Skip to main content

Phytoalexins and the Specificity of Plant-Parasite Interaction

  • Chapter
Specificity in Plant Diseases

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 10))

Abstract

Phytoalexins are compounds which accumulate in plants following infection and various forms of stress. The term stress metabolites more accurately describes this diverse group of compounds since their accumulation after infection appears to be primarily a function of stress rather than of infection. Their relationship to stress, however, does not preclude their participation in mechanisms for disease resistance. Phytoalexins are produced by non-hosts as well as by resistant and susceptible cultivars of species. They accumulate in plants to concentrations that are inhibitory to the growth of infectious agents when tested in vitro. Phytoalexins have been characterized in the Leguminosae, Solanaceae, Malvaceae, Rosa-ceae, Convolvulaceae, Umbelliferae and Compositae. They have not been characterized in other families of major agronomic importance, e.g., Granrineae and Cucurbitacaceae. Since phytoalexins accumulate at and around sites of infection to levels inhibitory to the growth of infectious agents, their relationship to the containment of microbial development in plants cannot be ignored. Opinions differ as to the extent of their contribution in determining susceptibility or resistance.

Journal paper no. 75–11–140 of the Kentucky Agricultural Experiment Station, Lexington, Kentucky, U.S.A. The author’s research reported in this paper has been supported in part by a grant from the Herman Frasch Foundation and grant no. 316–15–51, P. L. 89–106 of the Cooperative States Research Service of the United States Department of Agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BAILEY, J. (1974). The relationship between symptom expression and phytoalexin concentration in hypocotyls of Phaseolus vulgaris infected with Colletotrichum lindemuthianum. Physiol. Pl. Path.; 4, 477–488.

    Article  CAS  Google Scholar 

  2. BAILEY, J. and BURDEN, R. (1973). Biochemical changes and phytoalexin accumulation in Phaseolus vulgaris following cellular browning caused by tobacco necrosis virus. Physiol. Pl. Path., 3, 171–177.

    Article  CAS  Google Scholar 

  3. BAILEY, J., BURDEN, R. and VINCENT, G. (1975). Capsidiol: An antifungal compound produced in Nicotiana tabacum and Nicotiana clevelandii following infection with tobacco necrosis virus. Phytochemistry, 14, 597.

    Article  CAS  Google Scholar 

  4. BAILEY, J. and DEVERALL, B. (1971). Formation and activity of phaseollin in the interaction between bean hypocotyls (Phaseolus vulgaris) and physiological races of Colletotrichum lindemuthianum. Physiol. Pl. Path., 1, 435–449.

    Article  CAS  Google Scholar 

  5. BIRNBAUM, G., STOESSL, A., GROVER, S. and STOTHERS, J. (1974). The complete stereostructure of capsidiol. X-ray analysis and C nuclear magnetic resonance of eremophilane derivatives having trans-vicinal methyl groups. Can. J. Chem., 52, 993–1005.

    Article  CAS  Google Scholar 

  6. BURDEN, R., BAILEY, J. and VINCENT, G. (1974). Metabolism of phaseollin by Colletotrichum lindemuthianum. Phyto-chemistry, 13, 1789–1791.

    CAS  Google Scholar 

  7. CHESTER, K. (1933). The problem of acquired physiological immunity in plants. Q. Rev. Biol., 8, 129–154, 275–324.

    Article  Google Scholar 

  8. CRUICKSHANK, I. (1963). Phytoalexins. A. Rev. Phytopath., 1, 351–374.

    Article  CAS  Google Scholar 

  9. CRUICKSHANK, I., BIGGS, D. and PERRIN, D. (1971). Phytoalexins as determinants of disease reaction in plants. J. Indian bot. Soc., 50A, 1–11.

    Google Scholar 

  10. CRUICKSHANK, I., BIGGS, D., PERRIN, D. and WHITTLE, C. (1974). Phaseollin and phaseollidin relationships in infection droplets on endocarp of Phaseolus vulgaris. Physiol. Pl. Path., 4, 261–276.

    Article  CAS  Google Scholar 

  11. CRUICKSHANK, I. and PERRIN, D. (1963). Studies on phytoalexins. VI. Pisatin: the effect of some factors on its formation in Pisum sativum L., and the significance of pisatin in disease resistance. Aust. J. biol. Sci., 16, 111–128.

    CAS  Google Scholar 

  12. CRUICKSHANK, I. and PERRIN, D. (1971). Studies on phytoalexins. XI. The induction, antimicrobial spectrum and chemical assay of phaseollin. Phytopath. Z., 70, 209–229.

    Article  CAS  Google Scholar 

  13. CURRIER, W. (1974). Characterization of the induction and suppression of terpenoid accumulation in the potato -Phytophthora infestans interaction. Ph.D. Thesis, Purdue University, 114 pp.

    Google Scholar 

  14. ELLISTON, J. (1975). A histological and biochemical study of local and systemic protection of Phaseolus vulgaris against Colletotrichum lindemuthianum as elicited by fungi. Ph.D. Thesis, Purdue University, 271 pp.

    Google Scholar 

  15. ELLISTON, J. and KUć, J. (1975). Metabolic control of the resistance of bean to Colletotrichum lindemuthianum. Kagaku to Scibutsu, 13, 522–525.

    Article  Google Scholar 

  16. ÉRSEK, T., BARNA, B. and KIRÁLY, Z. (1973). Hypersensitivity and the resistance of potato tuber tissues to Phytophthora infestans. Acta phytopath. Acad. Sci. hung., 8, 3–12.

    Google Scholar 

  17. GOODMAN, R. (1967). The protection of apple stem tissue a-gainst Erwinia amylovora infection by avirulent strains and three other bacterial species. Phytopathology, 57, 22–24.

    Google Scholar 

  18. HADWIGER, L. (1972). Increased levels of pisatin and phenylalanine ammonia lyase activity in Pisum sativum treated with antihistamine, antiviral, antimalarial/ transquil-izing or other drugs. Biochem. biophys. Res. Commun., 46, 71–79.

    Article  PubMed  CAS  Google Scholar 

  19. HADWIGER, L. and SCHWOCHAW, M. (1971). Ultraviolet light-induced formation of pisatin. and phenylalanine ammonia lyase. Pl. Physiol., Lancaster, 47, 588–590.

    Article  CAS  Google Scholar 

  20. HEATH, M. and HIGGINS, V. (1973). In vitro and in vivo conversion of phaseollin and pisatin by an alfalfa pathogen Stemphylium botryosum. Physiol. Pl. Path., 3, 107–120.

    Article  CAS  Google Scholar 

  21. HIGGINS, V. and MILLAR, R. (1969). Degradation of alfalfa phytoalexin by Stemphylium botryosum. Phytopathology, 59, 1500–1506.

    PubMed  CAS  Google Scholar 

  22. HIGGINS, V. and MILLAR, R. (1970). Degradation of alfalfa phytoalexin by Stemphylium loti and Colletotrichum phomo-ides. Phytopathology, 60, 269–271.

    Article  CAS  Google Scholar 

  23. HIGGINS, V. and SMITH, D. (1972). Separation and identification of two pterocarpenoid phytoalexins produced by red clover leaves. Phytopathology, 62, 235–238.

    Article  CAS  Google Scholar 

  24. INGHAM, J. (1972). Phytoalexins and other natural products as factors in plant disease resistance. Bot. Rev., 38, 343–424.

    Article  CAS  Google Scholar 

  25. KEEN, N. (1971). Hydroxyphaseollin production by soybeans resistant and susceptible to Phytophthora megasperma var. sojae. Physiol. Pl. Path., 1, 265–275.

    Article  CAS  Google Scholar 

  26. KEEN, N. (1975). Specific elicitors of plant phytoalexin production: determinants of race specificity in pathogens ? Science, N.Y., 187, 74–75.

    Article  CAS  Google Scholar 

  27. KOSUGE, T. (1969). The role of phenolics in host response to infection. A. Rev. Phytopath., 7, 195–222.

    Article  CAS  Google Scholar 

  28. KUć, J. (1966). Resistance of plants to infectious agents. A. Rev. Microbiol., 20, 337–370.

    Article  Google Scholar 

  29. KUć, J. (1972). Phytoalexins. A. Rev. Phytopath., 10, 207–232.

    Article  Google Scholar 

  30. KUć, J. (1973). Metabolites accumulating in potato tubers following infection and stress. Teratology, 8, 333–338.

    Article  PubMed  Google Scholar 

  31. KUć, J. (1975). Phytoalexins, plants and human health. Adv. Chem. (In press).

    Google Scholar 

  32. KUć, J., SHOCKLEY, G. and KEARNEY, K. (1975). Protection of cucumber against Colletotrichum lagenarium by Colletotrichum lagenorium. Physiol. Pl. Path. (In press).

    Google Scholar 

  33. MCINTYRE, J., KUC, J. and WILLIAMS, E. (1973). Protection of pear against fireblight by bacteria and bacterial sonicates. Phytopathology, 63, 872–877.

    Article  Google Scholar 

  34. MCINTYRE, J., KUC, J. and WILLIAMS, E. (1975). Protection of bartlett pear against fireblight with deoxyribonucleic acid from virulent and avirulent Erwinia amylovora. Physiol. Pl. Path. (In press).

    Google Scholar 

  35. METLITSKY, L., OZERETSKOVSKAYA, O., VULFSON, N. and CHALOVA, L. (1971). Lubimin in potato resistance. Mikol. i Fitopatol., 5, 439–443.

    Google Scholar 

  36. PUEPPKE, S. and VAN ETTEN, H. (1974). Pisatin accumulation and lesion development in peas infected with Aphanomyces euteiches, Fusarium solani f. sp. pisi or Rhizoctonia solani. Phytopathology, 64, 1433–1440.

    Article  CAS  Google Scholar 

  37. RAHE, J. (1973). Occurrence and levels of the phytoalexin phaseollin in relation to delimitation at sites of infection of Phaseolus vulgaris by Colletotrichum lindemuthia-num. Can. J. Bot., 51, 2423–2430.

    Article  CAS  Google Scholar 

  38. RAHE, J., KUC, J., CHUANG, C. and WILLIAMS, E. (1969). Correlation of phenolic metabolism with histological changes in Phaseolus vulgaris inoculated with fungi. Beth. J. Pl. Path., 75, 58–71.

    Article  CAS  Google Scholar 

  39. REILLY, J. and KLARMAN, W. (1972). The soybean phytoalexin, hydroxyphaseollin, induced by fungicides. Phytopathology, 62, 1113–1115.

    Article  CAS  Google Scholar 

  40. SATO, N., KITAZAWA, K. and TOMIYAMA, K. (1971). The role of rishit in in localizing the invading hyphae of Phytoph-thora infestons in infection sites at the cut surfaces of potato tubers. Physiol. Pl. Path., 1, 289–295.

    Article  CAS  Google Scholar 

  41. SATO, N. and TOMIYAMA, K. (1969). Localized accumulation of rishitin in the potato tuber tissue infected by an incompatible race of Phytophthora infestons. Ann. phyto-path. Soc. Japan, 35, 202–207.

    CAS  Google Scholar 

  42. SATO, N., TOMIYAMA, K., KATSUI, N. and MASAMUNE, T. (1968). Isolation of rishitin from tomato plants. Ann. phytopath. Soc. Japan 34, 344–345.

    Article  CAS  Google Scholar 

  43. SMITH, D., VAN ETTEN, H. and BATEMAN, D.F. (1975). Accumulation of phytoalexins in Phaseolus vulgaris hypocotyls following infection by Rhizoctonia solani. Physiol. Pl. Path., 5, 51–64.

    Article  CAS  Google Scholar 

  44. STOESSL, A. (1970). Antifungal compounds produced by higher plants. Recent Adv. Phytochem., 3, 143–180.

    CAS  Google Scholar 

  45. STOESSL, A., STOTHERS, J. and WARD, E.W.B. (1974). Lubimin: A phytoalexin of several solanaceae. Structure revision and biogenetic relationships. J. chem. Soc. Chem. Commun., 709–710.

    Google Scholar 

  46. STOESSL, A., UNWIN, C. and WARD, E.W.B. (1973). Postinfectional fungus inhibitors from plants: fungal oxidation of cap-sidiol in pepper fruit. Phytopathology, 63, 1225–1231.

    Article  CAS  Google Scholar 

  47. TOMIYAMA, K., SAKUMA, T., ISHIZAKA, N., SATO, N., KATSUI, N., TAKASUGI, M. and MASAMUNE, T. (1968). A new antifungal substance isolated from resistant potato tuber tissue infected by pathogens. Phytopathology., 58, 115–116.

    CAS  Google Scholar 

  48. VAN ETTEN, H. and SMITH, D. (1975). Accumulation of antifungal isoflavonoids and 1a-hydroxyphaseollone, a phaseollin metabolite, in bean tissue infected with Fusarium solani f. sp. phaseoli. Physiol. Pl. Path., 5, 225–237.

    Article  Google Scholar 

  49. VARNS, J. and KUć, J. (1971). Suppression of rishitin and phytuberin accumulation and hypersensitive response in potato by compatible races of Phytophthora infestons. Phytopathology, 61, 178–181.

    Article  CAS  Google Scholar 

  50. VARNS, J. and KUć, J. (1972). Suppression of the resistance response as an active mechanism for susceptibility in the potato — Phytophthora infestons interaction. In: Phytotoxins in Plant Diseases. (WOOD, R.K.S., BALLIO, A., and GRANITI, A. Eds.), 465–468. Academic Press, London and New York.

    Google Scholar 

  51. VARNS, J., KUć, J. and WILLIAMS, E. (1971). Terpenoid accumulation as a biochemical response of the potato tuber to Phytophthora infestons. Phytopathology, 61, 174–177.

    Article  CAS  Google Scholar 

  52. WARD, E.W.B., UNWIN, C.H. and STOESSL, A. (1973). Postinfectional inhibitors from plants. VII. Tolerance of capsidiol by fungal pathogens of pepper fruit. Can. J. Bot., 51, 2327–2332.

    Article  CAS  Google Scholar 

  53. WRATHER, J., KUć, J. and WILLIAMS, E. (1973). Protection of apple and pear fruit tissue against fireblight with nonpathogenic bacteria. Phytopathology, 63, 1075–1076.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Kuć, J. (1976). Phytoalexins and the Specificity of Plant-Parasite Interaction. In: Wood, R.K.S., Graniti, A. (eds) Specificity in Plant Diseases. NATO Advanced Study Institutes Series, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2769-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2769-1_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2771-4

  • Online ISBN: 978-1-4684-2769-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics