Skip to main content

Initiation, Propagation and Arrest of Seizures

  • Chapter
Pathophysiology of Cerebral Energy Metabolism

Abstract

Ideally, the best model to study the mechanisms of seizures is man himself. However, other than EEG recordings, depth electrode studies and occasional biopsies of epileptogenic foci this is difficult to do. This is the case because detailed analysis of the basic neurophysiological and biochemical mechanisms of seizures involves work on the brain itself and sometimes removal of brain samples and this is not possible to do in humans. Consequently, experimental models of epilepsy must be used instead. The relevance of such studies is clearly related to the degree to which the experimental models approximate the disease in humans. The ideal model for studying the basic mechanisms of seizures is one that closely approximates human epilepsy and yet is readily available, inexpensive and easy to work with. No model at present meets all these criteria, but all models are potentially useful for studying at least one aspect of the mechanisms of seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aird, R.D., and Woodbury, D.M. (1974): The Management of Epilepsy. Charles C. Thomas, Springfield, Ill.

    Google Scholar 

  2. Ajmone-Marsan, C. (1969): Acute effects of topical epileptogenic agents. In: Basic Mechanisms of the Epilepsies, edited by H.H. Jasper, A.A. Ward, Jr., and A. Pope. Little, Brown and Co., Boston, 299–319.

    Google Scholar 

  3. Altman, J., and Das, G.D. (1964): Autoradiographic examination of the effects of enriched environment on the rate of glial multiplication in the adult brain. Nature, 204: 1161–1163.

    Article  PubMed  CAS  Google Scholar 

  4. Ashcroft, G.W., Dow, R.C., Emson, P.C., Harris, P., Ingleby, J., Jospeh, M.H., and McQueen, J.K. (1974): A collaborative study of cobalt lesions in the rat as a model for epilepsy. In: Epilepsy. Proceedings of the Hans Berger Centenary Symposium, ed. P. Harris and C. Mawdsley, Churchill Livingstone, Edinburgh, 115–124

    Google Scholar 

  5. Ayala, G.F., Matsumoto, H., and Gumnit, R.J. (1970): Excitability changes and inhibitory mechanisms in neocortical neurons during seizures. J. Neurophysiol. 33: 73–85.

    PubMed  CAS  Google Scholar 

  6. Bourke, R.S. (1969): Evidence for mediated transport of chloride in cat cortex in vitro. Exp. Brain Res. 8:219–231.

    Google Scholar 

  7. Bourke, R.S., and Nelson, K.M. (1972): Further studies on the K+-dependent swelling of primate cerebral cortex in vivo: The enzymatic basis of the K+-dependent transport of chloride. J. Neurochem. 19:663–685.

    Article  PubMed  CAS  Google Scholar 

  8. Brizzee, K.R., Vogt, J. and Kharetchko, X. (1964): Postnatal changes in glia/neuron index with a comparison of methods of cell enumeration in white rat. Progr. Brain Res. 4: 136–149.

    Article  Google Scholar 

  9. Brown, W.J. (1973): Structural substrates of seizure foci in the human temporal lobe. In: Epilepsy: Its Phenomena in Man, edited by M.A.B. Brazier. Acad. Press, New York.

    Google Scholar 

  10. Cendella, R.J. and Craig, C.R. (1973): Changes in cerebral cortical lipids in cobalt-induced epilepsy. J. Neurochem. 21: 743–748.

    Article  Google Scholar 

  11. DeRobertis, E., Rodriquez de Lores, Arnaiz, G., and Alberici, M. (1969): Ultrastructural neurochemistry. In: Basic Mechanisms of the Epilepsies, edited by H.H. Jasper, A.A. Ward, Jr., and A. Pope, 137–158. Little Brown and Co., Boston.

    Google Scholar 

  12. Diamond, M.C., Law, F., Rhodes, H., Lindner, B., Rosenzweig, M.R., Krech, D., and Bennett, E.L. (1966): Increases in cortical depth and glial numbers in rats subjected to enriched environment. J. Comp. Neurol. 128: 117–126.

    Article  PubMed  CAS  Google Scholar 

  13. Dichter, M.A., Herman, C.J. and Selzer, M. (1972): silent cells during interictal discharges and seizures in hippocampal penicillin foci. Evidence for the role of extracellular K+ in the transition from the interictal state to seizures. Brain Res. 48: 173–183.

    Article  PubMed  CAS  Google Scholar 

  14. Dow, R.C. (1965): Extrinsic regulatory mechanisms of seizure activity. Epilepsia 6: 122–140.

    Article  PubMed  CAS  Google Scholar 

  15. Dropp, J.J. and Sodetz, F.J. (1971): Autoradiographic study of neurons and neuroglia in autonomic ganglia of behaviorally stressed rats. Brain Res. 33: 419–430.

    Article  PubMed  CAS  Google Scholar 

  16. Escueta, A.V., and Appel, S.H. (1972): Brain synapses. An in vitro model for the study of seizures. Arch. Intern. Med. 129: 333–344.

    Article  PubMed  CAS  Google Scholar 

  17. Esplin, D.W., and Zablocka-Esplin, B. (1969): Mechanisms of action of convulsants. In: Basic Mechanisms of the Epilepsies, edited by H.H. Jasper, A.A. Ward, Jr., and A. Pope, Little, Brown and Co., Boston, 167–183.

    Google Scholar 

  18. Fertiziger, A.P., and Ranck, J.B. (1970): Potassium accumulation in interictal space during epileptiform seizures. Exp. Neurol. 26: 571–585.

    Google Scholar 

  19. Giacobini, E. (1962): A cytochemical study of the localization of carbonic anhydrase in the nervous system. J. Neurochem. 9: 169–177.

    Article  PubMed  CAS  Google Scholar 

  20. Gill, T.H., Young, O.M., and Tower, D.B. (1974): The uptake of 36Cl into astrocytes in tissue culture by potassium-dependent, saturable process. J. Neurochem. 23: 1011–1018.

    Article  PubMed  CAS  Google Scholar 

  21. Glötzner, F.L. (1973): Membrane properties of neuroglia in epileptogenic gliosis. Brain Res., 55: 159–171.

    Article  PubMed  Google Scholar 

  22. Goddard, G.V. (1967): Development of epileptic seizures through brain stimulation at low intensity. Nature 214: 1020–1021.

    Article  PubMed  CAS  Google Scholar 

  23. Goddard, G.V., McIntyre, D.C., and Leech, C.K. (1969): A permanent change in brain function resulting from daily electrical stimulation. Exp. Neurol. 25: 295–330.

    Article  PubMed  CAS  Google Scholar 

  24. Goldensohn, E. (1969): Discussion. Experimental seizure mechanisms. In: Basic Mechanisms of the Epilepsies, edited by H.H. Jasper, A.A. Ward, Jr., and A. Pope, Little, Brown and Co., Boston, 289–298.

    Google Scholar 

  25. Grafstein, B. (1956): Mechanism of spreading cortical depression. J. Neurophysiol. 19: 154–171.

    PubMed  CAS  Google Scholar 

  26. Gross, G.J., and Woodbury, D.M. (1972): Effects of pentylenetetrazol on ion transport in the isolated toad bladder. J. Pharmacol. Exp. Ther. 181: 257–272.

    PubMed  CAS  Google Scholar 

  27. Harris, A.B. (1972): Degeneration in experimental epileptic foci. Arch. Neurol. 26: 434–449.

    Article  PubMed  CAS  Google Scholar 

  28. Henn, F.A., and Hamberger, A. (1971): Glial function: uptake of trasmitter substances. Proc. Natl. Acad. Sci. U.S.A. 68: 2686–2690.

    Article  PubMed  CAS  Google Scholar 

  29. Henn, F.A., Haljamäe, H. and Hamberger, A. (1972): Glial cell function: active control of extracellular K+ concentration. Brain Res., 43: 437–443.

    Article  PubMed  CAS  Google Scholar 

  30. Henneman, E., Somjen, G., and Carpenter, D.O. (1965): Functional significance of cell size in spinal motoneurons. J. Neurophysiol. 28: 560–580.

    PubMed  CAS  Google Scholar 

  31. Hotson, J.R., Sypert, G.W., and Ward, A.A. Jr. (1973): Extracellular potassium concentration changes during propagated seizures. Exp. Neurol. 38: 20–26.

    Article  PubMed  CAS  Google Scholar 

  32. Hutton, J.R., Frost, J.D., and Foster, J. (1972): The influence of the cerebellum in cat penicillin epilepsy. Epilepsia, 13: 401–408.

    Article  PubMed  CAS  Google Scholar 

  33. Jasper, H.H. (1969): Mechanisms of propagation: extracellular studies. In: Basic Mechanisms of the Epilepsies, edited by H.H. Jasper, A.A. Ward, Jr., and A. Pope, Little, Brown and Co., Boston, 421–438.

    Google Scholar 

  34. Jasper, H.H. (1972): Application of experimental models to human epilepsy. In: Experimental Models of Epilepsy, edited by D.P. Purpura, J.K. Penry, D.B. Tower, D.M. Woodbury, and R.D. Walter, 585–601. Raven Press, New York

    Google Scholar 

  35. Kemp, J.W., and Woodbury, D.M. (1975): The effect of Perchlorate and acetazolamide on brain excitability. Abstracts of Sixth International Congress of Pharmacology, Helsinki, Finland. 617.

    Google Scholar 

  36. Kimmeiberg, H.K., and Bourke, R.S. (1973): Properties and localization of bicarbonate-stimulated ATPase activity in rat brain. J. Neurochem. 20: 347–359.

    Article  Google Scholar 

  37. Kulenkampff, H. (1952): Das Verhalten der Neuroglia in den Vorderhörner des Rückenmarks der weissen Maus unter dem Reiz physiologischer Tätigkeit. Z. Anat. Entwicklungsgesch. 116: 304–312.

    Article  Google Scholar 

  38. Leao, A.A.P. (1944): Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 7:359–390.

    Google Scholar 

  39. Lorenzo, A.V., Hedley-Whyte, E.T., Eisenberg, H.M. and Hsu, D.W. (1975): Increased penetration of horseradish peroxidase across the blood-brain barrier induced by Metrazol seizures. Brain Res. 88: 136–140.

    Article  PubMed  CAS  Google Scholar 

  40. McQueen, J.K., and Woodbury, D.M.: Carbonic anhydrase activity and cyclic AMP levels during the development of cobalt-induced epilepsy in the rat. Submitted for publication.

    Google Scholar 

  41. Merlis, J. (1974): Neurophysiological aspects of epilepsy. In: Epilepsy. Proceedings of the Hans Berger Centenary Symposium, edited by P. Harris and C. Mawdsley, Churchill Livingstone, Edinburgh, 5–19.

    Google Scholar 

  42. Moody, W.J., Futamachi, K.J. and Prince, D.A. (1974): Extracellular potassium activity during epileptogenesis. Exp. Neurol. 42: 248–262.

    Article  PubMed  CAS  Google Scholar 

  43. Murray, M. (1968): Effects of dehydration on the rate of proliferation of hypothalamic neuroglia cells. Exp. Neurol. 20: 460–468.

    Article  PubMed  CAS  Google Scholar 

  44. Pope, A. (1969): Perspectives in neuropathology. In: Basic Mechanisms of the Epilepsies, edited by H.H. Jasper, A.A. Ward, Jr., and A. Pope, Little, Brown and Co., Boston, 773–781.

    Google Scholar 

  45. Prince, D.A., Lux, H.D., and Neher, E. (1973): Measurement of extracellular potassium activity in cat cortex. Brain Res. 50: 489–495.

    Article  PubMed  CAS  Google Scholar 

  46. Ransom, B. (1974): The behavior of presumed glial cells during seizure discharge in cat cerebral cortex. Brain Res. 69: 83–99.

    Article  PubMed  CAS  Google Scholar 

  47. Scheibel, M.E., and Scheibel, A.B. (1968): On the nature of dendritic spines-report of a workshop. Commun. Behav. Biol. 1: 231–265.

    Google Scholar 

  48. Schrier, B.K., and Thomson, E.J. (1974): On the role of glial cells in the mammalian nervous system. Uptake, excretion and metabolism of putative neurotransmitters by cultured glial tumor cells, J. Biol.Chem. 249:1769.

    PubMed  CAS  Google Scholar 

  49. Somjen, G.G. (1975): Electrophysiology of neuroglia. Annu. Rev. Physiol. 37: 163–190.

    Article  PubMed  CAS  Google Scholar 

  50. Spencer, W.A., and Kandel, E.R. (1969): Synaptic inhibition in seizures. In: Basic Mechanisms of the Epilepsies, edited by H.H. Jasper, A.A. Ward, Jr., and A. Pope, Little, Brown and Co., Boston, 575–603.

    Google Scholar 

  51. Van Gelder, N.M., and Courtois, A. (1972): Close correlation between changing content of specific amino acids in epileptogenic cortex of cats and severity of epilepsy. Brain Res. 43: 477–484.

    Article  PubMed  Google Scholar 

  52. Van Gelder, N.M., Sherwin, A.C. and Rasmussen, T. (1972): Amino acid content of epileptogenic human brain: focal versus surrounding regions. Brain Res. 40: 385–393.

    Article  PubMed  Google Scholar 

  53. Velasco, M., Velasco, F., Estrada-Villanueva, F., and Olivera, A. (1973): Alumina cream-induced focal motor epilepsy in cats. Part 1. Lesion size and temporal course. Epilepsia. 14: 3–14.

    Article  PubMed  CAS  Google Scholar 

  54. Velasco, M., Velasco, F., Lozoya, X., Feria, A. and Gonzales-Licea, A. (1973): Alumina cream-induced focal motor epilepsy in cats. Part 2. Thickness and cellularity of cerebral cortex adjacent to epileptogenic lesions. Epilepsia, 14: 15–27.

    Article  PubMed  CAS  Google Scholar 

  55. Vernadakis, A., Valcana, R., Curry J. J., Maletta G.J., Hudson D., and Timiras P.S. (1967): Alterations in growth of brain and other organs after electroshock in rats. Exp. Neurol. 17: 505–516.

    Article  PubMed  CAS  Google Scholar 

  56. Ward, A.A., Jr. (1969): The epileptic neuron: chronic foci in animals and man. In: Basic Mechanisms of the Epilepsies, edited by H.H. Jasper, A.A. Ward, Jr., and A. Pope, Little, Brown and Co. Boston, 263–288.

    Google Scholar 

  57. Ward, A.A. (1975): Theoretical basis for surgical therapy of epilepsy. In: Advances in Neurology, Vol. 8, edited by D.P. Purpura, J.K. Penry, and R.D. Walter. Raven Press, New York, 23–35.

    Google Scholar 

  58. Ward, J.R., and Call, L.S. (1949): Changes in blood chemistry in rats following electrically-induced seizures. Proc. Soc. Exp. Biol. Med. 70: 381–382.

    PubMed  CAS  Google Scholar 

  59. Westmoreland, B.F., Hanna, G.R. and Bass, N.H. (1972): Cortical alterations in zones of secondary epileptogenesis: a neurophysiology, morphologic and microchemical correlation study in the albino rat. Brain Res. 43: 485–599.

    Article  PubMed  CAS  Google Scholar 

  60. Westrum, L.E., White, L.E., and Ward, A.A., Jr. (1964): Morphology of the experimental epileptic focus. J. Neurosurg. 21: 1033–1046.

    Article  PubMed  CAS  Google Scholar 

  61. Wilder, B.J. (1972): Projection phenomena and secondary epileptogenesis mirror foci. In: Experimental Models of Epilepsy, edited by D.P. Purpura, J.K. Penry, D.B. Tower, D.M. Woodbury, and R.D. Walter, Raven Press, New York, 85–111.

    Google Scholar 

  62. Woodbury, D.M. (1978): Mechanisms of Action of Convulsants. In: Mechanisms of Action of Antiepileptic Drugs, edited by G. Glaser, D.M. Woodbury, and J.K. Penry, Raven Press, New York, in press.

    Google Scholar 

  63. Woodbury, D.M., and Esplin, D.W. (1959): Neuropharmacology and neurochemistry of anticonvulsant drugs. Proc. Assoc. Res. Nerv. Ment. Dis. 37: 24–56.

    CAS  Google Scholar 

  64. Woodbury, D.M., and Karler, R. (1960): Role of carbon dioxide in the nervous system. Anesthesiology, 21: 686–703.

    Article  PubMed  CAS  Google Scholar 

  65. Woodbury, D.M. and Kemp, J.W. (1977): Basic mechanisms of seizures: neurophysiological and biochemical etiology. In: Psychpathology and Brain Dysfunction, edited by C. Shagass, S. Gershon, and A.J. Friedhof, Raven Press, New York, 149–182.

    Google Scholar 

  66. Woodbury, D.M., Johanson, C.E., and Brondsted, H. (1974): Maturation of the blood-brain and blood-cerebrospinal fluid transport systems. In: Narcotics and the Hypothalamus, edited by E. Zimmerman and R. George, Raven Press, New York, 225–250.

    Google Scholar 

  67. Woodbury, D.M., Rollins, L.T., Gardner, M.D., Hirschi, W.C., Hogan, J.R., Rallison, M.L., Tanner, G.S., and Brodie, D.A. (1958): Effects of carbon dioxide on brain excitability and electrolytes. Am. J. Physiol. 192: 79–90.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Woodbury, D.M., Kemp, J.W. (1979). Initiation, Propagation and Arrest of Seizures. In: Mršulja, B.B., Rakić, L.M., Klatzo, I., Spatz, M. (eds) Pathophysiology of Cerebral Energy Metabolism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3348-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3348-7_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3350-0

  • Online ISBN: 978-1-4684-3348-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics