Skip to main content

Electro-Optical Changes in Biopolymers — Chemical and Rotational Contributions

  • Chapter
Electro-Optics and Dielectrics of Macromolecules and Colloids

Abstract

In a short digression on fundamental principles of electrical-chemical coupling, the analysis of electrically induced optical changes in chemical systems is described. The discussion centers on the optical indication not only of rotational changes in electro-optically anisotropic systems, but also of chemical-conformational transitions in dipolar and ionic equilibria of macromolecules. Some experimentally particular useful criteria are suggested in order to differentiate between chemical and physical contributions to electro-optical signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neumann E, in “Topics of Bioelectrochemistry and Bioenergetics” (ed. Milazzo G), Vol. 4, John Wiley, New York (1979), in press.

    Google Scholar 

  2. DeMaeyer L C M and Persoons A, in “Techniques of Chemistry”, 6(2) (1973) 211–235.

    Google Scholar 

  3. DeMaeyer L C M, Methods Enzymol. 16, (1969) 80–118.

    Article  CAS  Google Scholar 

  4. O’Konski C T and Haltner A J, J. Am. Chem. Soc. 19, (1957) 5634–5649.

    Article  Google Scholar 

  5. Fredericq E and Houssier C, “Electric Dichroism and Electric Birefringence”, Oxford University Press, London (1973).

    Google Scholar 

  6. Tricot M and Houssier C, in “Polyelectrolytes” (eds. K C Frisch, D. Klempner and A V Patsis) Technomic, Westport (1976) 43–90.

    Google Scholar 

  7. O’Konski C T and Stellwagen N C, Biophys. J., 5, (1965) 607–613.

    Article  Google Scholar 

  8. Schwarz G and Seelig J, Biopolymers, 6, (1968) 1263–1277.

    Article  CAS  Google Scholar 

  9. Neumann E and Katchalsky A, Proc. 1st Eur. Biophys. Congr. (Austria) 6, (1971) 91–95.

    CAS  Google Scholar 

  10. Neumann E and Katchalsky A, Proc. Natl. Acad. Sci. USA, 69, (1972) 993–997.

    Article  CAS  Google Scholar 

  11. Kikuchi K and Yoshioka K, Biopolymers, 12 (1973) 2667–2679.

    Article  CAS  Google Scholar 

  12. Kikuchi K and Yoshioka K, Biopolymers, 15 (1976) 583–587.

    Article  CAS  Google Scholar 

  13. Yasunaga T, Sano T, Takahashi K, Takenaka H and Ito S, Chem. Lett. (Jap.) (1973) 405–408.

    Google Scholar 

  14. Revzin A and Neumann E, Biophys. Chem. 2, (1974) 144–150.

    Article  CAS  Google Scholar 

  15. Pörschke D, Nucleic Acid Res., 1, (1974) 1601–1618.

    Article  Google Scholar 

  16. Pörschke D, Biopolymers, 15, (1976) 1917–1928.

    Article  Google Scholar 

  17. Pörschke D, Biophys. Chem. 4, (1976) 383–394.

    Article  Google Scholar 

  18. Schwarz G, J. Phys. Chem., 71, (1967) 4021–4030.

    Article  CAS  Google Scholar 

  19. Böttcher C J F, Van Belle O C, Bordewijk P and Rip A, “Theory of electric polarization”, Vol. Elsevier, Amsterdam, (1973).

    Google Scholar 

  20. Eigen U and Schwarz G, in “Electrolytes” (ed. B. Pesce ), Pergamon Press, Oxford (1962) 309–335.

    Google Scholar 

  21. Ding D-W, Rill R and Van Holde K E, Biopolymers 11, (1972) 2109–2124.

    Article  CAS  Google Scholar 

  22. Onsager L, J. Chem. Phys. 2, (1934) 599–615.

    Article  CAS  Google Scholar 

  23. Manning G S, Biophys. Chem., 9 (1977) 189–192.

    Article  Google Scholar 

  24. Neumann E and Rosenheck K, J. Membrane Biol., 10, (1972) 279–290.

    Article  CAS  Google Scholar 

  25. Dourlent M, Hogrel J F and Helene C, J. Amer. Chem. Soc., 96, (1974) 3398–3406.

    Article  CAS  Google Scholar 

  26. Yapel A F and Lumry R, Methods of Biochem. Analysis, 20, (1971) 169–350.

    CAS  Google Scholar 

  27. Eigen M and DeMaeyer L C M, in “Techniques of Organic Chemistry”, Vol. 8(2), Wiley, New York (1963) 895–1054.

    Google Scholar 

  28. Eigen M and DeMaeyer L, in “Techniques of Chemistry”, Vol. 6(2), Wiley, New York (1973) 63–146,

    Google Scholar 

  29. Jovin T M, in “Biochemical Fluorescence: Concepts”, Marcel Dekker, New York, (1976) 305–374.

    Google Scholar 

  30. Benoit H, Ann. Phys., 6, (1951) 561–609.

    CAS  Google Scholar 

  31. Nishinari K and Yoshioka K, Kolloid Z. u. Z. Polymere, 240, (1970) 831–836.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Neumann, E. (1979). Electro-Optical Changes in Biopolymers — Chemical and Rotational Contributions. In: Jennings, B.R. (eds) Electro-Optics and Dielectrics of Macromolecules and Colloids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3497-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3497-2_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3499-6

  • Online ISBN: 978-1-4684-3497-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics