Molecular Basis of Self/Non-self Discrimination in the Ectothermic Vertebrates

  • Gregory W. Warr
  • John J. Marchalonis


The ability to discriminate self from non-self is fundamental to the organization and survival of metazoan life. This ability resides primarily with the individual cells, although it can be mediated also by specific products secreted by the cells, as will be discussed later. Self/non-self discrimination is essential for the orderly processes of development, differentiation, and organogenesis; in addition, it is required so that an animal can maintain its integrity and prevent invasion and damage by foreign entities, either animate (viruses, bacteria, fungi, metazoan parasites) or inanimate (for example, bacterial exotonins).


Nurse Shark Ectothermic Vertebrate Leopard Shark Membrane Immunoglobulin Cell Surface Immunoglobulin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel, C. A., and Grey, H. M., 1968, Studies on the structure of mouse A myeloma proteins, Biochemistry 7:2682.PubMedCrossRefGoogle Scholar
  2. Abramson, N., Gelfand, E. W., Jandl, J. H., and Rosen, F. S., 1970, The interaction between human monocytes and red cells: Specificity for IgG subclasses and IgG fragments, J. Exp. Med. 132:1207.PubMedCrossRefGoogle Scholar
  3. Acton, R. T., Weinheimer, P. F., Hall, S. J., Niedermeier, W., Shelton, E., and Bennett, J. C., 1971, Tetrameric immune macroglobulins in three orders of bony fish, Proc. Natl. Acad. Sci. USA 68:107.PubMedCrossRefGoogle Scholar
  4. Acton, R. T., Evans, E. E., Weinheimer, P. F., Niedermeier, W., and Bennett, J. C., 1972a, Purification and characterization of two classes of immunoglobulins from the marine toad, Bufo marinus, Biochemistry 11:2751.CrossRefGoogle Scholar
  5. Acton, R. T., Weinheimer, P. F., Shelton, E., Niedermeier, W., and Bennett, J. C., 1972b, Phylogeny of immunoglobulins—Purification and physicochemical characterization of the immune macroglobulin from the turtle, Pseudemys scripta, Immunochemistry 9:421.CrossRefGoogle Scholar
  6. Atwell, J. L., and Marchalonis, J. J., 1976, Immunoglobulin classes of lower vertebrates distinct from IgM immunoglobulin, in: Comparative Immunology (J. J. Marchalonis, ed.), pp. 276–297, Blackwell, Oxford.Google Scholar
  7. Atwell, J. L., Marchalonis, J. J., and Ealey, E. H. M., 1973, Major immunoglobulin classes of echidna, Tachyglossus aculeatus, Immunology 25:835.Google Scholar
  8. Azzolina, L. S., 1975, Differentiation of antigen-binding cells in the teleost Carassius auratus and in the anuran, Bufo marinus, Haematologica 60:409.Google Scholar
  9. Azzolina, L. S., 1978, Antigen recognition and immune response in goldfish Carassius auratus at different temperatures, Dev. Comp. Immunol. 2:77.PubMedCrossRefGoogle Scholar
  10. Benedict, A. A., and Yamaga, K., 1976, Immunoglobulins and antibody production in avian species, in: Comparative Immunology (J. J. Marchalonis, ed.), pp. 335–375, Blackwell, Oxford.Google Scholar
  11. Binz, H., and Wigzell, H., 1977, Antigen-binding, idiotypic T-lymphocyte receptors, Contemp. Top. Immunobiol. 7:113.PubMedCrossRefGoogle Scholar
  12. Boffa, G. A., Fine, J. M., Drilhon, A., and Amouch, P., 1967, Immunoglobulins and transferrin in marine lamprey sera, Nature (London) 214:700.CrossRefGoogle Scholar
  13. Bradshaw, C. M., Clem, L. W., and Sigel, M. M., 1971, Immunologic and immunochemical studies on the gar, Lepisosteus platyrhincus. II. Purification and characterization of immunoglobulin, J. Immunol 106:1480.PubMedGoogle Scholar
  14. Burnet, F. M., 1959, The Clonal Selection Theory of Acquired Immunity, Vanderbilt University Press, Nashville, Tenn.Google Scholar
  15. Cantor, H., and Boyse, E., 1977, Regulation of the immune response by T-cell subclasses, Contemp. Top. Immunobiol. 7:47.PubMedCrossRefGoogle Scholar
  16. Charlemagne, J., and Tournefier, A., 1975, Cell surface immunoglobulins of thymus and spleen lymphocytes in urodele amphibian Pleurodeles waltlii (Salamandridae), Adv. Exp. Med. Biol. 64:251.PubMedGoogle Scholar
  17. Chess, L., and Schlossman, S. F., 1977, Functional analysis of distinct human T-cell subsets bearing unique differentiation antigens, Contemp. Top. Immunobiol. 7:363.PubMedCrossRefGoogle Scholar
  18. Clem, L. W., 1971, Phylogeny of immunoglobulin structure and function. IV. Immunoglobulins of the giant grouper, Epinephelus itaira, J. Biol. Chem. 246:9.PubMedGoogle Scholar
  19. Clem, L. W., and McLean, W. E., 1975, Phylogeny of immunoglobulin structure and function. VII. Monomeric and tetrameric immunoglobulins of the margate, a marine teleost fish, Immunology 29:791.PubMedGoogle Scholar
  20. Clem, L. W., and Small, P. A., 1967, Phylogeny of immunoglobulin structure and function. I. Immunoglobulins of the lemon shark, J. Exp. Med. 125:893.PubMedCrossRefGoogle Scholar
  21. Clem, L. W., and Small, P. A., 1970, Phylogeny of immunoglobulin structure and function. V. Valences and association constants of teleost antibodies to a haptenic determinant, J. Exp. Med. 132:385.PubMedCrossRefGoogle Scholar
  22. Clem, L. W., McLean, W. E., Shankey, V. T., and Cuchens, M. A. 1977, Phylogeny of lymphocyte heterogeneity. I. Membrane immunoglobulins of teleost lymphocytes, Dev. Comp. Immunol. 1:105.PubMedCrossRefGoogle Scholar
  23. Cone, R. E., 1976, Factors influencing the isolation of membrane immunoglobulins from T and B lymphocytes. I. Detergent effects and iodination conditions, J. Immunol. 116:847.Google Scholar
  24. Cone, R. E., and Brown, W. C., 1976, Isolation of membrane associated immunoglobulins from T lymphocytes by nonionic detergents, Immunochemistry 13:571.PubMedCrossRefGoogle Scholar
  25. Cone, R. E., and Marchalonis, J. J., 1972, Cellular and humoral aspects of the influence of environmental temperature on the immune response of Poikilothermic vertebrates, J. Immunol. 108:952.PubMedGoogle Scholar
  26. Cooper, H. L., 1973, Effects of mitogens on the mitotic cycle: A biochemical evaluation of lymphocyte activation, In: Drugs and the Cell Cycle (A. M. Zimmerman, G. M. Padille, and I. L. Cameron, eds.), pp. 137–194, Academic Press, New York.Google Scholar
  27. Cuchens, M. A., and Clem, L. W., 1977, Phylogeny of lymphocyte heterogeneity. II. Differential effects of temperature on fish T-like and B-like cells, Cell. Immunol. 34:219.PubMedCrossRefGoogle Scholar
  28. Cuchens, M. A., McLean, W. E., and Clem, L. W., 1975, Lymphocyte heterogeneity in fish and reptiles, in: Phylogeny of Thymus and Bone Marrow-Bursa Cells (R. K. Wright and E. L. Cooper, eds.), pp. 205–213, Elsevier/North-Holland, Amsterdam.Google Scholar
  29. Decker, J. M., and Marchalonis, J. J., 1978, Molecular events in lymphocyte activation: Role of nonhistone chromosomal proteins in regulating gene expression, Contemp. Top. Mol. Immunol. 7:365.PubMedGoogle Scholar
  30. DeLuca, D., Warr, G. W., and Marchalonis, J. J., 1978, Phylogenetic origins of immune recognition: Lymphocyte surface immunoglobulins and antigen-binding in the genus Carassius (Teleostii), Eur. J. Immunol. 8:525.PubMedCrossRefGoogle Scholar
  31. Du Pasquier, L., 1976, Amphibian models for the study of the ontogeny of immunity, in: Comparative Immunology (J. J. Marchalonis, ed.), pp. 390–418, Blackwell, Oxford.Google Scholar
  32. Du Pasquier, L., Weiss, N., and Loor, F., 1972, Direct evidence for immunoglobulins on the surface of thymus lymphocytes of amphibian larvae, Eur. J. Immunol. 2:366.PubMedCrossRefGoogle Scholar
  33. Edelman, G. M., 1976, Surface modulation in cell recognition and growth, Science 192:218.PubMedCrossRefGoogle Scholar
  34. Edelman, G. M., and Gall, W. E., 1969, The antibody problem, Annu. Rev. Biochem. 38:415.PubMedCrossRefGoogle Scholar
  35. Edwards, B. F., Ruben, L. N., Marchalonis, J. J., and Hylton, G., 1975, Surface characteristics of spleen cell-erythrocyte rosette formation in the grass frog, Rana pipiens, Adv. Exp. Med. Biol. 64:397.Google Scholar
  36. Ellis, A. E., and Parkhouse, R. M. E., 1975, Surface immunoglobulins on the lymphocytes of the skate, Raja naevus, Eur. J. Immunol. 5:726.CrossRefGoogle Scholar
  37. Emmrich, F., Richter, R. F., and Ambrosius, H., 1975, Immunoglobulin determinants on the surface of lymphoid cells of carps, Eur. J. Immunol. 5:76.PubMedCrossRefGoogle Scholar
  38. Etlinger, H. M., Hodgins, H. O., and Chiller, J. M., 1977, Evolution of the lymphoid system. II. Evidence for immunoglobulin determinants on all rainbow trout lymphocytes and demonstration of mixed leucocyte reaction, Eur. J. Immunol. 7:881.PubMedCrossRefGoogle Scholar
  39. Fiebig, H., and Ambrosius, H., 1975, Cell surface immunoglobulin of lymphocytes in lower vertebrates, in: Phylogeny of Thymus and Bone Marrow-Bursa Cells (R. K. Wright and E. L. Cooper, eds.), pp. 195–203, Elsevier/North-Holland, Amsterdam.Google Scholar
  40. Fiebig, H., Gruhn, R., and Ambrosius, H., 1977, Studies on the control of IgM antibody synthesis. III. Preferential formation of anti-DNP antibodies of high functional affinity in the course of the immune response in carp, Immunochemistry 14:721.PubMedCrossRefGoogle Scholar
  41. Fiebig, H., Scherbaum, I., and Ambrosius, H., 1980, Evolutionary origin of the T lymphocyte receptor. I. Immunochemical investigation of immunoglobulinlike cell surface protein of carp thymocytes, Mol. Immunol. 17:971.PubMedCrossRefGoogle Scholar
  42. Fletcher, T. C., and Grant, P. T., 1969, Immunoglobulins in the serum and mucus of the plaice (Pleuronectes platessa), Biochem. J. 115:658.Google Scholar
  43. Frommel, D., Litman, G. W., Finstad, J., and Good, R. A., 1971, The evolution of the immune response. XI. The immunoglobulins of the horned shark, Heterodontus francisci: Purification, characterization and structural requirement for antibody activity, J. Immunol. 106:1234.PubMedGoogle Scholar
  44. Fuller, L., Murray, J., and Jensen, J. A., 1978, Isolation from nurse shark of immune 7S antibodies with two different molecular weight H chains, Immunochemistry 15:251.PubMedCrossRefGoogle Scholar
  45. Gaily, J. A., 1973, Structure of immunoglobulins, in: The Antigens (M. Sela, ed.), Vol. I, pp. 161–298, Academic Press, New York.Google Scholar
  46. Gitlin, D., Pericelli, A., and Gitlin, J. D., 1973, Multiple immunoglobulin classes among sharks and their evolution, Comp. Biochem. Physiol. B 66:225.Google Scholar
  47. Greaves, M. F., Owen, J. J., and Raff, M. C., 1973, T and B lymphocytes: Origins, properties and roles in immune responses, Excerpta Medica, Amsterdam.Google Scholar
  48. Hämmerling, U., Mack, C., and Pickel, H. G., 1976, Immunofluorescence analysis of Ig determinants on mouse thymocytes and T cells, Immunochemistry 13:525.PubMedCrossRefGoogle Scholar
  49. Hay, F. C., Torrigiani, G., and Roitt, I. M., 1972, The binding of human IgG subclasses to human monocytes, Eur. J. Immunol. 2:257.PubMedCrossRefGoogle Scholar
  50. Hildemann, W. H., and Reddy, A. L., 1973, Phylogeny of immune responsiveness: Marine invertebrates, Fed. Proc. 32:2188.PubMedGoogle Scholar
  51. Johnston, W. H., Acton, R. T., Weinheimer, P. F., Niedermeier, W., Evans, E. E., Shelton, E., and Bennett, J. C., 1971, Isolation and physicochemical characterization of the IgM-like immunoglobulin from the stingray Dasyatis americana, J. Immunol. 107:782.PubMedGoogle Scholar
  52. Jones, V. E., Graves, H. E., and Orlans, E., 1976, The detection of (Fab’)2—related surface antigens on the thymocytes of children, Immunology 30:281.PubMedGoogle Scholar
  53. Ju, S.-T., and Dorf, M. E., 1979, Idiotypic analysis of antibodies against the terpolymer L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT). IV. Induction of CGAT idiotype following immunization with various synthetic polymers containing glutamic acid and tyrosine, Eur. J. Immunol. 9:553.PubMedCrossRefGoogle Scholar
  54. Ju, S.-T., Benacerraf, B., and Dorf, M. E., 1978, Idiotypic analysis of antibodies to poly-(Glu60Ala30Tyr10): Interstrain and interspecies idiotypic cross-reactions, Proc. Natl. Acad. Sci. USA 75:6192.PubMedCrossRefGoogle Scholar
  55. Jurd, R. D., 1977, Secretory immunoglobulins and gut-associated lymphoid tissue in Xenopus laevis, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 307–316, Elsevier/ North-Holland, Amsterdam.Google Scholar
  56. Jurd, R. D., and Stevenson, G. T., 1976, Surface immunoglobulins on Xenopus laevis lymphocytes, Comp. Biochem. Physiol. A 53:381.PubMedCrossRefGoogle Scholar
  57. Kabat, E. A., Wu, T. T., and Bilofsky, H., 1976, Variable regions of immunoglobulin chains, Medical Computer Systems, Cambridge, Mass.Google Scholar
  58. Kehoe, J. M., and Capra, J. D., 1974, Phylogenetic aspects of immunoglobulin variable region diversity, Contemp. Top. Mol. Immunol. 3:143.PubMedCrossRefGoogle Scholar
  59. Kehoe, J. M., Sharon, J., Gerber-Jenson, B., and Litman, G. W., 1978, The structure of immunoglobulin variable regions in the horned shark, Heterodontus francisci, Immunogenetics 7:35.CrossRefGoogle Scholar
  60. Klaus, G. G. B., Nitecki, D. E., and Goodman, J. W., 1971a, Amino acid sequences of free and blacked N-termini of leopard shark immunoglobulins, J. Immunol. 107:1250.Google Scholar
  61. Klaus, G. G. B., Halpern, M. S., Koshland, M. E., and Goodman, J. W., 1971b, A polypeptide chain from leopard shark 19S immunoglobulin analogous to mammalian J chain, J. Immunol. 107:1785.Google Scholar
  62. Koshland, M. E., 1975, Structure and function of the J chain, Adv. Immunol. 20:41.PubMedCrossRefGoogle Scholar
  63. Leslie, G. A., and Clem, L. W., 1969, Phylogeny of immunoglobulin structure and function. III. Immunoglobulins of the chicken, J. Exp. Med. 130:1377.CrossRefGoogle Scholar
  64. Ling, N. R., and Kay, J. E., 1975, Lymphocyte Stimulation, North-Holland, Amsterdam.Google Scholar
  65. Litman, G. W., Frommel, D., Finstad, J., Howell, J., Pollara, B. W., and Good, R. A., 1970, The evolution of the immune response. VII. Structural studies of the lamprey immunoglobulin, J. Immunol. 105:1278.PubMedGoogle Scholar
  66. Litman, G. W., Frommel, D., Finstad, J., and Good, R. A., 1971a, The evolution of the immune response. IX. Immunoglobulins of the bowfin; purification and characterization, J. Immunol. 106:747.Google Scholar
  67. Litman, G. W., Rosenberg, A., Frommel, D., Pollara, B., Finstad, J., and Good, R. A., 1971b, Biophysical studies of the immunoglobulins. The circular dichroic spectra of the immunoglobulins—A phylogenetic comparison, Int. Arch. Allergy Appl. Immunol. 40:551.CrossRefGoogle Scholar
  68. Marchalonis, J. J., 1969, Isolation and characterization of immunoglobulin-like proteins of the Australian lungfish (Neoceratodus forsteri), Aust. J. Exp. Biol. Med. Sci. 47:405.PubMedCrossRefGoogle Scholar
  69. Marchalonis, J. J., 1971, Isolation and partial characterization of immunoglobulins of goldfish (Carassius auratus) and carp (Cyprinus carpio), Immunology 20:161.PubMedGoogle Scholar
  70. Marchalonis, J. J., 1977, Immunity in Evolution, p. 110, Harvard University Press, Cambridge, Mass.Google Scholar
  71. Marchalonis, J. J., and Cohen, N., 1973, Isolation and partial characterization of immunoglobulin from a urodele amphibian (Necturus maculosus), Immunology 24:395.PubMedGoogle Scholar
  72. Marchalonis, J. J., and Edelman, G. M., 1965, Phylogenetic origins of antibody structure. I. Multichain structure of immunoglobulins in the smooth dogfish (Mustelus canis), J. Exp. Med. 122:610.CrossRefGoogle Scholar
  73. Marchalonis, J. J., and Edelman, G. M., 1966, Polypeptide chains of immunoglobulins from the smooth dogfish (Mustelus canis), Science 154:1567.PubMedCrossRefGoogle Scholar
  74. Marchalonis, J. J., and Edelman, G. M., 1968, Phylogenetic origins of antibody structure. III. Antibodies in the primary immune response of the sea lamprey, Petromyzon marinus, J. Exp. Med. 127:891.PubMedCrossRefGoogle Scholar
  75. Marchalonis, J. J., and Schonfeld, S. A., 1970, Polypeptide chain structure of stingray immunoglobulin, Biochim. Biophys. Acta 221:604.PubMedCrossRefGoogle Scholar
  76. Marchalonis, J. J., Cone, R. E., and Santer, V. E., 1971, Enzymic iodination: A probe for accessible surface proteins of normal and neoplastic lymphocytes, Biochem. J. 124:921.PubMedGoogle Scholar
  77. Mattes, M. J., and Steiner, L. A., 1978a, Antisera to frog immunoglobulins cross-react with a periodate-sensitive cell surface determinant, Nature (London) 273:761.CrossRefGoogle Scholar
  78. Mattes, M. J., and Steiner, L. A., 1978b, Surface immunoglobulin on frog lymphocytes: Identification of two lymphocyte populations, J. Immunol. 121:1116.Google Scholar
  79. Melcher, U., and Uhr, J. W., 1977, Density differences between membrane and secreted immunoglobulins of murine splenocytes, Biochemistry 16:145.PubMedCrossRefGoogle Scholar
  80. Melcher, U., Eidels, L., and Uhr, J. W., 1975, Are immunoglobulins integral membrane proteins?, Nature (London) 258:434.CrossRefGoogle Scholar
  81. Mestecky, J., Kulhavy, R., Schrohenloher, R. E., Tomana, M., and Wright, G. P., 1975, Identification and properties of J chain isolated from catfish macroglobulin, J. Immunol. 115:993.PubMedGoogle Scholar
  82. Miller, J. F. A. P., 1972, Lymphocyte interactions in antibody responses, Int. Rev. Cytol. 33:77.PubMedCrossRefGoogle Scholar
  83. Moseley, J. M., Marchalonis, J. J., Harris, A. W., and Pye, J., 1977, Molecular properties of T lymphoma immunoglobulin. I. Serological and general physicochemical properties, J. Immu-nogenet. 4:233.CrossRefGoogle Scholar
  84. Moticka, E. J., Brown, B. A., and Cooper, E. L., 1973, Immunoglobulin synthesis in bullfrog larvae, J. Immunol. 110:855.PubMedGoogle Scholar
  85. Muller-Eberhard, H. J., 1968, Chemistry and reaction mechanisms of complement, Adv. Immunol. 8:1.PubMedCrossRefGoogle Scholar
  86. Ortiz-Muniz, G., and Sigel, M. M., 1971, Antibody synthesis in lymphoid organs of two marine teleosts, J. Reticuloendothelial Soc. 9:42.Google Scholar
  87. Parkhouse, R. M. E., Askonas, B. A., and Dourmashkin, R. R., 1970, Electron microscopic studies of mouse immunoglobulin M: Structure and reconstitution following reduction, Immimology 18:575.Google Scholar
  88. Paul, W. E., and Benacerraf, B., 1977, Functional specificity of thymus-derived lymphocytes, Science 195:1293.PubMedCrossRefGoogle Scholar
  89. Pollara, B., Swan, A., Finstad, J., and Good, R. A., 1968, N-Terminal amino acid sequences of immunoglobulin chains in Polyodon spathula, Proc. Natl. Acad. Sci. USA 59:1307.PubMedCrossRefGoogle Scholar
  90. Raison, R. L., Hull, C. J., and Hildemann, W. H., 1978, Characterization of immunoglobulin from the Pacific hagfish, a primitive vertebrate, Proc. Natl. Acad. Sci. USA 75:5679.PubMedCrossRefGoogle Scholar
  91. Rajewsky, K., and Eichmann, K., 1977, Antigen receptors of T helper cells, Contemp. Top. Immunobiol. 7:69.PubMedCrossRefGoogle Scholar
  92. Riesen, W. F., 1979, Idiotypic cross-reactivity of human and murine phosphorylcholine-binding immunoglobulins, Eur. J. Immunol. 9:421.PubMedCrossRefGoogle Scholar
  93. Roubal, W. T., Etlinger, H. M., and Hodgins, H. O., 1974, Spin-label studies of a hapten combining site of rainbow trout antibody, J. Immunol. 113:309.PubMedGoogle Scholar
  94. Ruben, L. N., and Edwards, B. F., 1977, Phenotypic restriction of antigen-binding specificity on immunized amphibian spleen cells, Cell. Immunol. 33:437.PubMedCrossRefGoogle Scholar
  95. Ruben, L. N., and Edwards, B. F., 1979, The phylogeny of the emergence of “T-B” collaboration, Contemp. Top. Immunobiol. 9:55–89.Google Scholar
  96. Ruben, L. N., Warr, G. W., Decker, J. M., and Marchalonis, J. J., 1977, Phylogenetic origins of immune recognition: Lymphoid heterogeneity and the hapten/carrier effect in the goldfish, Carassius auratus Cell. Immunol. 31:266.CrossRefGoogle Scholar
  97. Saluk, P. H., Drauss, J., and Clem, L. W., 1970, The presence of two antigenically distinct light chains (k and X) in alligator immunoglobulins, Proc. Soc. Exp. Biol. Med. 113:365.Google Scholar
  98. Shelton, E., and Smith, M., 1970, The ultrastructure of carp (Cyprinus carpio) immunoglobulin: A tetrameric macroglobulin, J. Mol. Biol. 54:615.PubMedCrossRefGoogle Scholar
  99. Siskind, G. W., and Benacerraf, B., 1969, Cell selection in the immune response, Adv. Immunol. 10:1.PubMedCrossRefGoogle Scholar
  100. Sledge, C., Clem, L. W., and Hood, L., 1974, Antibody structure: Amino terminal sequence of nurse shark light and heavy chains, J. Immunol. 112:941.PubMedGoogle Scholar
  101. Szenberg, A., Marchalonis, J. J., and Warner, N. L., 1977, Direct demonstration of endogenous murine thymus-dependent cell surface immunoglobulin, Proc. Natl. Acad. Sci. USA 74:2113.PubMedCrossRefGoogle Scholar
  102. Trump, G. N., 1970, Goldfish immunoglobulins and antibodies to bovine serum albumin, J. Immunol. 104:1267.PubMedGoogle Scholar
  103. Turk, J. L., 1975, Delayed Hypersensitivity, North-Holland, Amsterdam.Google Scholar
  104. Uhr, J. W., Finkelstein, M. S., and Franklin, E. L., 1962, Antibody response to bacteriophage ϕX 174 in nonmammalian vertebrates, Proc. Soc. Exp. Biol. Med. 111:13.PubMedGoogle Scholar
  105. Warr, G. W., 1979, Membrane immunoglobulins of vertebrate lymphocytes, Contemp. Top. Immunobiol. 9:141.Google Scholar
  106. Warr, G. W., and Marchalonis, J. J., 1977a, Lymphocyte surface immunoglobulin of the goldfish differs from its serum counterpart, Dev. Comp. Immunol. 1:15.CrossRefGoogle Scholar
  107. Warr, G. W., and Marchalonis, J. J., 1977b, Lymphocyte surface immunoglobulins: Detection, characterization and occurrence in diseases of the lymphoid system, Crit. Rev. Clin. Lab. Sci. 7:185.CrossRefGoogle Scholar
  108. Warr, G. W., and Marchalonis, J. J., 1978, Specific immune recognition by lymphocytes: An evolutionary perspective, Q. Rev. Biol. 53:225.PubMedCrossRefGoogle Scholar
  109. Warr, G. W., DeLuca, D., and Marchalonis, J. J., 1976, Phylogenetic origins of immune recognition: Lymphocyte surface immunoglobulins in the goldfish, Carassius auratus, Proc. Natl. Acad. Sci. USA 73:2476.PubMedCrossRefGoogle Scholar
  110. Warr, G. W., DeLuca, D., Decker, J. M., Marchalonis, J. J., and Ruben, L. N., 1977, Lymphoid heterogeneity in teleost fish: Studies on the genus Carassius, in: Developmental Immunobiology (J. B. Solomon and J. D. Horton, eds.), pp. 241–248, Elsevier/North-Holland, Amsterdam.Google Scholar
  111. Warr, G. W., DeLuca, D., and Griffin, B. R., 1979, Membrane immunoglobulin is present on thymic and splenic lymphocytes of the trout Salmo gairdneri, J. Immunol. 123:910.PubMedGoogle Scholar
  112. Wasserman, R. L., Kehoe, J. M., and Capra, J. D., 1974, The VH III subgroup of immunoglobulin heavy chains: Phylogenetically associated residues in several avian species, J. Immunol. 13:954.Google Scholar
  113. Wedner, H. J., and Parker, C. W., 1976, Lymphocyte activation, Prog. Allergy 20:195.PubMedCrossRefGoogle Scholar
  114. Weinheimer, P. F., Mestecky, J., and Acton, R. T., 1971, Species distribution of J chain, J. Immunol. 107:1211.PubMedGoogle Scholar
  115. Weir, D. W., and Ogmundsdottir, H. M., 1977, Nonspecific recognition mechanisms by mononuclear phagocytes, Clin. Exp. Immunol. 30:323.PubMedGoogle Scholar
  116. Wilkinson, P. C., 1976, Recognition and response in mononuclear and granular phagocytes, Clin. Exp. Immunol. 25:355.PubMedGoogle Scholar
  117. Wu, T. T., and Kabat, E. A., 1970, An analysis of the sequences of the variable regions of Bence-Jones proteins and myeloma light chains and their implications for antibody complementarity, J. Exp. Med. 132:211.PubMedCrossRefGoogle Scholar
  118. Yamaga, K. M., Kubo, R. T., and Etlinger, H. M., 1978a, Studies on the question of conventional immunoglobulin on thymocytes from primitive vertebrates. I. Presence of anti-carbohydrate antibodies in rabbit anti-trout Ig sera, J. Immunol. 120:2068.Google Scholar
  119. Yamaga, K. M., Kubo, R. T., and Etlinger, H. M., 1978b, Studies on the question of conventional immunoglobulin on thymocytes from primitive vertebrates. II. Delineation between Ig-specific and cross-reactive membrane components, J. Immunol. 120:2076.Google Scholar
  120. Zikan, J., 1974 Workshop report, in: Progress in Immunology. II. Immunochemical Aspects (L. Brent and J. Holborow, eds.), Vol. 1, p. 246, American Elsevier, New York.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Gregory W. Warr
    • 1
  • John J. Marchalonis
    • 1
  1. 1.Department of BiochemistryMedical University of South CarolinaCharlestonUSA

Personalised recommendations