Antibody Affinity: Its Relationship to Immune Complex Disease and the Effect of Malnutrition

  • M. W. Steward
  • Madeleine E. Devey
  • M. C. Reinhardt
Part of the Ettore Majorana International Science Series book series (volume 8)


There is an impressive body of evidence in the literature to support the view that malnutrition is a major cause of secondary immunodeficiency in man. The malnourished state leads to impaired cell-mediated and humoral immune mechanisms with a consequent predisposition of affected individuals to severe infections. Serum immunoglobulin levels in malnourished individuals are not related o the degree of nutritional impairment and these levels can be high or normal(1). However, it is clear that specific antibody responses in malnutrition can be adequate or reduced(2). Whilst it is clear that the amount of antibody an individual makes is important, perhaps more critical to the function of the antibody response is its quality. Antibody affinity is one of the means of expressing antibody quality and is a measure of the strength of interaction of the antibody combining sites with the corresponding antigenic determinants. A high affinity antibody forms complexes with the antigen which have a lesser tendency to dissociate than do complexes formed with a low affinity antibody. In terms of antibody function, high affinity antibody is superior to lower affinity antibody in a number of antibody-mediated immune functions. These include complement fixation, immune elimination, and protective capacity against bacterial infection. Therefore circumstances which interfere with the production of antibody of an appropriate high affinity will result in impaired immune function. The production of antibody of low affinity may be viewed as a form of immunodeficiency(3) leading to the failure of elimination of antigen or infectious agent with the corresponding persistence of infection or the production and subsequent tissue deposition of antigen excess antigen: antibody complexes. The purpose of this paper is to discuss the production of low affinity antibody as an example of a primary immunodeficiency which may predispose to the induction of chronic disease, and to consider how secondary immunodeficiency arising from malnutrition may contribute to disease susceptibility through its effect on antibody affinity.


Human Serum Albumin Dietary Manipulation Proliferative Glomerulonephritis Affinity Antibody Serum Immunoglobulin Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McFarlane H. (1973) Adv. Clin Chem. 16; 154.Google Scholar
  2. 2.
    Chandra R.K. and Newberne P.M. (1977) “Nutrition, Immunity and Infection”, Plenum Press, New York.CrossRefGoogle Scholar
  3. 3.
    Soothill J.F. and Steward M.W. (1971) Clin. Exp. Immunol. 9: 193.PubMedGoogle Scholar
  4. 4.
    Longcope W.T. (1913) J. Exp. Med. 18: 678.PubMedCrossRefGoogle Scholar
  5. 5.
    Germuth F.G. and Rodriguez E. (1971) “Immunopathology of the Renal Glomerulus”, Little, Brown & Co., Boston.Google Scholar
  6. 6.
    Dixon F.J., Feldman J.D. and Vasquez J.J. (1961) J. Exp. Med. 113: 899.PubMedCrossRefGoogle Scholar
  7. 7.
    Pincus T., Haberkern R. and Christian C.L. (1968) J. Exp. Med. 28: 224.Google Scholar
  8. 8.
    Kuriyama T. (1973) Lab. Invest. 28: 224.PubMedGoogle Scholar
  9. 9.
    Oldstone M.B.A. and Dixon F.J. (1969) J. Exp. Med. 129: 583.CrossRefGoogle Scholar
  10. 10.
    Soothill J.F., Smith M.D. and Morgan A.G. (1975) in “Pathalogic Processes in Parasitic Infections”, Taylor A.E.R. and Muller R. eds., Blackwell, Oxford.Google Scholar
  11. 11.
    Blecher T.E., Soothill J.F., Voyce M.A. and Walker W.H.C. (1968) Clin. Exp. Imm. 3: 47.Google Scholar
  12. 12.
    Petty R.E., Steward M.W. and Soothill J.F. (1972) Clin. Exp. Imm. 12: 231.Google Scholar
  13. 13.
    Alpers J.H., Steward M.W. and Soothill J.F. (1972) Clin. Exp. Imm. 12: 121.Google Scholar
  14. 14.
    Steward M.W. and Petty R.E. (1976) Immunol. 22: 47.Google Scholar
  15. 15.
    Katz F.E. and Steward M.W. (1975) Immunol. 29: 543.Google Scholar
  16. 16.
    Steward M.W., Reinhardt M.C. and Staines N.A. (1979) Immunol. 37: 697.Google Scholar
  17. 17.
    Passwell J.M., Steward M.W. and Soothill J.F. (1974) Clin. Exp. Imm. 19: 159.Google Scholar
  18. 18.
    Morgan A.G. and Soothill J.F. (1975) Nature 254: 711.PubMedCrossRefGoogle Scholar
  19. 19.
    Gershon R.K. and Paul W.E. (1971) J. Immunol. 106: 872.PubMedGoogle Scholar
  20. 20.
    Steward M.W., Gaze S.E. and Petty R.E. (1974) Eur. J. Imm. 4: 751.CrossRefGoogle Scholar
  21. 21.
    Reinhardt M.C. and Steward M.W. (1979) Immunol. 38: 735.Google Scholar
  22. 22.
    Coovadia H.M. and Soothill J.F. (1976) Clin. Exp. Imm. 23: 373.Google Scholar
  23. 23.
    Coovadia H.M. and Soothill J.F. (1976) Clin. Exp. Imm. 23: 562.Google Scholar
  24. 24.
    Steward M.W. (1979) J. Clin. Path. (Suppl. Roy. Coll. Path) 13: 120.Google Scholar
  25. 25.
    Steward M.W. (1979) Clin. Exp. Imm. 38: 414.Google Scholar
  26. 26.
    Devey M.E. and Steward M.W. (1980) Immunol. (in press).Google Scholar
  27. 27.
    Koyama A., Niwa Y., Shigematsu H., Taniguchi M. and Tada T. (1976) Lab. Invest. 35: 293.Google Scholar
  28. 28.
    Germuth F.G., Rodriguez E., Lovelle C.A., Trump E.I., Milano L. and Wise O.L. (1979) Lab. Invest. 41: 360.PubMedGoogle Scholar
  29. 29.
    Steward M.W. and Powis P.A. (1977) in “Non-articular Forms of Rheumatoid Arthritis”, Feltkamp T.E.W. ed., Staflen, Leiden, p. 23.Google Scholar
  30. 30.
    Andrews B.S., Eisenburg R.A., Theophilopoulous A.N., Izui S., Wilson C.B., McConacney P.J., Murphey E.D. Roths J.B. and Dixon F.J. (1978) J. Exp. Med. 148: 1498.CrossRefGoogle Scholar
  31. 31.
    Lambert P.H. and Dixon F.J. (1968) J. Exp. Med. 127: 507.PubMedCrossRefGoogle Scholar
  32. 32.
    Fernandes G., Yunis E.J., Smith J. and Good R.A. (1972) PSEBM 139: 1189.Google Scholar
  33. 33.
    Fernandes G., Yunis F.J., Jose D.G. and Good R.A. (1973) Int. Arch. Allergy Appl. Immunol. 4: 770.CrossRefGoogle Scholar
  34. 34.
    Fernandes G., Yunis E.J. and Good R.A. (1976) J. Immunol. 116: 782.PubMedGoogle Scholar
  35. 35.
    Fernandes G., Yunis E.J. and Good R.A. (1976) Proc. Nat. Acad. Sci. 73: 1279.PubMedCrossRefGoogle Scholar
  36. 36.
    Dubois E.Z. and Strain L. (1973) Biochem. Med. 7: 336.PubMedCrossRefGoogle Scholar
  37. 37.
    Fernandes G., Friend P., Yunis E.J. and Good R.A. (1978) Proc. Nat. Acad. Sci. 75: 1500.PubMedCrossRefGoogle Scholar
  38. 38.
    Safai Kutti S., Fernandes G., Wang Y., Safai B., Good R.A. and Day N.K. (1980) Clin. Immunol. Immunopath. 15: 293.CrossRefGoogle Scholar
  39. 39.
    Ibrahim A.B., Gardner M.B. and Levey J.A. (1980) Fed. Proc. 39: 1132.Google Scholar
  40. 40.
    Reinhardt M.C., Devey M.E., Gregory B., Collins M. and Steward M.W. (1980) ) Fed. Proc. 39: 1132.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • M. W. Steward
    • 1
  • Madeleine E. Devey
    • 1
  • M. C. Reinhardt
    • 1
    • 2
  1. 1.London School of Hygiene and Tropical MedicineUSA
  2. 2.Institute of Child Health LondonUSA

Personalised recommendations