Interaction of Enkephalin with Opioid Receptors of Brain Membranes: Regulation by Essential Transition Metals, Guanine Nucleotides and Temperature

  • Norio Ogawa
  • Sachiko Mizuno
  • Akitane Mori
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 160)


Guanine nucleotides [guanosine-5′-triphosphate: GTP, and guanylyl-5′-imidophosphate: Gpp(NH)p] play an important role in regulating β-noradrenergic (1), α-noradrenergic (2), dopamine (3) and other neurotransmitter receptors. Guanine nucleotides also decrease the receptor binding of tritiated opiate agonists but not that of the antagonists (1,4–6).


Receptor Binding Opioid Receptor Guanine Nucleotide Opiate Receptor Synaptic Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. Lefkowitz and L. T. Williams, Catecholamine binding to the ß-adrenergic receptor, Proc. Natl. Acad. Sci. USA 74: 515 (1977).CrossRefGoogle Scholar
  2. 2.
    D. C. U’Prichard and S. H. Snyder, Guanine nucleotide influences on [3H]ligand binding to a-noradrenergic receptors in calf brain, J. Biol. Chem. 253: 3444 (1978).Google Scholar
  3. 3.
    I. Creese, T. Prosser, and S. H. Snyder, Dopamine receptor binding: Specificity, localization and regulation by ions and guanine nucleotides, Life Sci. 23: 495 (1978).CrossRefGoogle Scholar
  4. 4.
    A. J. Blume, Interactions of ligands with opiate receptors of brain membranes: Regulation by ions and nucleotides, Proc. Natl. Acad. Sci. USA 75: 1713 (1978).CrossRefGoogle Scholar
  5. 5.
    S. R. Childers and S. H. Snyder, Differential regulation by guanine nucleotides of opiate agonist and antagonist receptor interactions, J. Neurochem. 34: 583 (1980).CrossRefGoogle Scholar
  6. 6.
    K. -J. Chang, E. Hazum, A. Killian, and P. Cuatrecasas, Interactions of ligands with morphine and enkephalin receptors are differentially affected by guanine nucleotide, Mol. Pharmacol. 20: 1 (1981).Google Scholar
  7. 7.
    M. Rodbell, M. G. Lin, Y. Salomon, C. Londos, J. P. Harwood, B. R. Martin, M. Rendell, and N. Berman, Role of adenine and guanine nucleotides in the activity and response of adenylate cyclase system, Adv. Cyclic Nucleotide Res. 5: 3 (1975).Google Scholar
  8. 8.
    N. Ogawa, Y. Yamawaki, H. Kuroda, and T. Ofuji, Effects of bromocriptine on receptor binding of methionine-enkephalin, Neuroscience Lett. 23: 215 (1981).CrossRefGoogle Scholar
  9. 9.
    N. Ogawa, Y. Yamawaki, H. Kuroda, I. Nukina, Z. Ota, M. Fujino, and N. Yanaihara, Characteristics of thyrotropin releasing hormone (TRH) receptor in rat brain, Peptides 3: 669 (1982).CrossRefGoogle Scholar
  10. 10.
    N. Ogawa, Y. Yamawaki, H. Kuroda, I. Nukina, and T. Ofuji, Differentiation of agonist conformation and antagonist conformation in multiple opioid receptors, Neuroscience Lett. 27: 205 (1981).CrossRefGoogle Scholar
  11. 11.
    N. Ogawa, S. Mizuno, A. Mori, and H. Kuroda, Chronic dihydroergotoxine administration sets on receptors for enkephalin and thyrotropin releasing hormone in the aged-rat brain, Peptides, in press.Google Scholar
  12. 12.
    R. Simantov, S. R. Childers, and S. H. Snyder, The opiate receptor binding interactions of [H]methionie enkephalin, an opioid peptide, Mol. Pharmacol. 14: 69 (1978).Google Scholar
  13. 13.
    C. B. Pert and S. H. Snyder, Opiate receptor binding of agonists and antagonists affected differentially by sodium, Mol. Pharmacol. 10: 868 (1974).Google Scholar
  14. 14.
    D. W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Indust. Appl. Math. 11: 431 (1963).CrossRefGoogle Scholar
  15. 15.
    G. W. Pasternak and S. H. Snyder, Identification of novel high-affinity opiate receptor binding in rat brain, Nature 253: 563 (1975).CrossRefGoogle Scholar
  16. 16.
    S. R. Childers and S. H. Snyder, Guanine nucleotides differentiate agonist and antagonist interactions with opiate receptors, Life Sci. 23: 759 (1978).CrossRefGoogle Scholar
  17. 17.
    E. J. Simon and J. Groth, Kinetics of opiate receptor interaction by sulphydryl reagents: evidence for a conformational change in the presence of sodium ions, Proc. Natl. Acad. Sci. USA 72: 2404 (1975).CrossRefGoogle Scholar
  18. 18.
    G. Marzullo and A. J. Friedhoff, An inhibitor of opiate receptor binding from human erythrocytes identified as glutathione-copper complex, Life Sci. 21: 1559 (1977).CrossRefGoogle Scholar
  19. 19.
    G. Marzullo and B. Hine, Opiate receptor function may be modulated through an oxidation-reduction mechanism, Science 208: 1171 (1980).CrossRefGoogle Scholar
  20. 20.
    S. Mizuno, N. Ogawa, and A. Mori, Differential effects of some transition metal cations on the binding of 8-carboline-3carboxylate and diazepam, Neurochem. Res. 8: 873 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Norio Ogawa
    • 1
  • Sachiko Mizuno
    • 1
  • Akitane Mori
    • 1
  1. 1.Institute for NeurobiologyOkayama University Medical SchoolOkayamaJapan

Personalised recommendations