Skip to main content
Log in

The rise process of the electric birefringence of poly-γ-benzyl-l-glutamate at high fields

  • Originalarbeiten
  • Polymere
  • Published:
Kolloid-Zeitschrift und Zeitschrift für Polymere Aims and scope Submit manuscript

Summary

The rise process, steady-state and decay process of the birefringence of poly-γ-benzyl-l-glutamate solutions under the action of a rectangular pulse have been studied at 25 °C over a wide range of field strength of 1.5×103 to 3×104V/cm. The solvent used was a dichloroethane-dimethylformamide mixture of the volume ratio 99∶1. From the decay process the average relaxation time extrapolated to zero concentration and the corresponding rotational diffusion constant were determined. The apparent dipole moment and the optical anisotropy factor were obtained from the field strength dependence of steady-state birefringence. The rise process was analyzed according to our theory which holds for arbitrary high field strength in the initial stage. The Δn(t)/t versus t curves for various field strengths were found to be linear in the initial stage and pass through the origin. Thus, it was concluded that the electrical orientation of poly-γ-benzyl-l-glutamate in solution is due primarily to the permanent dipole moment. Furthermore, the value of the apparent permanent dipole moment obtained from the rise process was compared with that obtained from the steadystate birefringence.

Zusammenfassung

Der Einschaltvorgang, der stationäre Zustand und das Abklingen der Doppelbrechung bei Poly-γ-benzyl-l-glutamat-Lösungen mit einem elektrischen Impuls von rechteckiger Form werden bei 25 °C über einem großen Feldstärkebereich von 1.5×103–3×104V/cm untersucht. Als Lösungsmittel wird die Dichloräthan/Dimethylformamid-Mischung im Volumenverhältnis 99∶1 verwendet. Aus dem Abklingvorgang werden die zur Konzentration 0 extrapolierte mittlere Relaxationszeit und die entsprechende Rotationsdiffusionskonstante bestimmt. Das scheinbare permanente Dipolmoment und der optische Anisotropiefaktor werden aus der Feldstärkeabhängigkeit der stationären Doppelbrechung ermittelt. Der Einschaltvorgang wird nach unserer Theorie, die für beliebige hohe Feldstärken im Anfangsverlauf gültig ist, analysiert. Die Δn(t)/t gegen t-Kurven für verschiedene Feldstärken sind geradlinig im Anfangsverlauf und laufen durch den Ursprung. Hieraus zeigt sich, daß die elektrische Orientierung von Poly-γ-benzyl-l-glutamat in Lösungen hauptsächlich durch das permanente Dipolmoment bedingt ist. Überdies wird der aus dem Einschaltvorgang gewonnene Wert des scheinbaren permanenten Dipolmomentes mit dem aus der stationären Doppelbrechung ermittelten Wert verglichen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a review, seeK. Yoshioka, H. Watanabe, in: Physical Principles and Techniques of Protein Chemistry, Part A,S. J. Leach, Ed. p. 335 (New York, N. Y. 1969).

  2. Benoit, H., Ann. Phys.6, 561 (1951).

    Google Scholar 

  3. Tinoco, I., Jr., J. Amer. Chem. Soc.77, 4486 (1955).

    Article  Google Scholar 

  4. O'Konski, C. T., K. Yoshioka, W. H. Orttung, J. Phys. Chem.63, 1558 (1959).

    Article  Google Scholar 

  5. Schwarz, G., Z. Physik145, 563 (1956).

    Article  Google Scholar 

  6. Nishinari, K., K. Yoshioka, Kolloid-Z. u. Z. Polymere235, 1189 (1969).

    Article  Google Scholar 

  7. Matsumoto, M., H. Watanabe, K. Yoshioka, J. Phys. Chem.74, 2182 (1970)

    Article  Google Scholar 

  8. Doty, P., J. H. Bradbury, A. M. Holtzer, J. Amer. Chem. Soc.78, 947 (1956).

    Article  Google Scholar 

  9. Tinoco, I., Jr., J. Amer. Chem. Soc.79, 4336 (1957).

    Article  Google Scholar 

  10. Boeckel, G., J.-C. Genzling, G. Weill, H. Benoit, J. Chim. Phys.59, 999 (1962).

    Google Scholar 

  11. Tsvetkov, V. N., Yu. V. Mitin, V. R. Glushenkova, A. E. Grishchenko, N. N. Boitsova, S. Ya. Lubina, Vysokomolekul. Soedin.5, 453 (1963).

    Google Scholar 

  12. Tsvetkov, V. N., I. N. Shtennikova, E. I. Ryumtsev, V. S. Skazka, Vysokomolekul. Soedin.7, 1111 (1965).

    Google Scholar 

  13. Tseetkov, V. N., I. N. Shtennikova, E. I. Ryumtsev, G. F. Pirogova, Vysokomolekul. Soedin.9A, 1575, 1583 (1967).

    Google Scholar 

  14. Tsvetkov, V. N., I. N. Shtennikova, V. S. Skazka, E. I. Ryumtsev, J. Polymer Sci. C16, 3205 (1968).

    Google Scholar 

  15. Yamaoka, K., Ph. D. Thesis, University of California (Berkeley, 1964).

  16. Watanabe, H., Nippon Kagaku Zasshi85, 403, 468, 603 (1964);86, 179 (1965).

    Google Scholar 

  17. Watanabe, H., K. Yoshioka, A. Wada, Biopolymers2, 91 (1964).

    Article  Google Scholar 

  18. Watanabe, H., K. Yoshioka, Biopolymers4, 43 (1966).

    Article  Google Scholar 

  19. Matsumoto, M., H. Watanabe, K. Yoshioka, Biopolymers6, 929 (1968).

    Article  PubMed  Google Scholar 

  20. Marchal, E., C. Hornick, H. Benoit, J. Chim. Phys.64, 514 (1967).

    Google Scholar 

  21. Powers, J. C., Jr., J. Amer. Chem. Soc.88, 3679 (1966);89, 1780 (1967).

    Article  Google Scholar 

  22. Powers, J. C., Jr., W. L. Peticolas, in: Ordered Fluids and Liquid Crystals, p. 217 (Washington, D. C. 1967).

  23. Powers, J. C., Jr., W. L. Peticolas, Biopolymers9, 195 (1970).

    Article  Google Scholar 

  24. Mukohata, Y., S. Ikeda, T. Isemura, J. Mol. Biol.5, 570 (1962).

    Google Scholar 

  25. Mukohata, Y., J. Mol. Biol.7, 442 (1963).

    Google Scholar 

  26. Spach, G., Compt. Rend.249, 667 (1959).

    Google Scholar 

  27. Tinoco, I., Jr., J. Amer. Chem. Soc.79, 4248 (1957);81, 1540 (1959).

    Article  Google Scholar 

  28. Wallach, M. L., H. Benoit, J. Polymer Sci.57, 41 (1962).

    Article  Google Scholar 

  29. Jennings, B. R., H. G. Jerrard, J. Phys. Chem.69, 2817 (1965).

    Google Scholar 

  30. Blout, E. R., R. H. Karlson, J. Amer. Chem. Soc.78, 941 (1956).

    Article  Google Scholar 

  31. Ikeda, K., H. Watanabe, M. Shirai, K. Yoshioka, Sci. Pap. Coll. Gen. Educ., Univ. Tokyo15, 139 (1965).

    Google Scholar 

  32. Yoshioka, K., H. Watanabe, Nippon Kagaku Zasshi84, 626 (1963).

    Google Scholar 

  33. Broersma, S., J. Chem. Phys.32, 1626 (1960).

    Article  Google Scholar 

  34. Luzzati, V., M. Cesari, G. Spach, F. Masson, J. M. Vincent, J. Mol. Biol.3, 566 (1961).

    PubMed  Google Scholar 

  35. De Loźe, C., P. Saludjian, A. J. Kovacs, Biopolymers2, 43 (1964).

    Article  Google Scholar 

  36. Yang, J. T., P. Doty, cited in ref. J. Amer. Chem. Soc.79, 4336 (1957).

    Article  Google Scholar 

  37. Wada, A., J. Chem. Phys.30, 328, 329 (1959); Bull. Chem. Soc. Japan33, 822 (1960).

    Article  Google Scholar 

  38. Matsumoto, M., H. Watanabe, K. Yoshioka, to be published.

  39. Matsumoto, M., H. Watanabe, K. Yoshioka, Biopolymers9, in press (1970).

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 7 figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishinari, K., Yoshioka, K. The rise process of the electric birefringence of poly-γ-benzyl-l-glutamate at high fields. Kolloid-Z.u.Z.Polymere 240, 831–836 (1970). https://doi.org/10.1007/BF02160081

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02160081

Keywords

Navigation