Skip to main content

Part of the book series: Basic Life Sciences ((BLSC,volume 14))

Abstract

For the purposes of this article, osmoregulation will be defined as the maintenance of approximately constant cell volume and turgor pressure in the face of changing water potential. Microorganisms must accomodate the entire range of environmental water potential whereas the range is narrowed for the cells of healthy higher plants and animals by regulatory systems associated with their more complex anatomy and physiology. For this reason, cellular responses to extreme environmental conditions are best seen in microorganisms and, indeed, microorganisms are the only inhabitants of certain types of extreme environments such as hypersaline lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anand, J. C. and Brown, A. D., 1968, Growth rate patterns of the so-called osmophilic and non-osmophilic yeasts in solutions of polyethylene glycol, J. Gen. Microbiol., 52: 205.

    CAS  Google Scholar 

  • Black, S., 1955, Potassium-activated yeast aldehyde dehydrogenase, in: “Methods in Enzymology,” Vol. 1, S. P. Colowick and N. O. Kaplan, eds., p. 508, Academic Press, New York.

    Chapter  Google Scholar 

  • Brown, A. D., 1974, Microbial water relations; features of the intracellular composition of sugar-tolerant yeasts, J. Bacteriol., 118: 769.

    PubMed  CAS  Google Scholar 

  • Brown, A. D., 1975, Microbial water relations. Effects of solute concentration on the respiratory activity of sugar-tolerant and non-tolerant yeasts, J. Gen. Microbiol., 86: 241.

    PubMed  CAS  Google Scholar 

  • Brown, A. D., 1978, Compatible solutes and extreme water stress in eukaryotic micro-organisms, Adv. Microbial Physiol., 17: 181.

    Article  CAS  Google Scholar 

  • Brown, A. D. and Borowitzka, L. J., 1979, Halotolerance of Dunaliella, in: “Biochemistry and Physiology of Protozoa,” Vol. 1, 2nd Ed., M. Levandowski and S. H. Hunter, eds., p. 139, Academic Press, New York.

    Google Scholar 

  • Brown, A. D. and Simpson, J. R., 1972, Water relations of sugar- tolerant yeasts: the role of intracellular polyols, J. Gen. Microbiol., 72: 589.

    PubMed  CAS  Google Scholar 

  • Buss, W. C. and Stalter, K., 1978, Stimulation of eukaryotic transcription by glycerol and polyhydroxylic compounds, Biochem., 17: 4825.

    Article  CAS  Google Scholar 

  • Cram, J., 1976, Negative feedback regulation of transport in cells. The maintenance of turgor, volume and nutrient supply, in: “Encyclopedia of Plant Physiology,” New Series, Vol. 2, Part A, U. Luttge and M. G. Pitman, eds., Springer-Verlag, Berlin.

    Google Scholar 

  • Gancedo, C., Gancedo, J. M., and Sols, A., 1968, Glycerol metabolism in yeasts - pathways of utilization and production, Europ. J. Biochem., 5: 165.

    CAS  Google Scholar 

  • Gustaffson, L., 1979, The ATP pool in relation to the production of glycerol and heat during growth of the halotolerant yeast, Debaryomyces hansenü, Arch. Microbiol., 120: 15.

    Google Scholar 

  • Gustaffson, L. and Norkrans, B., 1976, On the mechanism of salt tolerance. Production of glycerol and heat during growth of Debaryomyces hansenü, Arch. Microbiol., 110: 17.

    Google Scholar 

  • Hunter, K. and Rose, A. H., 1979, Yeast lipids and membranes, in: “The Yeasts,” Vol., 2, A. H. Rose and J. S. Harrison, eds., p. 211, Academic Press, New York.

    Google Scholar 

  • Myers, J. S. and Jakoby, W. B., 1975, Glycerol as an agent eliciting small conformational charges in alcohol dehydrogenase, J. Biol. Chem., 250: 3785.

    PubMed  CAS  Google Scholar 

  • Walker, B. L. and Kummerow, F. A., 1964, Erythrocyte fatty acid composition and apparent permeability to non-electrolytes, Proc. Soc. Exptl. Biol. Med., 115: 1099.

    CAS  Google Scholar 

  • Zimmermann, U., 1978, Physics of turgor and osmoregulation, Ann. Rev. Plant Physiol., 29: 121.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Brown, A.D., Edgley, M. (1980). Osmoregulation in Yeast. In: Rains, D.W., Valentine, R.C., Hollaender, A. (eds) Genetic Engineering of Osmoregulation. Basic Life Sciences, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3725-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3725-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3727-0

  • Online ISBN: 978-1-4684-3725-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics