DNA Chain Elongation Mechanism of DNA Polymerases α, β and γ

  • Akio Matsukage
  • Masamitsu Yamaguchi
  • Kazushi Tanabe
  • Yukari N. Taguchi
  • Miwako Nishizawa
  • Taijo Takahashi


There are many lines of evidence that indicate the existence of at least two kinds of DNA replication mechanisms in eukaryotic cells.
  1. (1)

    One is that observed in nuclear DNA replication, where DNA chains (at least the lagging strand) are synthesized in relatively short pieces (3–5s) that are later elongated and joined together1–6. These short DNA intermediates are also observed in the replication of viral DNA such as polyoma virus7,8 and simian virus (SV)4O9,10.

  2. (2)

    The other is that for adenovirus DNA11-12 and mitochondrial DNA13. These DNA’s are not replicated via Okazaki pieces as the intermediates, but replicated in a continuous mode.



Chain Elongation Turnover Number Tryptic Peptide Mapping Mouse Enzyme Aichi Cancer Center Research Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. Taylor, J. Mol. Biol. 31:579–594 (1968).PubMedCrossRefGoogle Scholar
  2. 2.
    A. J. Lavine, H. S. Kang and F. E. Bilheimer, J. Mol. Biol. 50: 579–568 (1970).CrossRefGoogle Scholar
  3. 3.
    K. Tsukada, T. Moriyama, W. E. Lynch and I. Lieberman, Nature 220:162–164 (1968).PubMedCrossRefGoogle Scholar
  4. 4.
    G. C. Fareed and N. P. Salzman, Nature New Biol. 238:277–279 (1972).CrossRefGoogle Scholar
  5. 5.
    R. M. Fox, J. Mendelsohn, E. Barbosa and M. Goulian, Nature New Biol. 245:234–237 (1973).Google Scholar
  6. 6.
    B. Y. Tseng and M. Goulian, J. Mol. Biol. 99:339–346 (1975).PubMedCrossRefGoogle Scholar
  7. 7.
    G. Magnusson, V. Pigiet, E. L. Winnacker, R. Abrams and P. Reichard, Proc. Natl. Acad. Sci. U.S.A. 70:412–415 (1973).PubMedCrossRefGoogle Scholar
  8. 8.
    R. Eliasson and P. Reichard, Nature 272:182–185 (1978).CrossRefGoogle Scholar
  9. 9.
    M. A. Wagar and J. A. Huberman, Biochem. Biophys. Res. Commun. 51:174–180 (1973).CrossRefGoogle Scholar
  10. 10.
    P. K. Qasba, Biochem. Biophys. Res. Commun. 60:1338–1344 (1974).PubMedCrossRefGoogle Scholar
  11. 11.
    T. Yamashita, M. Arens and M. Green, J. Biol. Chem. 252:7940–7946 (1977).PubMedGoogle Scholar
  12. 12.
    M. Arens, T. Yamashita, R. Padmanabhan, T. Tsuruo and M. Green, J. Biol. Chem. 252:7949–7954 (1977).Google Scholar
  13. 13.
    H. Kasamatsu, L. I. Grassman, D. L. Robberson, R. Watson and V. Vinograd, Cold Spring Habor Symp. Quant. Biol. 38:281–288 (1973).CrossRefGoogle Scholar
  14. 14.
    U. Hübscher, C. C. Kuenzle and S. Spadari, Proc. Natl. Acad. Sci. U.S.A. 76:2316–2320 (1979).Google Scholar
  15. 15.
    M. A. Wagar, M. J. Evans and J. A. Huberman, Nucleic Acids Res. 5:1933–1946 (1978).CrossRefGoogle Scholar
  16. 16.
    H. J. Edenberg, S. Anderson and M. L. DePamphilis, J. Biol. Chem. 253:3273–280 (1978).PubMedGoogle Scholar
  17. 17.
    P. C. van den Vliet, and M. M. Kwant, Nature 276:532–534 (1978).PubMedCrossRefGoogle Scholar
  18. 18.
    H. Krokan, P. Schaffer and M. L. DePamphilis, Biochemistry 18: 4431–4443 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Yamaguchi, K. Tanabe, N. Y. Taguchi, M. Nishizawa, T. Takahashi and A. Matsukage, J. Biol. Chem. 255:9942–9948 (1980).PubMedGoogle Scholar
  20. 20.
    L. M. S. Chang, J. Biol. Chem. 248:3789–3795 (1973).PubMedGoogle Scholar
  21. 21.
    T. S.-F. Wang, W. D. Sedwick and D. Korn, J. Biol. Chem. 250: 7040–7044 (1975).PubMedGoogle Scholar
  22. 22.
    K. Tanabe, E. W. Bohn and S. H. Wilson, Biochemistry 18:3401–3406 (1979).PubMedCrossRefGoogle Scholar
  23. 23.
    D. M. Stalker, D. W. Mosbaugh, and R. R. Meyer, Biochemistry 15: 3114–3121 (1976).PubMedCrossRefGoogle Scholar
  24. 24.
    K. Ono, A. Ohashi, K. Tanabe, A. Matsukage, M. Nishizawa and T. Takahashi, Nucleic Acids Res. 7:715–726 (1979).PubMedCrossRefGoogle Scholar
  25. 25.
    J. G. Stavrianopoulos, J. D. Karkas and F. Chargaff, Proc. Natl. Acad. Sci. U.S.A. 69:1781–1785 (1972).PubMedCrossRefGoogle Scholar
  26. 26.
    G. Brun, F. Rougeon, M. Lauber and G. Chapeville, Eur. J. Biochem. 41:241–251 (1974).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Yamaguchi, A. Matsukage and T. Takahashi, J. Biol. Chem. 255: 7002–7009 (1980).PubMedGoogle Scholar
  28. 28.
    J. H. Elder, R. A. Pickett, II, J. Hampton and R. A. Lerner, J. Biol. Chem. 252:6510–6515 (1977).PubMedGoogle Scholar
  29. 29.
    Y.-C. Chen, E. W. Bohn, S. R. Planck and S. H. Wilson, J. Biol. Chem. 254:11678–11687 (1979).PubMedGoogle Scholar
  30. 30.
    S. Spadari and A. Weissbach, J. Biol. Chem. 249:5809–5815 (1974).PubMedGoogle Scholar
  31. 31.
    B. J. Lewish, J. W. Abrell, R. G. Smith and R. C. Gallo, Biochim. Biophys. Acta 349:148–160 (1974).Google Scholar
  32. 32.
    A. Matsukage, E. W. Bohn and S. H. Wilson, Biochemistry 14:1006–1020 (1975).PubMedCrossRefGoogle Scholar
  33. 33.
    K. W. Knopf, M. Yamada and A. Weissbach, Biochemistry 15:4540–4548 (1976).PubMedCrossRefGoogle Scholar
  34. 34.
    U. Bertazzoni, A. I. Scovassi and G. M. Brun, Eur. J. Biochem. 81:237–248 (1977).PubMedCrossRefGoogle Scholar
  35. 35.
    S. Yoshida, T. Kondo and T. Ando, Biochim. Biophys. Acta 353:463–474 (1974).PubMedGoogle Scholar
  36. 36.
    A. M. Holmes, I. P. Hesslewood and I. R. Johnston, Eur. J. Biochem. 62:229–235 (1976).PubMedCrossRefGoogle Scholar
  37. 37.
    A. Matsukage, M. Sivarajan and S. H. Wilson, Biochemistry 15: 5305–5314 (1976).PubMedCrossRefGoogle Scholar
  38. 38.
    P. A. Fisher and D. Korn, J. Biol. Chem. 252:6523–6535 (1977).Google Scholar
  39. 39.
    N. Nishioka, A. Matsukage and T. Takahashi, Cell Struct. Funct. 2:61–70 (1977).CrossRefGoogle Scholar
  40. 40.
    A. Matsukage, N. Nishioka, M. Nishizawa and T. Takahashi, Cell Struct. Func. 4:295–306 (1979).CrossRefGoogle Scholar
  41. 41.
    Y. Ono, T. Enomoto and M. Yamada, Gann 69:207–212 (1978).PubMedGoogle Scholar
  42. 42.
    M. Mechali, J. Abadiedebat and A. M. de Rocondo, J. Biol. Chem. 255:2114–2122 (1980).PubMedGoogle Scholar
  43. 43.
    G. R. Banks, J. A. Boezi and I. R. Lehman, J. Biol. Chem. 254: 9886–9892 (1979).PubMedGoogle Scholar
  44. 44.
    G. Villani, B. Sauer and I. R. Lehman, J. Biol. Chem. 255:9479–9484 (1980).PubMedGoogle Scholar
  45. 45.
    E. M. den Tonkelaar and P van Duijin, Histochemie 4:16–19 (1964).CrossRefGoogle Scholar
  46. 46.
    M. Yamaguchi, A. Matsukage and T. Takahashi, Nature 285:45–47 (1980).PubMedCrossRefGoogle Scholar
  47. 47.
    A. Matsukage, M. Nishizawa and T. Takahashi, J. Biochem. 85:1551–1554 (1979).PubMedGoogle Scholar
  48. 48.
    A. Matsukage, K. Ono, A. Ohashi, T. Takahashi, C. Nakayama and M. Saneyoshi, Cancer Res. 38:3076–3079 (1978).PubMedGoogle Scholar
  49. 49.
    K. Ono, A. Ohashi, A. Yamamoto, A. Matsukage, T. Takahashi, M. Saneyoshi and T. Ueda, Cancer Res. 39:4673–4680 (1979).PubMedGoogle Scholar
  50. 50.
    K. Ono, A. Chashi, K. Tanabe, A. Matsukage, M. Nishizawa and T. Takahashi, Nucleic Acids Res. 7:715–726 (1979).PubMedCrossRefGoogle Scholar
  51. 51.
    A. Matsukage, M. Nishizawa, T. Takahashi and T. Hozumi, J. Biochem. 88:1867–1877 (1980).Google Scholar
  52. 52.
    S. H. Wilson, A. Matsukage, E. W. Bohn, Y. C. Chen and M. Sivarajan, Nucleic Acids Res. 4:3981–3996 (1977).PubMedCrossRefGoogle Scholar
  53. 53.
    Y. Kurosawa, T. Ogawa, S. Hirose, T. Okazaki and R. Okazaki, J. Mol. Biol. 96:653–664 (1975).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Akio Matsukage
    • 1
  • Masamitsu Yamaguchi
    • 1
  • Kazushi Tanabe
    • 1
  • Yukari N. Taguchi
    • 1
  • Miwako Nishizawa
    • 1
  • Taijo Takahashi
    • 1
  1. 1.Laboratory of BiochemistryAichi Cancer Center Research InstituteChikusa-ku, Nagoya 464Japan

Personalised recommendations