, I. B., Ginsburg, S., and Quan, C., 1958, Molecular complimentariness as basis for reactivation of akyl phosphate-inhibited enzyme, Arch. Biochem. Biophys 77: 286–296.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Susan E. Coombs
    • 1
  • George P. Hess
    • 1
  1. 1.Section of Biochemistry, Molecular and Cell Biology, Division of Biological SciencesCornell UniversityIthacaUSA

Personalised recommendations