Advertisement

Properties and Mechanisms of Locomotion

  • Mary C. Wetzel
  • Leon G. Howell

Abstract

An account of any behavior must include descriptions of both its “properties” and its “mechanisms.” The “properties” of locomotion include its topographical characteristics, the kinematics, or movement in space and time, and an analysis of these in terms of masses and forces, kinetics. There are two groups of “mechanisms” to be considered. One of these concerns the hardware of which the organism is composed, and the functional relationships between the components. This mechanism has received much attention from neurophysiologists, who have established functional connections between neurons by examining impulses in numerous cells under many different conditions of activation.

Keywords

Hind Limb Neural Control Step Cycle Interlimb Coordination Alpha Motoneuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, R. McN. Swimming. In R. McN. Alexander and G. Goldspink (Eds.), Mechanics and Energetics of Animal Locomotion. London: Chapman & Hall, 1977.Google Scholar
  2. Alexander, R. McN., and Goldspink, G. (Eds.), Mechanics and Energetics of Animal Locomotion. London: Chapman & Hall, 1977.Google Scholar
  3. Andersson, O., Grillner, S., Lindquist, M., and Zomlefer, M. Peripheral control of the spinal pattern generators for locomotion in cat. Brain Research, 1978, 150, 625–630.CrossRefGoogle Scholar
  4. Arbib, M. A. Brain, Machines, and Mathematics. New York: McGraw-Hill, 1964.Google Scholar
  5. Arbib, M. A. The Metaphorical Brain. An Introduction to Cybernetics as Artificial Intelligence and Brain Theory. New York: Wiley-Interscience, 1972.Google Scholar
  6. Ariel, G., and Maulucci, R. A kinetic analysis of the trot in cats. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum, 1976.Google Scholar
  7. Arshavsky, Yu. I., Kots, Ya. M., Orlovsky, G. N., Rodionov, I. M., and Shik, M. L. Investigation of the biomechanics of running by the dog. Biophysics, 1965, 10, 737–746.Google Scholar
  8. Ayers, A. J. Sensory Integration and Learning Disorders. Los Angeles: Western Psychological Services, 1972.Google Scholar
  9. Ayers, J. L., Jr., and Davis, W. J. Neuronal control of locomotion in the lobster, Homarus americanus. I. Motor programs for forward and backward walking, Journal of Comparative Physiology, 1977, 115, 1–27. (a)Google Scholar
  10. Ayers, J. L., Jr., and Davis, W. J. Neuronal control of locomotion in the lobster, Homarus americanus. II. Types of walking leg reflexes, Journal of Comparative Physiology, 1977, 115, 29 – 46. (b)CrossRefGoogle Scholar
  11. Ayers, J. L., Jr., and Davis, W. J. Neuronal control of locomotion in the lobster, Homarus americanus. III. Dynamic organization of walking leg reflexes. Journal of Comparative Physiology, 1978, 123, 289–298.CrossRefGoogle Scholar
  12. Bard, P. A diencephalic mechanism for the expression of rage with specific reference to the sympathetic nervous system. American Journal of Physiology, 1928, 84, 490–515.Google Scholar
  13. Barnes, W. J. P. Proprioceptive influences on motor output during walking in the crayfish, Journal of Physiology (Paris), 1977, 73, 543–563.Google Scholar
  14. Beer, F. P., and Johnston, E. R., Jr. Mechanics for Engineers: Statics and Dynamics. New York: McGraw-Hill, 1962.Google Scholar
  15. Bekey, G. A., Chang, C-W., Perry, J., and Hoffer, M. M. Pattern recognition of multiple EMG signals applied to the description of human gait. Proceedings of the IEEE, 1977, 65, 674–681.CrossRefGoogle Scholar
  16. Bernstein, N. A. On the Construction of Movements. Moscow: Medgiz, 1947. (Monograph in Russian.)Google Scholar
  17. Bessonov, A. P., and Umnov, N. V. The analysis of gaits in six-legged vehicles according to their static stability. Proceedings of a Symposium on the Theory of Robots and Manipulators. Udine, Italy: International Center for Mechanical Science, 1973.Google Scholar
  18. Bethe, A. Studien über die Plastizität des Nervensystems. I. Mitteilung. Arachnoideen und Crustaceen. Pflügers Archiv für die Gesamte Physiologie des Menschen und der Tiere, 1930, 224, 793–820.Google Scholar
  19. Betts, B., Smith, J. L., and Collatos, T. C. Recording fore and hind limb myopotentials during unrestrained movements of cats. Brain Research, 1976, 117, 529–533.CrossRefGoogle Scholar
  20. Bowdan, E. Walking and rowing in the water strider, Gerris remigis. I. A cinematographic analysis of walking. Journal of Comparative Physiology, 1978, 123, 43–49.CrossRefGoogle Scholar
  21. Boylls, C. C., Jr. Olivary unit activity and effect of microstimulation during locomotion. Society for Neuroscience Abstracts, 1977, 3, 55.Google Scholar
  22. Brown-Séquard, C. E. Des rapports qui existent entre la lésion des racines motrices et des racines sensitives. Comptes Rendus des Séances de la Société de Biologie et de ses Filiales, 1850, 1, 15–17.Google Scholar
  23. Buchwald, J. S., and Brown, K. Subcortical mechanisms of behavioral plasticity. In J. D. Maser (Ed.), Efferent Organization and the Integration of Behavior. New York: Academic Press, 1973.Google Scholar
  24. Burrows, M. Neural control of flight in the locust. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  25. Carlson, A. B. Communication Systems: An Introduction to Signals and Noise in Electrical Communication. New York: McGraw-Hill, 1968.Google Scholar
  26. Chassin, P. S., Taylor, G. R., Heglund, N. C., and Seeherman, H. J. Locomotion in lions: Energetic cost and maximum aerobic capacity. Zoology, 1976, 49, 1–10.Google Scholar
  27. Chestnut, H., and Mayer, R. W. Servomechanisms and Regulating System Design. New York: Wiley, 1951.Google Scholar
  28. Cook, T., and Cozzens, B. Human solutions for locomotion. III. The initiation of gait. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  29. Coss, L., Chan, A. K., Goslow, G. E. Jr., and Rasmussen, S. Ipsilateral limb variation in cats during overground locomotion. Brain Research, 1978, 15, 85–93.Google Scholar
  30. Craik, R., Herman, R., and Finley, F. R. Human solutions for locomotion. II. Interlimb coordination. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  31. Creed, R. S., Denny-Brown, D., Eccles, J. C., Liddell, E. G. T., and Sherrington, C. S. Reflex Activity of the Spinal Cord. Oxford: Clarendon Press, 1932. (Reprinted in 1972.)Google Scholar
  32. Davis, W. J. Central activation of movements. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  33. Davis, W. J., and Ayers, J. L. Locomotion: Control by positive-feedback optokinetic responses. Science, 1972, 177, 183–185.CrossRefGoogle Scholar
  34. Delcomyn, F. An approach to the study of neural activity during behavior in insects. Journal of Insect Physiology, 1976, 22, 1223–1227.CrossRefGoogle Scholar
  35. Duysens, J. E. Reflex control of cat walking. Doctoral dissertation. University of Alberta, Canada, 1976.Google Scholar
  36. Duysens, J., and Pearson, K. G. Ipsilateral extensor reflexes and cat locomotion. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  37. Edgerton, V. R., Grillner, S., Sjöstrom, A., and Zangger, P. Central generation of locomotion in vertebrates. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  38. Eisenstein, B. L., Postillion, F. G., Norgren, K. S., and Wetzel, M. C. Kinematics of treadmill galloping by cats. II. Steady-state coordination under positive reinforcement control. Behavioral Biology, 1977, 21, 89–106.CrossRefGoogle Scholar
  39. Engberg, I. Reflexes to foot muscles in the cat. Acta Physiologica Scandinavica, 1964, 62, Supplementum 235, 1–64.Google Scholar
  40. Engberg, I., and Lundberg, A. An electromyographic analysis of muscular activity in the hindlimb of the cat during unrestrained locomotion. Acta Physiologica Scandinavica, 1969, 75, 614–630.CrossRefGoogle Scholar
  41. English, A. W. Interlimb coordination during stepping in the cat: an electromyographic analysis. Journal of Neurophysiology, 1979, 42, 229–243.Google Scholar
  42. Evarts, E. V., and Granit, R. Relations of reflexes and intended movements. In S. Homma (Ed.), Progress in Brain Research, Vol. 44: Understanding the Stretch Reflex. Amsterdam: Elsevier/North-Holland Biomedical Press, 1976.Google Scholar
  43. Evoy, W. H. Modulation of proprioceptive information in crustacea. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  44. Fearing, F. Reflex Action. A Study in the History of Physiological Psychology. Baltimore: Williams & Wilkins, 1930.Google Scholar
  45. Feldman, A. G., and Orlovsky, G. N. Activity of interneurons mediating reciprocal Ia inhibition during locomotion. Brain Research, 1975, 84, 181–194.CrossRefGoogle Scholar
  46. Ferster, C. B., and Skinner, B. F. Schedules of Reinforcement. New York: Appleton-Century-Crofts, 1957.CrossRefGoogle Scholar
  47. Forssberg, H., Grillner, S., Rossignol, S., and Wallén, P. Phasic control of reflexes during locomotion. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  48. Fourtner, C. R. Central nervous control of cockroach walking. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  49. Gambaryan, P. P. How Mammals Run. Translated from the Russian by H. Hardin. New York: Wiley, 1974, pp. 203–259.Google Scholar
  50. Goldiamond, I. Coping and adaptive behaviors of the disabled. In G. L. Albracht (Ed.), The Sociology of Physical Disability and Rehabilitation. Pittsburgh: University of Pittsburgh, 1976.Google Scholar
  51. Goslow, G. E., Jr., Reinking, R. M., and Stuart, D. G. The cat step cycle: Hind limb joint angles and muscle lengths during unrestrained locomotion. Journal of Morphology, 1973, 141, 1–41.CrossRefGoogle Scholar
  52. Graham Brown, T. The intrinsic factors in the act of progression in the mammal. Proceedings of the Royal Society (London), Series B, 1911, 84, 308–319.CrossRefGoogle Scholar
  53. Graham Brown, T. The phenomenon of “narcosis progression” in mammals. Proceedings of the Royal Society (London), Series B, 1913, 86, 140–164.CrossRefGoogle Scholar
  54. Graham Brown, T. On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. Journal of Physiology (London), 1914, 48, 18–46.Google Scholar
  55. Graham Brown, T. On the activities of the central nervous system of the un-born foetus of the cat; with a discussion of the question whether progression (walking, etc.) is a “learnt” complex. Journal of Physiology (London), 1915, 49, 208–215.Google Scholar
  56. Grillner, S. Locomotion in the spinal cat. In R. B. Stein, K. G. Pearson, R. S. Smith, and J. B. Redford (Eds.), Control of Posture and Locomotion. New York: Plenum Press, 1973. (a)Google Scholar
  57. Grillner, S.: Locomotion in the spinal dogfish. Acta Physiologica Scandinavica, 1973(b), 87, 31–32A.CrossRefGoogle Scholar
  58. Grillner, S. Locomotion in vertebrates: Central mechanisms and reflex interaction. Physiological Reviews, 1975, 55, 247–304.CrossRefGoogle Scholar
  59. Grillner, S. Some aspects on the descending control of the spinal circuits generating locomotor movements. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  60. Grillner, S., and Kashin, S. On the generation and performance of swimming in fish. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  61. Grillner, S., and Zangger, P. Locomotor movements generated by the deafferented spinal cord. Acta Physiologica Scandinavica, 1974, 91, 38–39A.Google Scholar
  62. Hagbarth, K.-E. EMG studies of stretch reflexes in man. In L. Widen (Ed.), Recent Advances in Clinical Neurophysiology. Electroencephalography and Clinical Neurophysiology, 1967, Supplement 25, 74–19.Google Scholar
  63. Halbertsma, J. M., Miller, S., and van der Merche, F. G. A. Basic programs for the phasing of flexion and extension movements of the limbs during locomotion. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  64. Hammond, P. H. The influence of prior instruction to the subject on an apparently involuntary neuro-muscular response. Journal of Physiology (London), 1956, 132, 17P–18P.Google Scholar
  65. Hart, B. L. Facilitation by strychnine of reflex walking in spinal dogs. Physiology and Behavior, 1971, 6, 627–628.CrossRefGoogle Scholar
  66. Hazen, H. L. Theory of servomechanisms. Journal of the Franklin Institute, 1934, 218, 279–331.CrossRefGoogle Scholar
  67. Hemami, H., Weimer, F. C., and Koozekanini, S. H. Some aspects of the inverted pendulum problem for modeling of locomotion systems. 14th Joint Automatic Control Conference Preprint Volume, Columbus, Ohio, 1973, pp. 132–137. IEEE Catalog No. 73CHO 750–0 CSS.Google Scholar
  68. Henneman, E., Clamann, H. P., Gillies, J. D., and Skinner, R. D. Rank order of motoneurons within a pool: Law of combination. Journal of Neurophysiology, 1974, 37, 1338–1349.Google Scholar
  69. Herman, R. M., Grillner, S., Stein, P. S. G., and Stuart, D. G. (Eds.). Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  70. Herman, R., Wirta, R., Bampton, S., and Finley, F. R. Human solutions for locomotion. I. Single limb analysis. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  71. Hildebrand, M. Symmetrical gaits of horses. Science, 1965, 150, 701–708.CrossRefGoogle Scholar
  72. Hildebrand, M. Analysis of the symmetrical gaits of tetrapods. Folia Biotheoretica, 1966, 6, 1–22.Google Scholar
  73. Hildebrand, M. Analysis of tetrapod gaits: General considerations and symmetrical gaits. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  74. Hildebrand, M. Analysis of asymmetrical gaits. Journal of Mammalogy, 1977, 58, 131–156.CrossRefGoogle Scholar
  75. Hinsey, J. C., Ranson, S. W., and McNattin, R. F. The role of the hypothalamus and mesencephalon in locomotion. Archives of Neurology and Psychiatry, 1930, 23, 1–43.CrossRefGoogle Scholar
  76. Hoffer, J. A., and Marks, W. B. Long-term peripheral nerve activity during behavior in the rabbit. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  77. Houk, J. C. The phylogeny of muscular control configurations. Biocybernetics, 1972, 4, 125–144.Google Scholar
  78. Howell, A. B. Speed in Animals, pp. 217–247. Chicago: University of Chicago Press, 1944.Google Scholar
  79. Hoyle, G. Arthropod walking. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  80. Hultborn, H. Convergence on interneurones in the reciprocal Ia inhibitory pathway to motoneu-rones. Acta Physiologica Scandinavics, 1972, Supplementum 375, 1–42.Google Scholar
  81. Hultborn, H., Jankowska, E., and Lindström, S. Recurrent inhibition from motor axon collaterals of transmission in the Ia inhibitory pathway to motoneurones. Journal of Physiology (London), 1971, 215, 591–612. (a)Google Scholar
  82. Hultborn, H., Jankowska, E., and Lindström, S. Recurrent inhibition of interneurones monosy-naptically activated from group Ia afferents. Journal of Physiology (London), 1971, 215, 613–636. (b)Google Scholar
  83. Jankowska, E., and Smith, D. O. Antidromic activation of Renshaw cells and their axonal projections. Acta Physiologica Scandinavica, 1973, 88, 198–214.CrossRefGoogle Scholar
  84. Jankowska, E., Jukes, M. G. M., Lund, S., and Lundberg, A. The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors. Acta Physiologica Scandinavica, 1967, 70, 369–388. (a)CrossRefGoogle Scholar
  85. Jankowska, E., Jukes, M. G. M., Lund, S., and Lundberg, A. The effect of DOPA on the spinal cord. 6. Half-centre organization of interneurones transmitting effects from flexor reflex afferents. Acta Physiologica Scandinavica, 1967, 70, 389–402. (b)CrossRefGoogle Scholar
  86. Jordan, L. M., and Steeves, J. D. Chemical lesioning of the spinal noradrenaline pathway: Effects on locomotion in the cat. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  87. Kashin, S. M., Feldman, A. G., and Orlovsky, G. N. Locomotion of fish evoked by electrical stimulation of the brain. Brain Research, 1974, 82, 41–47.CrossRefGoogle Scholar
  88. Kato, I., and Tsuiki, H. Hydraulically powered biped walking machine with a high carrying capacity. Proceedings of the Fourth International Symposium on External Control of Human Extremities. Dubrovnik, Yugoslavia, 1972.Google Scholar
  89. Kljacic, M., Kralj, A., Bajd, T., Stanic, U., and Trnkoczy, A. Some problems of mathematical quantitative gait evaluation. Proceedings of the Fifth International Symposium on External Control of Human Extremities. Dubrovnik, Yugoslavia, pp. 279–287, 1975.Google Scholar
  90. Lennard, P. R., and Stein, P. S. G. Swimming movements elicited by electrical stimulation of turtle spinal cord. I. Low spinal and intact preparations. Journal of Neurophysiology, 1977, 40, 768–778.Google Scholar
  91. Lindsay, K. W., Roberts, T. D. M., and Rosenberg, J. R. Asymmetric tonic labyrinth reflexes and their interaction with neck reflexes in the decerebrate cat. Journal of Physiology (London), 1976, 261, 583–601.Google Scholar
  92. Lindström, S., and Schomburg, E. D. Recurrent inhibition from motor axon collaterals of ventral spinocerebellar tract neurones. Acta Physiologica Scandinavica, 1973, 88, 505–515.CrossRefGoogle Scholar
  93. Lissman, H. W. The neurological basis of the locomotory rhythm in the spinal dogfish (Scyllium canicula, Acanthias vulgaris). II. The effect of de-afferentation. Journal of Experimental Biology, 1946, 23, 162–176.Google Scholar
  94. Lockard, D. E., Traher, L. M., and Wetzel, M. C. Reinforcement influences upon topography of treadmill locomotion by cats. Physiology and Behavior, 1976, 16, 141–146.CrossRefGoogle Scholar
  95. Loeb, G. E., and Duysens, J. The unit activity of primary and secondary afferents from cat hindlimb muscle spindles during normal walking. Society for Neuroscience Abstracts, 1978, 4, p. 300.Google Scholar
  96. Loeb, G. E., Bak, M. J., and Duysens, J. Long-term unit recording from somatosensory neurons in the spinal ganglia of the freely walking cat. Science, 1977, 197, 1192–1194.CrossRefGoogle Scholar
  97. Lundberg, A., and Phillips, G. G. T. Graham Brown’s film on locomotion in the decerebrate cat. Journal of Physiology (London), 1973, 231, 90–91P.Google Scholar
  98. Magnus, R. Die Körperstellung. Berlin: Springer, 1924.Google Scholar
  99. Manter, J. T. The dynamics of quadrupedal walking. Journal of Experimental Biology, 1938, 15, 522–540.Google Scholar
  100. Matthews, P. B. C. Mammalian Muscle Receptors and Their Central Actions. London: Edward Arnold, 1972.Google Scholar
  101. Miller, S., and Scott, P. D. The spinal locomotor generator. Experimental Brain Research, 1977, 30, 387–403.CrossRefGoogle Scholar
  102. Miller, S., and van der Meché, F. G. A. Coordinated stepping of all four limbs in the high spinal cat. Brain Research, 1976, 109, 395–398.CrossRefGoogle Scholar
  103. Miller, S., van der Burg, J., and van der Meché, F. G. A. Coordination of movements of the hindlimbs and forelimbs in different forms of locomotion in normal and decerebrate cats. Brain Research, 1975, 91, 217–237.CrossRefGoogle Scholar
  104. Murthy, K. S. K., Gildenberg, P. L., and Marchand, J. E. Descending long-spinal excitation of lumbar alpha and gamma motoneurons evoked by stretch of dorsal neck muscles. Brain Research, 1978, 140, 165–170.CrossRefGoogle Scholar
  105. Muybridge, E. Animals in Motion. New York: Dover, 1957. (Originally published, 1887.)Google Scholar
  106. MacMillan, D. L. A physiological analysis of walking in the American lobster (Homarus americanus). Philosophical Transactions of the Royal Society, Series B, 1975, 270, 1–59.CrossRefGoogle Scholar
  107. McCrea, D. A. Activity of spinal neurons during controlled locomotion. Doctoral dissertation. University of Manitoba, Canada, 1979.Google Scholar
  108. McElligott, J. G. Cerebellar neuronal firing patterns in the intact and unrestrained cat during walking. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  109. McFarland, D. J. Feedback Mechanisms in Animal Behaviour, New York: Academic Press, 1971.Google Scholar
  110. McGhee, R. B. Some finite state aspects of legged locomotion. Mathematical Biosciences, 1968, 2, 67–84.CrossRefGoogle Scholar
  111. McGhee, R. B. Robot locomotion. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  112. McGhee, R. B., and Frank, A. A. On the stability properties of quadruped creeping gaits. Mathematical Biosciences, 1968, 3, 331–351.CrossRefGoogle Scholar
  113. McGhee, R. B., and Jain, A. K. Some properties of regularly realizable gait matrices. Mathematical Biosciences, 1972, 13, 179–183.CrossRefGoogle Scholar
  114. Nelson, R. C., Dillman, C. J., Lagasse, P., and Bickett, P. Biomechanics of overground versus treadmill running. Medicine and Science in Sports, 1972, 4, 233–240.CrossRefGoogle Scholar
  115. Norgren, K. S., Seelhorst, Sr. E., and Wetzel, M. C. Kinematics of treadmill galloping by cats. I. Steady-state coordination under aversive control. Behavioral Biology, 1977, 21, 66–88.CrossRefGoogle Scholar
  116. Okada, M., Ishida, H., and Kimura, T. Biomechanical features of bipedal gait in human and nonhuman primates. In P. V. Komi (Ed.), Biomechanics V-A. Proceedings of the Fifth International Seminar on Biomechanics, Jyväkyla, Finland. Baltimore: University Park Press, 1975.Google Scholar
  117. Orlovsky, G. N. Spontaneous and induced locomotion of the thalamic cat. Biophysics, 1969, 14, 1154–1162.Google Scholar
  118. Orlovsky, G. N. Influence of the cerebellum on the reticulospinal neurones during locomotion. Biophysics, 1970, 15, 928–936.Google Scholar
  119. Orlovsky, G. N. Work of the Purkinje cells during locomotion. Biophysics, 1972, 17, 935–941.Google Scholar
  120. Orlovsky, G. N., and Shik, M. L. Standard elements of cyclic movement. Biophysics, 1965, 10, 935–944.Google Scholar
  121. Paillard, J., and Massion, J. Motor aspects of behaviour and programmed nervous activities. Brain Research, 1974, 71, Special Issue, 189–575.CrossRefGoogle Scholar
  122. Patterson, M. M. Mechanisms of classical conditioning and fixation in spinal mammals. In A. H. Riesen, and R. F. Thompson (Eds.), Advances in Psychobiology, Volume 3. New York: Wiley, 1976.Google Scholar
  123. Pearson, K. G., and Duysens, J. Function of segmental reflexes In the control of stepping in cockroaches and cats. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  124. Pearson, K. G., and Iles, J. F. Nervous mechanisms underlying intersegmental co-ordination of leg movements during walking in the cockroach. Journal of Experimental Biology, 1973, 58, 725–744.Google Scholar
  125. Pedotti, A. A study of motor coordination and neuromuscular activities in human locomotion. Biological Cybernetics, 1977, 26, 53–62.CrossRefGoogle Scholar
  126. Penfield, W., and Roberts, L. Speech and Brain-Mechanisms. Princeton: Princeton University Press, 1959.Google Scholar
  127. Perret, C. Neural control of locomotion in the decorticate cat. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  128. Perret, C., and Cabelguen, J.-M. Central and reflex participation in the timing of locomotor activations of a bifunctional muscle, the semi-tendinosus, in the cat. Brain Research, 1976, 106, 390–395.CrossRefGoogle Scholar
  129. Philippson, M. L’autonomie et la centralisation dans le système nerveux des animaux. Travaux du Laboratoire de Physiologie de l’Institut Solvay (Bruxelles), 1905, 7, 1–208.Google Scholar
  130. Porter, R. Functions of the mammalian cerebral cortex in movement. Progress in Neurobiology, 1973, 1, 1–51.CrossRefGoogle Scholar
  131. Prochazka, A., Westerman, R. A., and Ziccone, S. P. Ia afferent activity during a variety of voluntary movements in the cat. Journal of Physiology (London), 1977, 268, 423–448.Google Scholar
  132. Ramóny Cajal, S. Histologie du Système Nerveux de L’Homme et des Vertébrés. Tome II. Paris: Maloine, 1911.Google Scholar
  133. Rasmussen, S., Chan, A. K., and Goslow, G. E., Jr. The cat step cycle: Electromyographic patterns for hindlimb muscles during posture and unrestrained locomotion. Journal of Morphology, 1978, 155, 253–269.CrossRefGoogle Scholar
  134. Roaf, H. E., and Sherrington, C. S. Further remarks on the mammalian spinal preparation. Quarterly Journal of Experimental Physiology, 1910, 3, 209–211.Google Scholar
  135. Roberts, T. D. M. The role of vestibular and neck receptors in locomotion. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  136. Roeder, K. D. The control of tonus and locomotor activity in the praying mantis (Mantis religiosa L.). Journal of Experimental Zoology, 1937, 76, 353–374.CrossRefGoogle Scholar
  137. Root, T. M., and Bowerman, R. F. Intra-appendage movements during walking in the scorpion Hadrurus Arizonensis. Comparative Biochemistry and Physiology, 1978, 59A, 49–56.CrossRefGoogle Scholar
  138. Rossignol, S. The control of crossed extensor and crossed flexor responses. Society for Neuroscience Abstracts, 1977, 3, p. 277.Google Scholar
  139. Rossignol, S., and Gauthier, L. Patterns of contralateral limb responses to nociceptive stimuli during locomotion. Society for Neuroscience Abstracts, 1978, 4, p. 304.Google Scholar
  140. Ruch, T. C., and Watts, J. W. Reciprocal changes to reflex activity of the forelimbs induced by post-brachial “cold-block” of the spinal cord. Journal of Physiology (London), 1934, 110, 362–375.Google Scholar
  141. Ryall, R. W. Renshaw cell mediated inhibition of Renshaw cells: Patterns of excitation and inhibition from impulses in motor axon collaterals. Journal of Neurophysiology, 1970, 33, 257–270.Google Scholar
  142. Schomburg, E. D., Roesler, J., and Meinck, H.-M. Phase-dependent transmission in the excitatory propriospinal reflex pathway from forelimb afferents to lumbar motoneurones during fictive locomotion. Neuroscience Letters, 1977, 4, 249–252.CrossRefGoogle Scholar
  143. Severin, F. V. The role of the gamma motor system in the activation of the extensor alpha motor neurones during controlled locomotion. Biophysics, 1970, 15, 1138–1145.Google Scholar
  144. Severin, F. V., Shik, M. L., and Orlovsky, G. N. Work of the muscles and single motor neurones during controlled locomotion. Biophysics, 1967, 12, 762–772.Google Scholar
  145. Severin, F. V., Orlovsky, G. N., and Shik, M. L. Reciprocal influences on work of single motoneurons during controlled locomotion. Bulletin of Experimental Biology and Medicine, 1968, 66, 713–716.CrossRefGoogle Scholar
  146. Shannon, C. E. The mathematical theory of communication. Bell System Technical Journal, 1948, 27, 379–423Google Scholar
  147. Shannon, C. E. The mathematical theory of communication. Bell System Technical Journal, 1948, 27, 623–656.Google Scholar
  148. Sherrington, C. S. Decerebrate rigidity and the reflex co-ordination of movements. Journal of Physiology (London), 1898, 22, 319–322.Google Scholar
  149. Sherrington, C. The Integrative Action of the Nervous System. Cambridge: University Press, 1906.Google Scholar
  150. Sherrington, C. S. Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. Journal of Physiology (London), 1910, 40, 28–121.Google Scholar
  151. Shik, M. L., and Orlovsky, G. N. Neurophysiology of locomotor automatism. Physiological Reviews, 1976, 56, 465–501.Google Scholar
  152. Shik, M. L., Severin, F. V., and Orlovsky, G. N. Control of walking and running by means of electrical stimulation of the mid-brain. Biophysics, 1966, 11, 756–765.Google Scholar
  153. Sidman, M. Tactics of Scientific Research. New York: Basic Books, 1960.Google Scholar
  154. Sirota, M. G., Sirota, T. I., and Shik, M. L. Circulation during controlled locomotion in the mesencephalic cat. Bulletin of Experimental Biology and Medicine, 1971, 21, 95–98.CrossRefGoogle Scholar
  155. Skinner, B. F. The Behavior of Organisms. An Experimental Analysis. New York: Appleton-Century-Crofts, 1938.Google Scholar
  156. Skinner, B. F. Science and Human Behavior. New York: Macmillan, 1953.Google Scholar
  157. Skinner, B. F. Verbal Behavior. Englewood Cliffs, N.J.: Prentice-Hall, 1957.CrossRefGoogle Scholar
  158. Skinner, B. F. Contingencies of Reinforcement. Englewood Cliffs, N.J.: Prentice-Hall, 1969.Google Scholar
  159. Skinner, B. F. About Behaviorism. New York: Alfred A. Knopf, 1974.Google Scholar
  160. Stein, P. S. G. Mechanisms of interlimb phase control. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  161. Stein, P. S. G. A comparative approach to the neural control of locomotion. In G. Hoyle (Ed.), Identified Neurons and Behavior of Arthropods. New York: Plenum Press, 1977.Google Scholar
  162. Stein, P. S. G. Motor systems, with specific reference to the control of locomotion. Annual Review of Neuroscience, 1978, 1, 61–81.CrossRefGoogle Scholar
  163. Stuart, D. G., Withey, T. P., Wetzel, M. C., and Goslow, Jr. G. E. Time constraints for interlimb co-ordination in the cat during unrestrained locomotion. In R. B. Stein, K. G. Pearson, R. S. Smith, and J. B. Redford (Eds.), Control of Posture and Locomotion. New York: Plenum Press, 1973.Google Scholar
  164. Sukhanov, V. B. General System of Symmetrical Locomotion of Terrestrial Vertebrates and Some Features of Movement of Lower Tetrapods. New Delhi: Amerind, 1974.Google Scholar
  165. Sun, S.-S. A theoretical study of gaits for legged locomotion systems. Doctoral dissertation. Ohio State University, 1974.Google Scholar
  166. Székely, G., and Cźeh, G. Organization of locomotion. In R. Llinás and W. Precht (Eds.), Frog Neurobiology. Berlin: Springer-Verlag, 1976.Google Scholar
  167. Taub, E. Motor behavior following deafferentation in the developing and motorically mature monkey. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  168. Taylor, C. R. Energy cost of locomotion. In J. Bous, K. Schmidt-Nielsen, and S. H. P. Maddrell (Eds.), Comparative Physiology. Amsterdam: North-Holland, 1973.Google Scholar
  169. ten Cate, J. Quelques remarques à propos de l’innervation des mouvements locomotaires de la blatte (Periplaneta americana). Archives Néerlandaises de Physiologie, 1941, 25, 401–409.Google Scholar
  170. Terzuolo, C., and Terzian, H. Cerebellar increase of postural tonus after de-afferentation and labyrinthectomy. Journal of Neurophysiology, 1953, 16, 551–561.Google Scholar
  171. Tokuriki, M. Electromyographic and joint-mechanical studies in quadrupedal locomotion. III. Gallop. Japanese Journal of Veterinary Science, 1974, 36, 121–132.CrossRefGoogle Scholar
  172. Tokuriki, M. Function of the trunk epaxial muscles in the dog’s locomotion (walk and trot). Japanese Journal of Electroencephalography and Electromyography, 1976, 4, 109p. (In Japanese.)Google Scholar
  173. Tokuriki, M. Function of neck epaxial muscles in dog’s locomotion (walk and trot). Japanese Journal of Electroencephalography and Electromyography, 1977, 5, 53p. (In Japanese.)Google Scholar
  174. Tosney, T., and Hoyle, G. Automatic entrainment for a cellular learning study. Society for Neuroscience Abstracts, 1973, p. 238.Google Scholar
  175. Twitmyer, E. B. A Study of the Knee-jerk. Philadelphia: Winston, 1902.Google Scholar
  176. Udo, M., Oda, Y., Tanaka, K., and Horikawa, J. Cerebellar control of locomotion investigated in cats: discharges from Deiters’ neurones, EMG and limb movements during local cooling of the cerebellar cortex. In S. Homma (Ed.), Progress in Brain Research, vol. 44: Understanding the Stretch Reflex. New York: Elsevier/North-Holland Biomedical press, 1976.Google Scholar
  177. Udo, M., Matsukawa, K., and Kamei, H. Effects of partial cooling of cerebellar cortex at lobules V and IV of the intermediate part in the decerebrate walking cats under monitoring vertical floor reactions. Brain Research, 1979, 160, 559–564.CrossRefGoogle Scholar
  178. Viala, D., and Vidal, C. Evidence for distinct spinal locomotion generators supplying respectively fore- and hindlimbs in the rabbit. Brain Research, 1978, 155, 182–186.CrossRefGoogle Scholar
  179. Vukobratović, M., Frank, A. A., and Juričić, D. On the stability of biped locomotion. IEEE Transactions on Biomedical Engineering, 1970, BME-17, 23–35.Google Scholar
  180. Vukobratović, M., Ciric, V., Hristic, D., and Stepanenko, J. Contribution to the study of anthropomorphic robots. Proceedings of the IFAC V World Congress, Paris, 1972, paper 18.1.Google Scholar
  181. Watt, D. G. D. Responses of cats to sudden falls: An otolith-originating reflex assisting landing. Journal of Neurophysiology, 1976, 39, 257–265.Google Scholar
  182. Watt, D. G. D., and Wetzel, M. C. Linear head movements of walking and trotting cats. Society for Neuroscience Abstracts, 1977, 3, p. 280.Google Scholar
  183. Weiss, P. Self-differentiation of the basic patterns of coordination. Comparative Psychological Monographs, 1941, 17, 1–96.Google Scholar
  184. Wentink, G. H. The action of the hind limb musculature of the dog in walking. Acta Anatomica, 1976, 96, 70–80.CrossRefGoogle Scholar
  185. Wetzel, M. C., and Stuart, D. G. Ensemble characteristics of cat locomotion and its neural control. Progress in Neurobiology, 1976, 7, 1–98.CrossRefGoogle Scholar
  186. Wetzel, M. C., Atwater, A. E., Wait, J. V., and Stuart, D. G. Neural implications of different profiles between treadmill and overground timings in cats. Journal of Neurophysiology, 1975, 38, 492–501.Google Scholar
  187. Wetzel, M. C., Atwater, A. E., and Stuart, D. G. Movements of the hindlimb during locomotion of the cat. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  188. Wetzel, M. C., Atwater, A. E., Wait, J. V., and Stuart, D. G. Kinematics of locomotion by cats with a single hindlimb deafferented. Journal of Neurophysiology, 1976, 39, 667–678.Google Scholar
  189. Wetzel, M. C., Anderson, R. C., Brady, T. H., Jr., and Norgren, K. S. Kinematics of treadmill galloping by cats. III. Coordination during gait conversions and implications for neural control. Behavioral Biology, 1977, 21, 107–127.CrossRefGoogle Scholar
  190. Wiener, N. Cybernetics. New York: Wiley, 1948.Google Scholar
  191. Wilson, D. M. Genetic and sensory mechanisms for locomotion and orientation in animals. American Scientist, 1972, 60, 358–365.Google Scholar
  192. Zajac, F. E., and Young, J. L. Discharge patterns of motor units during cat locomotion and their relation to muscle performance. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.Google Scholar
  193. Ziwet, A., and Field, P. Introduction to Analytical Mechanics. New York: Macmillan, 1912.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Mary C. Wetzel
    • 1
  • Leon G. Howell
    • 1
  1. 1.Department of PsychologyUniversity of ArizonaTucsonUSA

Personalised recommendations