Skip to main content

Approximative Reduction by Completion of Empirical Uniformities

Kepler’s theory of planetary motion and Newton’s theory of gravitation

  • Chapter
Structure and Approximation in Physical Theories

Abstract

In physics almost all important examples of theory reduction are of an approximative nature, for instance the reductions of nonrelativistic to relativistic theories of spacetime and dynamics, or of classical to corresponding quantum theories. To formalize the idea of theory approximation one needs a mathematical structure with a certain type of convergence — the Cauchy convergence, which is defined on a uniform structure (comp. [9], [10], [11]). This convergence type reflects the general fact that the approximated structures or models of the reduced theory are not models of the reducing theory, i.e. the approximation process takes you out of the approximating theory, as it were. For instance in the wellknown reduction example of Kepler’s theory of planetary motion to Newton’s theory of gravitation, Keplerian orbits are not solutions of Newton’s differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. M. Born, Optik, Springer; Berlin 1933.

    Google Scholar 

  2. N. Bourbaki, General Topology; Herman, Paris 1966.

    Google Scholar 

  3. N. Bourbaki, Theory of Sets; Herman, Paris 1968.

    MATH  Google Scholar 

  4. R. Breuer, J. Ehlers, Propagation of high-frequency electromagnetic waves through a magnetized plasma in curved spacetime I, II; Proc. R. Soc. Lond. A 370 (1980).

    Google Scholar 

  5. E. Cech, Topological spaces; Interscience, London 1966.

    MATH  Google Scholar 

  6. J. Ehlers, Über den Newtonschen Grenzwert der Einsteinschen Gravitationstheorie, to appear in Festschrift für Mittelstaedt (1981).

    Google Scholar 

  7. K. Hepp, The classical limit for quantum mechanical correlation functions; Commun. math. Phys. 35, 265–277 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  8. H.W. Knobloch, F. Kappel, Gewöhnliche Differentialgleichungen; Teubner, Stuttgart 1974.

    MATH  Google Scholar 

  9. G. Ludwig, Die Grundstrukturen einer physikalischen Theorie, Springer, Berlin 1978.

    MATH  Google Scholar 

  10. D. Mayr, Investigations of the concept of reduction II; Erkenntnis 16 (1981).

    Google Scholar 

  11. C.-U. Moulines, Approximative explanation of empirical theories: a general explication; Erkenntnis 10, 201–229 (1976).

    Article  Google Scholar 

  12. D. Ruelle, Statistical Mechanics, Rigorous Results; Benjamin, New York 1969.

    MATH  Google Scholar 

  13. E. Scheibe, Die Erklärung der Keplersehen Gesetze durch Newtons Gravitationsgleichung; in E. Scheibe und G. Süßmann (eds), Einheit und Vielheit, Festschrift für Carl Friedrich von Weizsäcker, Vandenhoeck & Ruprecht, Göttingen, 1973.

    Google Scholar 

  14. W. Stegmüller, The Structuralist View of Theories; Springer, Berlin 1979.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Mayr, D. (1981). Approximative Reduction by Completion of Empirical Uniformities. In: Hartkämper, A., Schmidt, HJ. (eds) Structure and Approximation in Physical Theories. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4109-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4109-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4111-6

  • Online ISBN: 978-1-4684-4109-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics