Advertisement

The Alcohol Dehydrogenase Genes of the Yeast, Saccharomyces Cerevisiae: Isolation, Structure, and Regulation

  • T. Young
  • V. Williamson
  • A. Taguchi
  • M. Smith
  • A. Sledziewski
  • D. Russell
  • J. Osterman
  • C. Denis
  • D. Cox
  • D. Beier
Part of the Basic Life Sciences book series

Abstract

Alcohol dehydrogenase (E.C. 1.1.1.1. ADH) catalyzes the inter-conversion of an alcohol and an aldehyde with NAD+ as a cofactor. In most higher organisms that have been studied, several different isozymes of ADH are present. The main function of these isozymes is presumed to be catabolic, to degrade various alcohols or sterols. This presumption is based primarily on the substrate preferences of the various isozymes and the absence of a fermentative pathway for alcohol production during glycolysis. In many organisms there is a distinctive tissue specificity in the distribution of different ADH isozymes.

Keywords

Alcohol Dehydrogenase Gene ADR2 Gene ADR2 mRNA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennetzen, J.L. (1979). Ph.D. Thesis. University of Washington.Google Scholar
  2. 2.
    Berk, A.J. and P.A. Sharp (1978). Spliced early mRNAs of Simian Virus 40. Proc. Nat. Acad. Sci. USA. 75: 1274–1278.CrossRefGoogle Scholar
  3. 3.
    Cameron, J.R., E.Y. Loh, and R.W. Davis (1979). Evidence for transposition of dispersed repetitive DNA families in yeast. Cell, 16: 739–751.CrossRefGoogle Scholar
  4. 4.
    Ciriacy, M. (1975a). Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae. I. Isolation and genetic analysis of adh mutants. Mutation Research, 29: 315–332.CrossRefGoogle Scholar
  5. 5.
    Ciriacy, M. (1975b). Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae. II. Two loci controlling synthesis of the glucose-repressible ADHII. Mol. Gen. Genet., 138: 157–164.CrossRefGoogle Scholar
  6. 6.
    Ciriacy, M. (1979). Isolation and characterization of further cis-and trans-acting regulatory elements involved in the synthesis of glucose-repressible alcohol dehydrogenase (ADHII). Mol. Gen. Genet., 176: 427–431.CrossRefGoogle Scholar
  7. 7.
    Ciriacy, M. and V.M. Williamson (1981). Analysis of mutations affecting Ty-mediated gene mediated gene expression in Saccharomyces cerevisiae. Mol. Gen. Genet.Google Scholar
  8. 8.
    Clark, L. and J. Carbon (1980). Isolation of a yeast centromere and constructure of functional small circular chromosomes.Google Scholar
  9. 9.
    Denis, C., E.T. Young, and M. Ciriacy (1981). A positive regulatory gene is required for accumulation of functional mRNA for the glucose-repressible alcohol dehydrogenase from Saccharomyces cerevisiae. J. Mol. Biol.Google Scholar
  10. 10.
    Errede, B., T.S. Cardillo, F. Sherman, E. Dubois, J. Deschamps, and J.M. Wiame (1980). Mating signals control expression of mutations resulting from insertion of a transposable repetitive element adjacent to diverse yeast genes. Cell, 22: 427–436CrossRefGoogle Scholar
  11. 11.
    Farabaugh, P.J. and G.R. Fink (1980). Insertion of the Eukaryotic transposable element Tyl creates a 5-base pair duplication, Nature, 286: 352–356.CrossRefGoogle Scholar
  12. 12.
    Gafner, J. and P. Philippsen (1980). The yeast transposon Tyl generates duplications of target DNA on insertion. Nature, 286: 414–418.CrossRefGoogle Scholar
  13. 13.
    Garel, A., M. Zolan, and R. Axel (1977). Genes transcribed at diverse rates have a similar conformation in chromatin. Proc. Nat. Acad. Sci., USA, 74: 4867–4871.CrossRefGoogle Scholar
  14. 14.
    Holland, M.J., J.L. Holland, G.P. Thill, and K.A. Jackson (1981). The primary structure of two yeast enolase genes. J. Biol. Chem., 256: 1385–1395.Google Scholar
  15. 15.
    Jornvall, H. (1977). The primary structure of yeast alcohol dehydrogenase. Eur. J. Biochem., 72: 425–442.CrossRefGoogle Scholar
  16. 16.
    Lohr, D. and L. Hereford (1979). Yeast chromatin is uniformly digested by DNase I. Proc. Nat. Acad. Sci., USA, 76: 4285–4288.CrossRefGoogle Scholar
  17. 16a.
    Maxam, A.M. and W. Gilbert (1977) PNAS, 74: 550–554.CrossRefGoogle Scholar
  18. 17.
    Montomery, D.L., U.W. Leung, M. Smith, P. Shalet, G. Faye, and B.O. Hall (1980). Isolation and sequence of the gene for iso-2-cytochrome c in Saccharomyces cerivisiae. Proc. Nat. Acad. Sci., USA, 77: 541–545.CrossRefGoogle Scholar
  19. 18.
    Nasmyth, K.A. and S.I. Reed (1980). Isolation of genes by complementation in yeast: molecular cloning of a cell-cycle gene. Nat. Acad. Sci., USA. 77: 2119–2123.CrossRefGoogle Scholar
  20. 19.
    Struhyl, K. D.T. Stinchcomb, S. Scherer, and R.W. Davis (1979). High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Nat. Acad. Sci., USA, 76: 1035–1039.CrossRefGoogle Scholar
  21. 20.
    Weintraub, H. and M. Groudine (1976). Chromosomal subunits in active genes have an altered conformation. Science, 193: 848–855.CrossRefGoogle Scholar
  22. 21.
    Williamson, V.M., J. Bennetzen, E.T. Young, K. Nasmyth, and B.D. Hall (1980). Isolation of the structural gene for alcohol dehydrogenase by genetic complementation in yeast. Nature, 283: 214–216.CrossRefGoogle Scholar
  23. 22.
    Williamson, V.M., E.T. Young, and M. Ciriacy (1981). Transposable elements associated with constitutive expression of yeast alcohol dehydrogenase II. Cell, 23: 605–614.CrossRefGoogle Scholar
  24. 23.
    Wills, C. and J. Phelps (1975). A technique for the isolation of yeast alcohol dehydrogenase mutants with altered substrate specificity. Arch. Biochem. Biophys., 167: 627–637.CrossRefGoogle Scholar
  25. 24.
    Wills, C. and H. Jornvall (1979). The two major isozymes of yeast alcohol dehydrogenase. Eur. J. Biochem., 99: 323–331.CrossRefGoogle Scholar
  26. 25.
    Wu, C. (1980). The 5’ ends of drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature, 286: 854–860.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • T. Young
    • 1
  • V. Williamson
    • 1
  • A. Taguchi
    • 1
  • M. Smith
    • 2
  • A. Sledziewski
    • 1
  • D. Russell
    • 2
  • J. Osterman
    • 1
  • C. Denis
    • 1
  • D. Cox
    • 1
  • D. Beier
    • 1
  1. 1.Departments of BiochemistryUniversity of WashingtonSeattleUSA
  2. 2.Departments of BiochemistryUniversity of British ColumbiaVancouverCanada

Personalised recommendations