Skip to main content
Log in

Phytoalexins and other natural products as factors in plant disease resistance

  • Interpreting Botanical Progress
  • Published:
The Botanical Review Aims and scope Submit manuscript

Conclusion

In recent years studies of plant disease resistance have concentrated on active resistance rather than on those mechanisms which rely on structural barriers such as the cuticle. This change has led to the detection and isolation of several post-infectional antifungal compounds, known collectively as phytoalexins, and to their implication as major factors in the disease resistance of several plant species. These substances were first discussed by Müller & Börger (1940) although it is only during the last decade that concerted attempts have been made by plant pathologists and biochemists to support or refute their hypothesis.

As a result of this research numerous reports in the literature are concerned with production of phytoalexins or phytoalexin-like substances by diseased plants, and of these the phytoalexins from the Leguminosae constitute one of the more important groups. However, even in this extremely large Family only a few species have been studied in detail, and as a result there is great scope for the extensive screening of many more genera in order to detect antifungal metabolites of both pre- and post-infectional origin, research which would be of considerable value to chemotaxonomy as well as plant pathology. With the advanced analytical techniques now available it should also be possible to characterise many of the phytoalexin-like compounds produced by members of other plant Families in order to compare and contrast their structures with those of known antifungal metabolites.

The detection and characterisation of phytoalexins and other related natural products, the elucidation of their biosynthetic pathways and where appropriate their antifungal mechanisms, and the development of these substances or synthetic analogues for use in crop protection provides a new and exciting field of plant pathology which without doubt will be greatly expanded in the years that lie ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Adams, R., T. A. Geissman, &J. D. Edwards. 1960. Gossypol, a pigment of cottonseed. Chem. Rev.60: 555–574.

    PubMed  CAS  Google Scholar 

  • —,R. C. Morris, T. A. Geissman, D. J. Butterbaugh, &E. C. Kdrkpatbick. 1938. Structure of gossypol. XV. An interpretation of its reactions. J. Amer. Chem. Soc.60: 2193–2204.

    CAS  Google Scholar 

  • Adebayo, A. A. 1969. Studies on the diseases ofPrimulas caused byRamularia primulae Thuman andCercosporella primulae Allescher. Ph.D. Thesis, University of Exeter, U.K. 385p.

    Google Scholar 

  • Adityachaudhury, N. &P. K. Gupta. 1970a. Flemichapparin B, a new pterocarpanoid fromFlemingia chappar Ham. Chemy. Ind. 745–746.

  • - & -. 1970b. Flemichapparin C: a new coumestan derivative fromFlemingia chappar Ham. Chemy. Ind. 1113–1114.

  • Akazawa, T. 1960. Chromatographic isolation of pure ipomeamarone and reinvestigation on its chemical properties. Arch. Biochem. Biophys.90: 82–89.

    PubMed  CAS  Google Scholar 

  • —. 1964. Biosynthesis of ipomeamarone. II. Synthetic mechanism. Arch. Biochem. Biophys.105: 512–516.

    PubMed  CAS  Google Scholar 

  • — &I. Uritani. 1955. Phytopathological chemistry of black rotted sweet potato. Part XIX. Inhibitory effect of bitter substances in the rotted sweet potato onCeratostomella fimbriata. J. Agric. Chem. Soc. Japan29: 377–381.

    CAS  Google Scholar 

  • ——. 1961. Influence of environmental temperatures on metabolic alterations related to disease resistance in sweet potato roots infected by black rot. Phytopathology51: 668–674.

    CAS  Google Scholar 

  • ——. 1962a. Pattern of carbohydrate breakdown in sweet potato roots infected withCeratocystis fimbriata. Pl. Physiol. (Lancaster).37: 662–670.

    CAS  Google Scholar 

  • ——. 1962b. Biosynthesis of ipomeamarone. The incorporation of acetate-2-C14 into ipomeamarone. Agric. Biol. Chem.26: 131–133.

    CAS  Google Scholar 

  • — &K. Wada. 1961. Analytical study of ipomeamarone and chlorogenic acid alterations in sweet potato roots infected byCeratocystis fimbriata. Pl. Physiol. (Lancaster).36: 139–144.

    CAS  Google Scholar 

  • —,I. Uritani, &Y. Akazawa. 1962. Biosynthesis of ipomeamarone. I. The incorporation of acetate-2-C14 and mevalonate-2-C14 into ipomeamarone. Arch. Biochem. Biophys.99: 52–59.

    PubMed  CAS  Google Scholar 

  • ——, &T. Hirai. 1957. Phytopathological chemistry of black rotted sweet potato. Part XXIV. The relation of metabolic activation to resistance in black rotten sweet potato. J. Agric. Chem. Soc. Japan31: 182–185.

    CAS  Google Scholar 

  • —— &H. Kubota. 1960. Isolation of ipomeamarone and two coumarin derivatives from sweet potato roots injured by the weevilCylas formicarius elegantulus. Arch. Biochem. Biophys.88: 150–156.

    PubMed  CAS  Google Scholar 

  • Akisanya, A., C. W. L. Bevan, &J. Hirst. 1959. West African timbers. Part II. Heartwood constituents of the genusPterocarpus. J. Chem. Soc. 2679–2681.

  • Alcubilla, M. 1970a. Extraction, Chromatographic separation and isolation of fungistatic substances from the inner bark of Norway spruce. Z. Pflanz. Bodenk.127: 64–74.

    Google Scholar 

  • —. 1970b. Fungus inhibitors in spruce bark. Landwirt. Forsch. Sonderh.25: 96–101.

    Google Scholar 

  • Aldridge, D. C., S. Galt, D. Giles, &W. B. Turner. 1971. Metabolites ofLasiodiplodia theobromae. J. Chem. Soc. (C). 1623–1627.

  • -,J. F. Grove, &W. B. Turner. 1966. 4-acetyl-6,8-dihydroxy-5-methyI-2-benzopyran-l-one, a metabolite ofAspergillus viridinutans. J. Chem. Soc. (C). 126–129.

  • Aldwinckle, H. S. 1969. Phytoalexin-like activity in diffusates from safflower leaves inoculated withPhytophthora drechsleri. Phytopathology59: 1015 (Abstr.).

    Google Scholar 

  • Allen, E. H. 1965. Steroid-glycoalkaloids in the disease resistance of white potato tubers. Ph.D. Thesis, Purdue University, U.S.A. 83p.

    Google Scholar 

  • —. 1970. The nature of antifungal substances in the peel of Irish potato tubers. Phytopathol. Z.69: 151–159.

    CAS  Google Scholar 

  • — &J. Kuć. 1968. α-solanine and α-chaconine as fungitoxic compounds in extracts of Irish potato tubers. Phytopathology58: 776–781.

    CAS  Google Scholar 

  • Amici, A. &R. Locci. 1968. Possible phytopathological implications of the behaviour ofHelminthosporium carbonum in presence of α-solanine. Rivista Patol. Veg. Ser. 4.4: 51–62.

    Google Scholar 

  • Anderson, T. 1876. Educts fromBaphia nitida (barwood). J. Chem. Soc.30: 582–586.

    Google Scholar 

  • Angell, H. R., J. C. Walker, &K. P. Link. 1930. The relation of protocatechuic acid to disease resistance in the onion. Phytopathology20: 431–438.

    CAS  Google Scholar 

  • Anonymous. 1967. Fungal diseases of apples. Study ofNectria galligena. Ann. Rep. Res. Tech. Work Minist. Agric. N. Ireland 87.

  • -. 1969. Fungal diseases of apples. Study ofNectria galligena. Ann. Rep. Res. Tech. Work Minist. Agric. N. Ireland 98–99.

  • Arneson, P. A. &R. D. Durbin. 1967. Hydrolysis of tomatine bySeptoria lycopersici: a detoxification mechanism. Phytopathology57: 1358–1360.

    CAS  Google Scholar 

  • Aue, R., R. Mauli, &H. P. Sigg. 1966. Production of 6-methoxymellein bySporormia bipartis Cain. Experientia22: 575.

    PubMed  CAS  Google Scholar 

  • Averre, C. W. &A. Kelman. 1964. Severity of bacterial wilt as influenced by ratio of virulent to avirulent cells ofPseudomonas solanacearum in inoculum. Phytopathology54: 779–783.

    Google Scholar 

  • Bailey, J. A. 1969a. Phytoalexin production by leaves ofPisum sativum in relation to senescence. Ann. Appl. Biol.64: 315–324.

    CAS  Google Scholar 

  • —. 1969b. Effects of antimetabolites on production of the phytoalexin pisatin. Phytochemistry8: 1393–1395.

    CAS  Google Scholar 

  • —. 1970. Pisatin production by tissue cultures ofPisum sativum L. J. Gen. Microbiol.61: 409–415.

    CAS  Google Scholar 

  • - &B. J. Deverall. 1971. Formation and activity of phaseollin in the interaction between bean hypocotyls (Phaseolus vulgaris) and physiological races ofColletotrichum lindemuthianum. Physiol. Pl. Pathol. (In press).

  • - &J. L. Ingham. 1971. Phaseollin accumulation in bean in response to infection by tobacco necrosis virus and the rustUromyces appendiculatus. Physiol. Pl. Pathol. (In press).

  • Baker, C. J. 1969. Studies onLeptosphaeria nodorum Müller andSeptoria tritici Desm. on wheat. Ph.D. Thesis, University of Exeter, U.K. 172p.

    Google Scholar 

  • Barnes, R. A. &N. N. Gerber. 1955. The antifungal agent from osage orange wood. J. Amer. Chem. Soc.77: 3259–3262.

    CAS  Google Scholar 

  • Baslas, K. K. 1967. Chemistry of Indian essential oils. Part I. Perfumery, Essential Oil Rec.58: 437–440.

    CAS  Google Scholar 

  • Bassett, C., R. T. Sherwood, J. A. Kepler, &P. B. Hamilton. 1967. Production and biological activity of fomannosin, a toxic sesquiterpene metabolite ofFomes annosus. Phytopathology57: 1046–1052.

    CAS  Google Scholar 

  • Bate-Smith, E. C., T. Swain, &G. S. Pope. 1953. The isolation of 7-hydroxy-4′-methoxyisoflavone (formononetin) from red clover (Trifolium pratense) and a note on the identity of pratol. Chemy. Ind. 1127.

  • Baugher, W. L. &T. C. Campbell. 1969. Gossypol detoxification by fungi. Science164: 1526–1527.

    PubMed  CAS  Google Scholar 

  • Beck, S. D. &J. F. Stauffer. 1957. The European corn borer,Pyrausta nubilalis (Hiibn.) and its principal host plant. III. Toxic factors influencing larval establishment. Ann. Entomol. Soc. Amer.50: 166–170.

    CAS  Google Scholar 

  • Bedi, P. S. 1966. Studies on the biological control ofVerticillium wilt of okra. Diss. Abstr.27B: 1045.

    Google Scholar 

  • Bell, A. A. 1967. Formation of gossypol in infected or chemically irritated tissues ofGossypium species. Phytopathology57: 759–764.

    CAS  Google Scholar 

  • —. 1969. Phytoalexin production andVerticillium wilt resistance in cotton. Phytopathology59: 1119–1127.

    CAS  Google Scholar 

  • —. 1970. 4-hydroxybenzaldehyde and vanillin as toxins formed in leaf wound sap ofPhaseolus lunatus. Phytopathology60: 161–165.

    PubMed  CAS  Google Scholar 

  • — &J. T. Presley. 1969a. Temperature effects upon resistance and phytoalexin synthesis in cotton inoculated withVerticillium albo-atrum. Phytopathology59: 1141–1146.

    Google Scholar 

  • ——. 1969b. Heat-inhibited or heat-killed conidia ofVerticillium albo-atrum induce disease resistance and phytoalexin synthesis in cotton. Phytopathology59: 1147–1151.

    Google Scholar 

  • BeMiller, J. N. &A. J. Pappelis. 1965. 2,4-dihydroxy-7-methoxy-l,4-benzoxazin-3-one glucoside in corn. I. Relation of water-soluble, 1-butanol soluble glycoside fraction content of pith cores and stalk rot resistance. Phytopathology55: 1237–1240.

    CAS  Google Scholar 

  • Bendixen, O., J. Lam, &F. Kaufmann. 1969. Polyacetylenes ofDahlia pinnata. Phytochemistry8: 1021–1024.

    CAS  Google Scholar 

  • Benz, G. 1959. 8-hydroxy-3-methyl-isocoumarin isolated from the culture medium ofMarasmius ramealis. Arkiv. Kemi.14: 511–518.

    Google Scholar 

  • —. 1960. A study of the chemistry of someMarasmius species. Arkiv. Kemi15: 131–148.

    Google Scholar 

  • Benesová, V., V. Herout, &F. Sorm. 1959. On terpenes. CII. The structure and absolute configuration of costol. Collect. Czech. Chem. Commun.24: 2365–2370.

    Google Scholar 

  • -,V. Sýkora, V. Herout, &F. Sorm. 1958. The absolute configuration of costol (sesquibenihiol) and alantolactone. Chemy. Ind. 363–364.

  • Benjamin, C. R. &F. H. Stodola. 1960. Ramulosin, a C10H14O3 compound produced by the fungusPestalotia ramulosa. Nature188: 662–663.

    CAS  Google Scholar 

  • Berardi, L. C. &L. A. Goldblatt. 1969. Gossypol.In: Toxic constituents of plant foodstuffs. Liener, I. E. (Ed.), Academic Press, New York & London, p. 211–266.

    Google Scholar 

  • Bergman, B. H. H. 1966. Presence of a substance in the white skin of young tulip bulbs which inhibits growth ofFusarium oxysporum. Netherlands J. Pl. Pathol.72: 222–230.

    CAS  Google Scholar 

  • —. 1968. Problemen rond het optreden en de bestrijding vanFusarium oxysporum in tulpen. Meded. Directeur Tuinb.31: 274–277.

    Google Scholar 

  • —&J. C. M. Beijersbergen. 1968. A fungitoxic substance extracted from tulips and its possible role as a protectant against disease. Netherlands J. Pl. Pathol.74: 157–162 (Suppl.1).

    CAS  Google Scholar 

  • ——J. C. Overeem, &A. K. Sijpesteijn. 1967. Isolation and identification of α-methylenebutyrolactone, a fungitoxic substance from tulips. Recl. Trav. Chim. Pays-Bas.86: 709–714.

    CAS  Google Scholar 

  • Berlin, J. &W. Barz. 1971. Stoffwechsel von Isoflavonen und Cumöstanen in Zell- und Callussuspensionskulturen vonPhaseolus aureus Roxb. Planta (Berlin)98: 300–314.

    CAS  Google Scholar 

  • Bernard, N. 1909. L’évolution dans la symbiose. Les orchidées et leurs champignons commensaux. Ann. Sci. Nat. Bot.9: 1–196.

    Google Scholar 

  • —. 1911. Sur la fonction fungicide des bulbes d’ Ophrydées. Ann. Sci. Nat. Bot.14: 221–234.

    Google Scholar 

  • Bevan, C. W. L. 1958. Wood extractives. W. African J. Biol. Chem.2: 36–41.

    CAS  Google Scholar 

  • -,A. J. Birch, B. Moore, &S. K. Mukerjee. 1964. A partial synthesis of (±)-pisatin; some remarks on the structure and reactions of pterocarpin. J. Chem. Soc. 5991–5995.

  • Bhargava, K. K., N. R. Krishnaswamy, &T. R. Seshadri. 1970. Isolation of desmethylwedelolactone and its glucoside fromEclipta alba. Indian J. Chem.8: 664.

    CAS  Google Scholar 

  • Bhrara, S. C., A. C. Jain, &T. R. Seshadri. 1964. A new examination of the special components ofPterocarpus indicus heartwood. Curr. Sci.33: 303.

    CAS  Google Scholar 

  • Bickoff, E. M., A. N. Booth, R. L. Lyman, A. L. Livingston, C. R. Thompson, &F. DeEds. 1957. Coumestrol, a new estrogen isolated from forage crops. Science126: 969–970.

    PubMed  CAS  Google Scholar 

  • ————— &G. O. Kohler. 1958a. Isolation of a new estrogen from ladino clover. J. Agric. Food Chem.6: 536–539.

    CAS  Google Scholar 

  • —,A. L. Livingston, S. C. Witt, B. E. Knuckles, J. Guggolz, &R. R. Spencer. 1964. Isolation of coumestrol and other phenolics from alfalfa by countercurrent distribution. J. Pharm. Sci.53: 1496–1499.

    PubMed  CAS  Google Scholar 

  • ———,R. E. Lundin, &R. R. Spencer. 1965. Isolation of 4′-0-methylcoumestrol from alfalfa. J. Agric. Food Chem.13: 597–599.

    CAS  Google Scholar 

  • —,R. L. Lyman, A. L. Livingston, &A. N. Booth. 1958b. Characterization of coumestrol, a naturally occurring plant estrogen. J. Amer. Chem. Soc.80: 3969–3971.

    CAS  Google Scholar 

  • —,R. R. Spencer, B. E. Knuckles, &R. E. Lundin. 1966. 3′-methoxy-coumestrol from alfalfa: isolation and characterization. J. Agric. Food Chem.14: 444–446.

    CAS  Google Scholar 

  • —,G. M. Loper, C. H. Hanson, J. H. Graham, S. C. Witt, &R. R. Spencer. 1967. Effect of common leafspot on coumestans and flavones in alfalfa. Crop Sci. (Madison)7: 259–261.

    CAS  Google Scholar 

  • Biehn, W. L., J. Kuć, &E. B. Williams. 1968a. Fungitoxicity of phenols accumulating inGlycine max-fungi interactions. Phytopathology58: 1261–1264.

    CAS  Google Scholar 

  • ———. 1968b. Accumulation of phenols in resistant plant/fungi interactions. Phytopathology58: 1255–1260.

    CAS  Google Scholar 

  • Birch, A. J. 1966. Some natural antifungal agents. Chemy. Ind. 1173–1176.

  • -,L. Loh, A. Pelter, J. H. Birkinshaw, P. Chaplen, A. H. Manchanda, &M. Riano-Martin. 1965. The structure of canescin. Tetrahedron Lett. 29–32.

  • —,R. Massy-Westropp, &S. E. Wright. 1953. Natural derivatives of furan. I. Ngaione. Austral. J. Chem.6: 385–390.

    CAS  Google Scholar 

  • -, -, -,T. Kubota, T. Matsuura, &M. D. Sutherland. 1954. Ipomeamarone and ngaione. Chemy. Ind. 902.

  • -,B. Moore, S. K. Mukerjee, &C. W. L. Bevan. 1962. A partial synthesis of (±)-pisatin from pterocarpin. Tetrahedron Lett. 673–676.

  • Blackburne, I. D., R. J. Park, &M. D. Sutherland. 1971. Terpenoid chemistry. XVIII. Myodesmone and isomyodesmone, toxic furanoid ketones fromMyoporum deserti andM. acuminatum. Austral. J. Chem.24: 995–1007.

    CAS  Google Scholar 

  • Blair, J. &G. T. Newbold. 1955a. The structure of mellein. Chemy. Ind. 93–94.

  • - & -. 1955b. Lactones. Part II: The structure of mellein. J. Chem. Soc. 2871–2875.

  • Bohlmann, F., S. Köhn, &C. Arndt. 1966. Polyacetylenverbindungen. CXIV. Die polyine der GattungCarthamus L. Chem. Ber.99: 3433–3436.

    CAS  Google Scholar 

  • Boller, A., H. Cprrodi, E. Gäumann, E. Hardegger, H. Kern, &N. Winterhalter-Wild. 1957. Über induzierte Abwehrstoffe bei Orchideen. I. Helv. Chim. Acta40: 1062–1066.

    CAS  Google Scholar 

  • Borecka, H. &J. Pieniażek. 1968. Stimulatory effect of abscisic acid on spore germination ofGloeosporium album Osterw. andBotrytis cinerea Pers. Bull. Acad. Polon. Sci. Ser. Sci. Biol.16: 657–661.

    CAS  Google Scholar 

  • —,A. Bielenin, &R. Rudnicki. 1969. Some factors influencing strawberry flowers infection byBotrytis cinerea Pers. Acta Agrobot.22: 245–252.

    Google Scholar 

  • Bose, J. L. &S. Siddiqui. 1945. Studies in the constituents of chana (Cicer arietinum Linn.). Part II. The constitution of biochanin A. J. Sci. Ind. Res. India4: 231–235.

    CAS  Google Scholar 

  • Bose, S. R. 1938. The nature of “Agaru” formation. Sci. & Cult.4: 89–91.

    Google Scholar 

  • Bottger, G. T., E. T. Sheehan, &M. J. Lukefahr. 1964. Relation of gossypol content of cotton plants to insect resistance. J. Econ. Entomol.57: 283–285.

    CAS  Google Scholar 

  • Bouwer, D., C. v. d. M. Brink, J. P. Engelbrecht, &G. J. H. Rall. 1968.Neorautanenia isoflavanoids. Part III. 4-methoxypterocarpin a new pterocarpan fromNeorautanenia ficifolia (Benth. ex Harv.) C. A. SM. J. S. African Chem. Inst.21: 159–163.

    CAS  Google Scholar 

  • Bowyer, W. J., J. N. Chatterjea, S. P. Dhoubhadel, B. O. Handford, &W. B. Whalley. 1964. The chemistry of the “Insoluble Red Woods.” Part IX. Homopterocarpin and pterocarpin. J. Chem. Soc. 4212–4216.

  • Brandt, C. W. &D. J. Ross. 1949. The constitution of ngaione. J. Chem. Soc. 2778–2781.

  • Braun, R. 1963. Orchinol.In: Modern Methods of Plant Analysis. Linskens, H. F. & M. V. Tracey (Eds.).6: 130–134.

  • Bredenberg, J. B. 1961. Identification of an antifungal factor in red clover as biochanin A. Acta Chem. Fenn.34B: 23.

    CAS  Google Scholar 

  • — &P. K. Hietala. 1961a. Investigation of the structure of trifolirhizin, an antifungal compound fromTrifolium pretense L. Acta Chem. Scand.15: 696–699.

    CAS  Google Scholar 

  • ——. 1961b. Confirmation of the structure of trifolirhizin. Acta Chem. Scand.15: 936–937.

    CAS  Google Scholar 

  • - &J. N. Skoolery. 1961. A revised structure for pterocarpin. Tetrahedron Lett. 285–288.

  • Brian, P. W., H. G. Hemming, J. S. Moffatt, &C. H. Unwin. 1953. Canescin, an antibiotic produced byPenicillium canescens. Trans. Brit. Mycol. Soc.36: 243–247.

    CAS  Google Scholar 

  • Bridge, M. &W. L. Klarman. 1970. Ultra-violet induction of an antifungal chemical in soybeans. Phytopathology60: 1013 (Abstr.).

    Google Scholar 

  • Brink, C. v. d. M., J. P. Engelbrecht, &D. E. Graham. 1970.Neorautanenia isoflavanoids. Part IV. Ficifolinol, folitenol and folinin, three new pterocarpans from the root bark ofNeorautanenia ficifolia (Benth. ex Harv.) C. A. SM. J. S. African Chem. Inst.23: 24–33.

    CAS  Google Scholar 

  • —,W. Nel, G. J. H. Rall, J. C. Weitz, &K. G. R. Pachler. 1966.Neorautanenia isoflavanoids. Part II Neofolin and ficinin, two new furoisoflavanoids fromNeorautanenia ficifolia (Benth. ex Harv.) C. A. SM. J. S. African Chem. Inst.19: 24–37.

    CAS  Google Scholar 

  • Brooks, B. T. 1910. The natural dyes and coloring matters of the Philippines. Philippine J. Sci.5A: 439–452.

    Google Scholar 

  • Bukhari, S. T. K. &R. D. Guthrie. 1969. Structure of rishitin. An example of the use of cuprammonium complexing in structural elucidation. J. Chem. Soc. (C). 1073.

  • Burges, A. 1936. On the significance of mycorrhiza. New Phytol.35: 117–131.

    Google Scholar 

  • —. 1939. The defensive mechanism in orchid mycorrhiza. New Phytol.38: 273–283.

    Google Scholar 

  • Burkhardt, H. J., J. V. Maizel, &H. K. Mitchell. 1964. Avenacin, an antimicrobial substance isolated fromAvena sativa. II. Structure. Biochemistry3: 426–431.

    CAS  Google Scholar 

  • Burton, H. S. 1950. Antibiotics fromAspergillus melleus. Nature165: 274–275.

    PubMed  CAS  Google Scholar 

  • Calpouzos, L. 1962. Inhibition ofMycosphaerella musicola by water extracts of susceptible banana leaves. Rep. Long Ashton Agric. Hort. Res. Sta. 111–115.

  • Campbell, K. N., R. C. Morris, &R. Adams. 1937. The structure of gossypol. I. J. Amer. Chem. Soc.59: 1723–1728.

    CAS  Google Scholar 

  • Carlton, B. C., C. E. Peterson, &N. E. Tolbert. 1961. Effects of ethylene and oxygen on the production of a bitter compound by carrot roots. Pl. Physiol. (Lancaster)36: 550–552.

    CAS  Google Scholar 

  • Cazeneuve, P. &L. Hugounenq. 1887. Sur deux principes cristallisés extraits du santal rouge, la ptérocarpine et l’homoptérocarpine. Comp. Rend. Hebd. Séances Acad. Sci.104: 1722–1725.

    Google Scholar 

  • ——. 1888. Sur l’ homoptérocarpine et la ptérocarpine du bois de santal rouge. Comp. Rend. Hebd. Séances Acad. Sci.107: 737–740.

    Google Scholar 

  • ——. 1889. Sur deux principes cristallisés extraits du bois de santal rouge, l’ homoptérocarpine et la ptérocarpine. Annal. Chim. Phys. Ser. VI.17: 113–128.

    Google Scholar 

  • Chakravarty, D. K. &D. N. Srivastava. 1967. Mechanism of resistance of carrot roots toPythium aphanidermatum (Eds.) Fitz. Phytopathol. Z. 259–261.

  • Chalova, L. I., N. I. Vasyukova, O. L. Ozeretskovskaya, &L. V. Metlitskii. 1971. Chemical identification of one of the potato phytoalexins. Prikl. Biokhim. Mikrobiol.7: 55–58.

    CAS  Google Scholar 

  • Chalutz, E. &J. E. DeVay. 1969. Production of ethylene in vitro and in vivo byCeratocystis fimbriata in relation to disease development. Phytopathology59: 750–755.

    CAS  Google Scholar 

  • — &M. A. Stahmann. 1969. Induction of pisatin by ethylene. Phytopathology59: 1972–1973.

    PubMed  CAS  Google Scholar 

  • —,J. E. DeVay, &E. C. Maxie. 1969a. Production of ethylene byCeratocystis fimbriata, and the role of ethylene in the induction of 3-methyl-6-methoxy-8-hydroxy-3,4-dihydroisocoumarin. Phytopathology59: 10 (Abstr.).

    Google Scholar 

  • ——— 1969b. Ethylene-induced isocoumarin formation in carrot root tissue. Pl. Physiol. (Lancaster)44: 235–241.

    CAS  Google Scholar 

  • Chamberlain, D. W. 1970. Temperature ranges inducing susceptibility toPhytophthora megasperma var.sojae in resistant soybeans. Phytopathology60: 293–294.

    Google Scholar 

  • — &J. W. Gerdemann. 1966. Heat induced susceptibility of soybeans toPhytophthora megasperma var.sojae, Phytophthora cactorum andHelminthosporium sativum. Phytopathology56: 70–73.

    Google Scholar 

  • — &J. D. Paxton. 1968. Protection of soybean plants by phytoalexin. Phytopathology58: 1349–1350.

    CAS  Google Scholar 

  • Chang, C. F., A. Suzuki, S. Kumai, &S. Tamura. 1969. Chemical studies on “clover sickness.” Part II. Biological functions of isoflavanoids and their related compounds. Agric. Biol. Chem.33: 398–404.

    CAS  Google Scholar 

  • Chatterjea, J. N. &K. Achari. 1970. Synthesis of furano compounds: Part-XXXIII. Synthesis of some pterocarpans. J. Indian Chem. Soc.47: 541–546.

    CAS  Google Scholar 

  • Chin, C., M. C. Cutler, E. R. H. Jones, J. Lee, S. Safe, &V. Thaller. 1970. Natural acetylenes. Part XXXI. C14-tetrahydropyranyl and other polyacetylenes from the CompositaeDahlia coccinea Cav. var.coccinea. J. Chem. Soc.(C). 314–322.

  • Chiu, K. Y., S. Akai, &M. Fukutomi. 1969. Studies on the host selectivity ofCochliobolus miyabeanus. Conidium germination and appressorium formation of the fungus on leaves of various plants. Mem. Coll. Agric. Kyoto Univ.95: 1–6.

    Google Scholar 

  • Chou, M. C. &T. F. Preece. 1968. The effect of pollen grains on infections caused byBotrytis cinerea Fr. Ann. Appl. Biol.62: 11–22.

    PubMed  CAS  Google Scholar 

  • Christenson, J. A. 1969. The degradation of pisatin by pea pathogens. Phyto-pathology59: 10(Abstr.).

    Google Scholar 

  • Clark, R. S., J. Kuc, R. E. Henze, &F. W. Quackenbush. 1959. The nature and fungitoxicity of an amino acid addition product of chlorogenic acid. Phytopathology49: 594–597.

    CAS  Google Scholar 

  • Clauss, E. 1961. Die phenolischen Inhaltsstoffe der Samenschalen vonPisum sativum L. und ihre Bedeutung fur die Resistenz gegen die Erreger der Fusskrankheit. Naturwissenschaften48: 106.

    CAS  Google Scholar 

  • Cocker, W., T. Dahl, C. Dempsey, &T. B. H. McMurry. 1962a. Inermin, an extractive ofAndira inermis. Chemy. Ind. 216–217.

  • -, -, -, & -. 1962b. Extractives from woods. Part I. Extractives fromAndira inermis (Wright) H.B.K. J. Chem. Soc. 4906.

  • -,T. B. H. McMurry, &P. A. Staniland. 1965. A synthesis of demethyl-homopterocarpin. J. Chem. Soc. 1034–1037.

  • Condon, P. &J. Kuć. 1960. Isolation of a fungitoxic compound from carrot root tissues inoculated withCeratocystis fimbriata. Phytopathology50: 267–270.

    CAS  Google Scholar 

  • ——. 1962. Confirmation of the identity of a fungitoxic compound produced by carrot root tissues. Phytopathology52: 182–183.

    Google Scholar 

  • —— &H. N. Draudt. 1963. Production of 3-methyl-6-methoxy-8-hydroxy-3,4-dihydroisocoumarin by carrot root tissue. Phytopathology53: 1244–1250.

    CAS  Google Scholar 

  • Cooke, R. G. &I. D. Rae. 1964. Isoflavonoids. I. Some new constituents ofPterocarpus indicus heartwood. Austral. J. Chem.17: 379–384.

    CAS  Google Scholar 

  • Cross, J. E. &B. W. Kennedy. 1964. Variability in pathogenicity inPseudomonas glycinea. Phytopathology54: 890–891.

    Google Scholar 

  • Cruickshank, I. A. M. 1962. Studies on phytoalexins. IV. The antimicrobial spectrum of pisatin. Austral. J. Biol. Sci.15: 147–159.

    CAS  Google Scholar 

  • —. 1963a. Phytoalexins. Annual Rev. Phytopathol.1: 351–374.

    CAS  Google Scholar 

  • —. 1963b. Disease resistance in plants. A review of some recent developments. J. Austral. Inst. Agric. Sci.29: 23–30.

    Google Scholar 

  • —. 1965a. Phytoalexins in the Leguminosae with special reference to their selective toxicity. TagBer. dt. Akad. Landw. Wiss. Berlin74: 313–332.

    Google Scholar 

  • —. 1965b. Pisatin studies: the relationship of phytoalexins to disease reaction in plants.In: Ecology of soil-borne plant pathogens. Prelude to biological control. Baker, K. F. & W. C. Snyder. (Eds.). p. 325–336. Univ. Calif. Press, Berkeley.

    Google Scholar 

  • —. 1966. Defense mechanisms in plants. World Rev. Pest Control5: 161–175.

    Google Scholar 

  • — &M. Mandryk. 1960. The effect of stem infestation of tobacco withPeronospora tabacina Adam on foliage reaction to blue mould. J. Austral. Inst. Agric. Sci.26: 369–372.

    Google Scholar 

  • — &D. R. Perrin. 1960. Isolation of a phytoalexin fromPisum sativum L. Nature187: 799–800.

    PubMed  CAS  Google Scholar 

  • ——. 1961. Studies on phytoalexins. III. The isolation, assay and general properties of a phytoalexin fromPisum sativum L. Austral. J. Biol. Sci.14: 336–348.

    CAS  Google Scholar 

  • ——. 1963a. Studies on phytoalexins. VI. Pisatin; the effect of some factors on its formation inPisum sativum L. and the significance of pisatin in disease resistance. Austral. J. Biol. Sci.16: 111–128.

    CAS  Google Scholar 

  • ——. 1963b. Phytoalexins of the Leguminosae. Phaseollin fromPhaseolus vulgaris. Life Sci.2: 680–682.

    CAS  Google Scholar 

  • ——. 1964. Pathological function of phenolic compounds in plants.In: Biochemistry of Phenolic Compounds. Harborne, J. B. (Ed.). p. 511–544. Academic Press, London.

    Google Scholar 

  • ——. 1965a. Studies on phytoalexins. VIII. The effect of some further factors on the formation, stability and localization of pisatin in vivo. Austral. J. Biol. Sci.18: 817–828.

    CAS  Google Scholar 

  • —— 1965b. Studies on phytoalexins. IX. Pisatin formation by cultivars ofPisum sativum L. and several otherPisum species. Austral. J. Biol. Sci.18: 829–835.

    CAS  Google Scholar 

  • ——. 1967. Studies on phytoalexins. X. Effect of oxygen tension on the biosynthesis of pisatin and phaseollin. Phytopathol. Z.60: 335–342.

    CAS  Google Scholar 

  • ——. 1968. The isolation and partial characterization of monili-colin A, a polypeptide with phaseollin-inducing activity fromMonilinia fructicola. Life Sci.7: 449–458.

    CAS  Google Scholar 

  • ——. 1971. Studies on phytoalexins. XI. The induction, antimicrobial spectrum and chemical assay of phaseollin. Phytopathol. Z.70: 209–229.

    CAS  Google Scholar 

  • Csupor, L. 1970. Desoxy-rhaponticin, ein neues natürliches Stilbenderivat in RhizomaRhei rhapontici L. Arch. Pharm. & Ber. Deutsch. Pharm. Ges.304: 681–687.

    Google Scholar 

  • Curtis, J. T. 1939. The relation of specificity of orchid mycorrhizal fungi to the problem of symbiosis. Amer. J. Bot.26: 390–399.

    Google Scholar 

  • Curtis, R. F. 1968. 6-methoxymellein as a phytoalexin. Experientia24: 1187–1188.

    CAS  Google Scholar 

  • -,P. C. Habries, C. H. Hassall, J. D. Levi, &D. M. Phillips. 1966. The biosynthesis of phenols. Part X. Mutation and radioactive tracer studies relating to the biosynthesis of sulochrin J. Chem. Soc. (C). 168–174.

  • Davis, D. 1967. Cross protection inFusarium wilt diseases. Phytopathology57: 311–314.

    Google Scholar 

  • De Laey, P. &A. I. Virtanen. 1957. On antifungal factors in carrots. Acta Chem. Fenn.30B: 218.

    Google Scholar 

  • Denz, F. A. &W. C. Hanger. 1961. The liver toxin inMyoporum laetum. J. Pathol. Bacteriol.81: 91–99.

    PubMed  CAS  Google Scholar 

  • Desai, H. K., D. H. Gawad, T. R. Govindachari, B. S. Joshi, V. N. Kamat, J. D. Modi, P. A. Mohamed, P. C. Parthasarathy, S. J. Patankar, A. R. Sidhaye, &N. Viswanathan. 1970. Chemical investigation of some Indian plants: Part V. Indian J. Chem.8: 851–853.

    CAS  Google Scholar 

  • Deverall, B. J. 1967. Biochemical changes in infection droplets containing spores ofBotrytis spp. incubated in the seed cavities of pods of bean (Vida faba L.). Ann. Appl. Biol.59: 375–387.

    CAS  Google Scholar 

  • — &J. C. Vessey. 1969. Role of a phytoalexin in controlling lesion development in leaves ofVicia faba after infection byBotrytis spp. Ann. Appl. Biol.63: 449–458.

    CAS  Google Scholar 

  • —,I. M. Smith, &S. Makris. 1968. Disease resistance inVicia faba andPhaseolus vulgaris. Netherlands J. Pl. Pathol.74: 137–148 (Suppl. 1).

    Google Scholar 

  • Dewick, P. M., W. Barz, &H. Grisebach. 1970. Biosynthesis of coumestrol inPhaseolus aureus. Phytochemistry9: 775–783.

    CAS  Google Scholar 

  • Dieterle, H. &H. Leonhardt. 1929. Beitrag zur Kenntnis der Inhaltsstoffe des roten Sandelholzes. Homopterokarpin und Pterokarpin. Arch. Pharm. & Ber. Deutsch. Pharm. Ges.267: 81–116.

    CAS  Google Scholar 

  • Dodson, A. R., H. N. Fukui, C. D. Ball, R. L. Carolus, &H. M. Sell. 1956. Occurrence of a bitter principle in carrots. Science124: 984–985.

    PubMed  CAS  Google Scholar 

  • Dolejs, L., V. Herout, F. Sorm. 1961. On terpenes. CXX. Sesquiterpenic compounds ofBaccharis genistelloides PERS.; Structure of palustrol. Collect. Czech. Chem. Commun.26: 811–817.

    CAS  Google Scholar 

  • Duttagupta, P. C., H. N. Khastgir, &P. Sengupta. 1960. Structure of psoralidin. Chemy. Ind. 937–938.

  • Eagle, E. 1960. A review of some physiological effects of gossypol and cotton-seed pigment glands. J. Amer. Oil Chem. Soc.37: 40–43.

    CAS  Google Scholar 

  • Eaton, M. A. W. &D. W. Hutchinson. 1971. Isocoumarins fromStreptomyces mobaraensis. Tetrahedron Lett. 1337–1340.

  • Edwards, J. D. 1970. Synthesis of gossypol and gossypol derivatives. J. Amer. Oil Chem. Soc.47: 441–442.

    CAS  Google Scholar 

  • Egli, C. 1964. Synthese von Orchinol und neuen Phenolen. Diss. Eidgenössischen Technischen Hochschule, Zürich. Nr. 3589. 56p.

  • Eisenbeiss, J. &H. Schmid. 1959. Struktur des Erosnin (Norton & Hansberry’s «Compound I»). Helv. Chim. Acta42: 61–66.

    CAS  Google Scholar 

  • Elnaghy, M. A. &P. Linko. 1962. The role of 4-0-glucosyl-2,4-dihydroxy-7-methoxy-l,4-benzoxazin-3-one in resistance of wheat to stem rust. Physiol. Pl. (Copenhagen)15: 764–771.

    CAS  Google Scholar 

  • — &M. Shaw. 1966. Correlation between resistance to stem rust and the concentration of a glucoside in wheat. Nature210: 417–418.

    CAS  Google Scholar 

  • El-Nockrashy, A. S., C. M. Lyman, &J. W. Dollahite. 1963. The acute oral toxicity of cottonseed pigment glands and intraglandular pigments. J. Amer. Oil Chem. Soc.40: 14–17.

    CAS  Google Scholar 

  • —,J. G. Simmons, &V. L. Frampton. 1969. A chemical survey of seeds of the genusGossypium. Phytochemistry8: 1949–1958.

    CAS  Google Scholar 

  • Emerson, O. H. &E. M. Bickoff. 1958. Synthesis of coumestrol, 3,9-dihydroxy-6H-benzofuro(3,2-C)(1)benzopyran-6-one. J. Amer. Chem. Soc.80: 4381–4383.

    CAS  Google Scholar 

  • Erdtman, H., B. Kimland, &T. Norin. 1966. Pine phenolics and pine classification. Bot. Mag. (Tokyo)79: 499–505.

    CAS  Google Scholar 

  • Falk, J. E. 1966. Chemistry and fungal diseases of plants. Austral. J. Sci.28: 259–263.

    CAS  Google Scholar 

  • Fawcett, C. H. &D. M. Spencer. 1966. Antifungal compounds in apple fruit infected withSclerotinia fructigena. Nature211: 548–549.

    PubMed  CAS  Google Scholar 

  • ——. 1967. Antifungal phenolic acids in apple fruits after infection withSclerotinia fructigena. Ann. Appl. Biol.60: 87–96.

    PubMed  CAS  Google Scholar 

  • ——. 1968.Sclerotinia fructigena infection and chlorogenic acid content in relation to antifungal compounds in apple fruits. Ann. Appl. Biol.61: 245–253.

    PubMed  CAS  Google Scholar 

  • ——. 1969. Phytoalexin production and brown rot in apples. Phytochemistry8: 6(Abstr.).

    Google Scholar 

  • —,R. D. Firn, &D. M. Spencer. 1971. Wyerone increase in leaves of broad bean (Vicia faba L.) after infection byBotrytis fabae. Physiol. Pl. Pathol.1: 163–166.

    CAS  Google Scholar 

  • —,D. M. Spencer, &R. L. Wain. 1969. The isolation and properties of a fungicidal compound present in the seedlings ofVicia faba. Netherlands J. Pl. Pathol.75: 72–81.

    CAS  Google Scholar 

  • -, -, -,A. G. Faixis, E. R. H. Jones, M. Le Quan, C. B. Page, V. Thaller, D. C. Shubrook, &P. M. Whitham. 1968. Natural acetylenes. Part XXVII. An antifungal acetylenic furanoid keto-ester (wyerone) from shoots of the broad bean (Vicia faba L; Fam. Papilionaceae). J. Chem. Soc. (C). 2455–2462.

  • -, -, -,E. R. H. Jones, M. Le Quan, C. B. Page, &V. Thaller. 1965. An antifungal acetylenic keto-ester from a plant of the Papilionaceae family. Chem. Commun. 422–423.

  • Floss, H. G., H. Guenther, &L. A. Hadwiger. 1969. Biosynthesis of furano coumarins in diseased celery. Phytochemistry8: 585–588.

    CAS  Google Scholar 

  • Fokkema, N. J. 1968. The influence of pollen on the development ofCladosporium herbarum in the phyllosphere of rye. Netherlands J. Pl. Pathol.74: 159–165.

    Google Scholar 

  • Francis, C. M. &A. J. Millington. 1971. The presence of methylated coumestans in annualMedicago species: response to a fungal pathogen. Austral. J. Agric. Res.22: 75–80.

    CAS  Google Scholar 

  • Frank, J. A. &J. D. Paxton. 1970. Time sequence for phytoalexin production in Harosoy and Harosoy 63 soybeans. Phytopathology60: 315–318.

    CAS  Google Scholar 

  • Fujise, Y., T. Toda, &S. Ito. 1965. Isolation of trifolirhizin fromOnonis spinosa Chem. Pharm. Bull.13: 93–95.

    PubMed  CAS  Google Scholar 

  • Fukui, K. &M. Nakayama. 1965. Total synthesis of erosnin. Tetrahedron Lett. 2559–2562.

  • - & -.1966. Total synthesis of (±)-pterocarpin and (±)- pisatin. Tetrahedron Lett. 1805–1808.

  • ——, &T. Harano. 1969a. The synthesis of 3-hydroxy-8,9-dimethoxypterocarpan. Bull. Chem. Soc. Japan42: 233–236.

    CAS  Google Scholar 

  • ——,H. Tsuge, &K. Tsuzuki. 1968. The synthesis of (±)-maackiain. Experientia24: 536–537.

    PubMed  CAS  Google Scholar 

  • ——, &K. Tsuzuki. 1969b. The synthesis of (±)-4-methoxyptero-carpin. Experientia25: 122–123.

    CAS  Google Scholar 

  • Furuya, T. 1968. Metabolic products and their chemical regulations in plant tissue cultures. Kitasato Archs. Exp. Med.41: 47–64.

    CAS  Google Scholar 

  • — &A. Ikuta. 1968. The presence of 1-maackiain and pterocarpin in callus tissue ofSophora angustifolia. Chem. Pharm. Bull.16: 771.

    PubMed  CAS  Google Scholar 

  • Gadiev, R. 1969. Antibiotical substances of grape leaves forming during mildew infection. Sel’ Skokhoz Biol.4: 885–890.

    CAS  Google Scholar 

  • Gäumann, E. 1960. Nouvelles données sur les réactions chimiques de défense chez les Orchidées. Comp. Rend. Hebd. Séances Acad. Sci.250: 1944–1947.

    Google Scholar 

  • —. 1963. Sur les réactions de défense chimique les Orchidées. Comp. Rend. Hebd. Séances Acad. Sci.257: 2372–2376.

    Google Scholar 

  • Gäumann, E.. 1964. Weitere Untersuchungen über die chemische Infektabwehr der Orchideen. Phytopathol. Z.49: 211–232.

    Google Scholar 

  • — &H. R. Hohl. 1960. Weitere Untersuchungen über die chemischen Abwehrreaktionen der Orchideen. Phytopathol. Z.38: 93–104.

    Google Scholar 

  • — &O. Jaag. 1945. Über induzierte Abwehrreaktionen bei Pflanzen. Experientia1: 21–22.

    Google Scholar 

  • — &H. Kern. 1959a. Sur les réactions de défense chimiques chez les Orchidées. Comp. Rend. Hebd. Séances Acad. Sci.248: 2542–2544.

    Google Scholar 

  • ——. 1959b. Über die Isolierung und den chemischen Nachweis des Orchinols. Phytopathol. Z.35: 347–356.

    Google Scholar 

  • ——. 1959c. Über chemische Abwehrreaktionen bei Orchideen. Phytopathol. Z.36: 1–26.

    Google Scholar 

  • —,R. Braun, &G. Bazzigher. 1950. Über induzierte Abwehrreaktionen bei Orchideen. Phytopathol. Z.17: 36–62.

    Google Scholar 

  • —,E. Müller, J. Nüesch, &R. H. Rimpau. 1961. Über die Wurzelpilze vonLoroglossum hircinum (L.) Rich. Phytopathol. Z.41: 89–96.

    Google Scholar 

  • —,J. Nüesch, &.R. H. Rimpau. 1960. Weitere Untersuchungen über die chemischen Abwehrreaktionen der Orchideen. Phytopathol. Z.38: 274–308.

    Google Scholar 

  • Goode, M. J. 1967. Radioautographic evidence for induced resistance to anthracnose in cucumber. Phytopathology57: 1028–1030.

    Google Scholar 

  • Goto, R. 1937. Ethereal oil ofPerilla frutescens Brit. J. Pharm. Soc. Japan57: 77–91.

    CAS  Google Scholar 

  • Govindachari, T. R., K. Nagabajan, &B. R. Pai. 1956. Wedelolactone fromEclipta alba. J. Sci. Ind. Res. India15B: 664–665.

    CAS  Google Scholar 

  • -, -, -,Govindachari, T. R., K. Nagabajan, B. R. Pai, &P. C. Parthasarathy. 1957. Chemical investigation ofWedelia calendulacea. Part II. The position of the methoxyl group in wedelolactone. J. Chem. Soc. 545–547.

  • —,S. J. Patankar, &N. Viswanathan. 1971. Isolation and structure of two new dihydroisocoumarins fromKigelia pinnata. Phytochemistry10: 1603–1606.

    CAS  Google Scholar 

  • Gray, G. &W. L. Klarman. 1967. Comparison of phytoalexin produced by two soybean varieties differing by a single gene. Phytopathology57: 645(Abstr.).

    Google Scholar 

  • —— &M. Bridge. 1968. Relative quantities of antifungal metabolites produced in resistant and susceptible soybean plants inoculated withPhytophthora megasperma var.sojae and closely related non-pathogenic fungi. Canad. J. Bot.46: 285–288.

    CAS  Google Scholar 

  • Greathouse, G. A. 1939. Alkaloids fromSanguinaria canadensis and their influence on growth ofPhymatotrichum omnivorum. Pl. Physiol. (Lancaster).14: 377–380.

    CAS  Google Scholar 

  • — &N. E. Rigler. 1941. Alkaloids fromZephyranthes texana, Cooperia Pedunculata and other Amaryllidaceae and their toxicity toPhymatotrichum omnivorum. Amer. J. Bot.28: 702–704.

    CAS  Google Scholar 

  • — &G. M. Watkins. 1938. Berberine as a factor in the resistance ofMahonia trifoliolata andMahonia swaseyi toPhymatotrichum root rot. Amer. J. Bot.25: 743–748.

    CAS  Google Scholar 

  • Grove, J. F. 1968. The role of phytoaIexins in the resistance of higher plants to fungal infection. Pest Art. News Summ. Sec. B. Pl. Disease Contr.14: 25–30.

    Google Scholar 

  • Hadwiger, L. A. 1966. The biosynthesis of pisatin. Phytochemistry5: 523–525.

    CAS  Google Scholar 

  • —. 1967. Changes in phenylalanine metabolism associated with pisatin production. Phytopathology57: 1258–1259.

    CAS  Google Scholar 

  • —. 1968. Changes in plant metabolism associated with phytoalexin production. Netherlands J. Pl. Pathol.74: 163–169 (Suppl. 1).

    CAS  Google Scholar 

  • — &M. E. Schwochau. 1968. Stimulation of pisatin production inPisum sativum by actinomycin D and other compounds. Arch. Biochem. Biophys.126: 731–733.

    PubMed  Google Scholar 

  • ——. 1969. Host resistance responses—an induction hypothesis. Phytopathology59: 223–227.

    Google Scholar 

  • ——. 1970. Induction of phenylalanine ammonia-lyase and pisatin in pea pods by poly-lysine, spermidine or histone fractions. Biochem. Biophys. Res. Commun.38: 683–691.

    PubMed  CAS  Google Scholar 

  • —,S. L. Hess, &S. Von Broembsen. 1970. Stimulation of phenylalanine ammonia-lyase activity and phytoalexin production. Phytopathology60: 332–336.

    CAS  Google Scholar 

  • Hammerschlag, F. &W. L. Klarman. 1969. An antifungal principle produced by soybean plants inoculated with tobacco necrosis virus. Phytopathology59: 1557 (Abstr.).

    Google Scholar 

  • Hampton, R. 1962. Changes in phenolic compounds in carrot root tissue infected withThielaviopsis basicola. Phytopathology52: 413–415.

    CAS  Google Scholar 

  • Hanson, C. H., G. M. Loper, G. O. Kohler, E. M. Bickoff, K. W. Taylor, W. R Kehr, E. H. Stanford, J. W. Dudley, M. W. Pedersen, E. L. Sorensen, H. L. Carnahan, &C. P. Wilsie. 1965. Variation in coumestrol content of alfalfa as related to location, variety, cutting, year, stage of growth and disease. U. S. D. A. Tech. Bull. No. 1333.

  • Harano, T. 1970. Syntheses of demethoxyisoelliptone and some related compounds. J. Sci. Hiroshima Univ.34(A-II): 77–95.

    CAS  Google Scholar 

  • Hardegger, E., H. R. Biland, &H. Corrodi. 1963a. Synthese von 2,4-dimethoxy-6-hydroxyphenanthren und Konstitution des orchinols. Helv. Chim. Acta46: 1354–1360.

    Google Scholar 

  • —,N. Rigassi, J. Seres, C. Egli, P. Müller, &K. O. Fitzi. 1963b. Synthese von 2,4-dimethoxy-6-hydroxy-9,10-dihydrophenanthren. Helv. Chim. Acta46: 2543–2551.

    CAS  Google Scholar 

  • —,M. Schellenbaum, &H. Corrodi. 1963c. Über induzierte Abwehrstoffe bei Orchideen. II. Helv. Chim. Acta46: 1171–1180.

    CAS  Google Scholar 

  • Hare, R. C. 1966. Physiology of resistance to fungal diseases in plants. Bot. Rev.32: 95–137.

    CAS  Google Scholar 

  • Harper, S. H., A. D. Kemp, &W. G. E. Underwood. 1965a. Heartwood constituents ofSwartzia madagascariensis. Chemy. Ind. 562–563.

  • -, -, & -. 1965b. Heartwood constituents ofSwartzia madagascariensis. Chem. Commun. 309–310.

  • -, -, -, &R. V. M. Campbell. 1969. Pterocarpanoid constituents of the heartwoods ofPericopsis angolensis andSwartzia madagascariensis. J. Chem. Soc. (C). 1109–1116.

  • Hassall, C. H. &D. W. Jones. 1962. The biosynthesis of phenols. Part IV. A new metabolic product ofAspergillus terreus Thom. J. Chem. Soc. 4189–4191.

  • Hathway, D. E. &J. W. T. Seakins. 1959. Hydroxystilbenes ofEucalyptus wandoo. Biochem. J.72: 369–374.

    PubMed  CAS  Google Scholar 

  • Hegarty, B. F., J. R. Kelly, R. J. Park, &M. D. Sutherland. 1970. Terpenoid chemistry. XVII. (-)-ngaione, a toxic constituent ofMyoporum deserti. The absolute configuration of (-)-ngaione. Austral. J. Chem.23: 107–117.

    CAS  Google Scholar 

  • Heinstein, P. F., D. L. Herman, S. B. Tove, &F. H. Smith. 1970. Biosynthesis of gossypol. Incorporation of mevalonate-2-14C and isoprenyl pyrophosphates. J. Biol. Chem.245: 4658–4665.

    PubMed  CAS  Google Scholar 

  • —,F. H. Smith, &S. B. Tove. 1962. Biosynthesis of C14 labelled gossypol. J. Biol. Chem.237: 2643–2646.

    PubMed  CAS  Google Scholar 

  • Hendershot, W. F., C. W. Hesseltine, T. G. Pridham, R. G. Benedict, &R. W. Jackson. 1962. Ramulosin: Inhibitory effect against plant seeds and various fungi. Arch. Biochem. Biophys.96: 166–170.

    PubMed  CAS  Google Scholar 

  • Herndon, B. A., J. Kuć, &E. B. Williams. 1966. The role of 3-methyl-6-methoxy-8-hydroxy-3,4-dihydroisocoumarin in the resistance of carrot root toCeratocystis fimbriata andThielaviopsis basicola. Phytopathology56: 187–196.

    CAS  Google Scholar 

  • Hess, S. L. &M. E. Schwochau. 1969. Induction, purification and biosynthesis of phaseollin in excised pods ofPhaseolus vulgaris. Phytopathology59: 1030 (Abstr.).

    Google Scholar 

  • —,L. A. Hadwigeh, &M. E. Schwochau. 1971. Studies on biosynthesis of phaseollin in excised pods ofPhaseolus vulgaris. Phytopathology61: 79–82.

    CAS  Google Scholar 

  • Hietala, P. K. 1960. A countercurrent distribution method for separation of chemical compounds. Ann. Acad. Sci. Fenn. Ser. A. II. Chemica100: 1–69.

    Google Scholar 

  • — &A. I. Virtanen. 1960. Precursors of benzoxazolinone in rye plants. II. Precursor I, the glucoside. Acta Chem. Scand.14: 502–504.

    Google Scholar 

  • Higgins, V. J. 1969. Comparative abilities ofStemphylium botryosum and other fungi to induce and degrade phytoalexin from alfalfa. Ph.D. Thesis, Cornell University, U. S. A. 130p.

    Google Scholar 

  • — &R. L. Millar. 1968. Phytoalexin production by alfalfa in response to infection byColletotrichum phomoides, Helminthosporium turcicum, Stemphylium loti and S.botryosum. Phytopathology58: 1377–1383.

    CAS  Google Scholar 

  • ——. 1969a. Comparative abilities ofStemphylium botryosum andHelminthosporium turcicum to induce and degrade a phytoalexin from alfalfa. Phytopathology59: 1493–1499.

    PubMed  CAS  Google Scholar 

  • ——. 1969b. Degradation of alfalfa phytoalexin byStemphylium botryosum. Phytopathology59: 1500–1506.

    PubMed  CAS  Google Scholar 

  • ——. 1970. Degradation of alfalfa phytoalexin byStemphylium loti andColletotrichum phomoides. Phytopathology60: 269–271.

    CAS  Google Scholar 

  • ——,D. G. Smith, &A. G. McInnes. 1970. Purification and identification of alfalfa phytoalexin. Phytopathology60: 1295 (Abstr.).

    Google Scholar 

  • Hillis, W. E. &T. Inoue. 1968. The formation of polyphenols in trees-IV. The polyphenols formed inPinus radiata after Sirex attack. Phytochemistry7: 13–22.

    CAS  Google Scholar 

  • — &K. Isoi. 1965. Variation in the chemical composition ofEucalyptus sideroxylon. Phytochemistry4: 541–550.

    CAS  Google Scholar 

  • Hirose, Y. &T. Nakatsuka. 1959a. Terpenoids. Part IV. The structure of occidol, a new sesquiterpene alcohol fromThuja occidentalis L. Bull. Agric. Chem. Soc. Japan23: 143–144.

    CAS  Google Scholar 

  • ——. 1959b. Terpenoids. Part V. The synthesis of occidol. Bull. Agric. Chem. Soc. Japan23: 253–256.

    CAS  Google Scholar 

  • ——. 1959c. Terpenoids. Part VI. Further investigation on the constitution of occidentalol. Bull. Agric. Chem. Soc. Japan23: 140–141.

    CAS  Google Scholar 

  • —,M. Abu, &Y. Sekiya. 1961. The constituents of sweet potato fusel oil. J. Chem. Soc. Japan82: 725–730.

    CAS  Google Scholar 

  • Hiura, M. 1943. Studies on storage and rot of sweet potato. Rep. Gifu Agric. Coll.50: 1–5.

    Google Scholar 

  • Ho, H. H. 1969. Effects of root substances on the growth and sporulation ofPhytophthora megasperma var.sojae. J. Elisha Mitchell Sci. Soc.85: 97–100.

    Google Scholar 

  • Hocking, D. 1968. Cross-protection of green coffee berries from virulentGlomerella cingulata. Proc. Canad. Phytopathol. Soc. Winnipeg35: 18 (Abstr.).

    Google Scholar 

  • Honkanen, E., P. Karvonen, &A. I. Virtanen. 1969. On the biosynthesis of 2,4-dihydroxy-2H-1,4-benzoxazin-3-one in rye seedlings. Acta Chem. Fenn.42B: 445–447.

    Google Scholar 

  • Hortmann, A. G. &J. B. De Roos. 1969. The structure of (+)-occidentalol. A revision. J. Org. Chem.34: 736–738.

    CAS  Google Scholar 

  • Howell, C. R. 1967. Biochemical changes in onion seedlings associated with resistance to the onion smut fungus,Urocystis colchici. Diss. Abstr.28B: 421.

    Google Scholar 

  • Hubert, J. J. &A. W. Helton. 1967. A translocated resistance phenomenon inPrunus domestica induced by initial infection withCytospora cincta. Phytopathology57: 1094–1098.

    Google Scholar 

  • Hunter, L. D. &A. H. M. Kirby. 1968. Chemically based disease resistance in plants. Repts. Prog. Appl. Chem.53: 322–329.

    CAS  Google Scholar 

  • —,D. S. Kirkham, &R. C. Hignett. 1968. Active resistance to apple scab. J. Gen. Microbiol.53: 61–67.

    PubMed  CAS  Google Scholar 

  • Hutchinson, C. R. &E. Leete. 1970. Biosynthesis of α-methylene-γ-butyrolactone, the cyclized aglycone of tuliposide A. Chem. Commun. 1189–1190.

  • Imai, K. 1956. Studies on the essential oil ofArtemisia capillaris Thunb. III. Antifungal activity of the essential oil. (3). Structure of the antifungal principle capillin. J. Pharm. Soc. Japan76: 405–408.

    CAS  Google Scholar 

  • —,N. Ikeda, K. Tanaka, &S. Sugawara. 1956. Studies on the essential oil ofArtemisia capillaris Thunb. II. Antifungal activity of the essential oil. (2). Isolation of the antifungal principle. J. Pharm. Soc. Japan76: 400–404.

    CAS  Google Scholar 

  • Imaseki, H. &I. Uritani. 1964. Ipomeamarone accumulation and lipid metabolism in sweet potato infected by the black rot fungus. II. Accumulation mechanism of ipomeamarone in the infected region with special regard to contribution of the non-infected tissue. Pl. Cell Physiol.5: 133–143.

    CAS  Google Scholar 

  • Ina, K. &I. Ogura. 1970. Studies on the components ofPerilla essential oil. Part I. Neutral essential oil. J. Agric. Chem. Soc. Japan44: 209–212.

    CAS  Google Scholar 

  • — &I. Suzuki. 1971. Studies on the components ofPerilla essential oil. Part II. Furan derivatives in neutral essential oil. J. Agric. Chem. Soc. Japan45: 113–117.

    CAS  Google Scholar 

  • Irving, G. W. 1947. The significance of tomatin in plant and animal disease. J. Wash. Acad. Sci.37: 293–296.

    CAS  Google Scholar 

  • Ishizaka, N., K. Tomiyama, N. Katsui, A. Murai, &T. Masamune. 1969. Biological activities of rishitin, an antifungal compound isolated from diseased potato tubers and its derivatives. Pl. Cell Physiol.10: 183–192.

    CAS  Google Scholar 

  • Jain, T. C. &S. C. Bhattacharyya. 1959. Structure, stereochemistry and absolute configuration of agarol, a new sesquiterpene alcohol from agarwood oil. Tetrahedron Lett. No. 9, 13–17.

  • —,M. L. Maheshwari, &S. C. Bhattacharyya. 1962. Terpenoids. XXX. The composition of the oil from uninfected agarwood (Aquilaria agallocha Roxb.). Perfumery, Essential Oil Rec.53: 294–298.

    CAS  Google Scholar 

  • Jerome, S. M. R. &K. O. Müller. 1958. Studies on phytoalexins. II. Influence of temperature on resistance ofPhaseolus vulgaris towardsSclerotinia fructicola with reference to phytoalexin output. Austral. J. Biol. Sci.11: 301–314.

    Google Scholar 

  • Johann, H. &A. D. Dickson. 1945. A soluble substance in cornstalks that retards growth ofDiplodia zeae in culture. J. Agric. Res.71: 89–110.

    CAS  Google Scholar 

  • Johnson, G. &L. A. Schaal. 1952. Relation of chlorogenic acid to scab resistance in potato. Science115: 627–629.

    PubMed  CAS  Google Scholar 

  • Johnson, L. B. 1970a. Symptom development and resistance in safflower hypocotyls toPhytophthora drechsleri. Phytopathology60: 534–537.

    Google Scholar 

  • —. 1970b. Influence of infection byPhytophthora drechsleri on inhibitory materials in resistant and susceptible safflower hypocotyls. Phytopathology60: 1000–1004.

    CAS  Google Scholar 

  • — &J. M. Klisiewicz. 1969. Environmental effects on safflower reaction toPhytophthora drechsleri. Phytopathology59: 469–472.

    Google Scholar 

  • Jorgensen, E. 1961. The formation of pinosylvin and its monomethyl ether in the sapwood ofPinus resinosa Ait. Canad. J. Bot.39: 1765–1772.

    CAS  Google Scholar 

  • Jurd, L. 1959. Plant polyphenols. X. 7- and 4′-0-methylcoumestrol. J. Org. Chem.24: 1786–1788.

    CAS  Google Scholar 

  • -. 1963. The synthesis of coumestrol from a flavylium salt. Tetrahedron Lett. 1151–1153.

  • —. 1965. Synthesis of 7-hydroxy-5′,6′-methylenedioxy-benzofurano (3′,2′: 3,4) coumarin (medicagol). J. Pharm. Sci.54: 1221–1222.

    PubMed  CAS  Google Scholar 

  • Kalra, V. K., A. S. Kukla, &T. R. Seshadri. 1966. Synthesis of racemic 8-methoxyhomopterocarpin. Indian J. Chem.4: 201.

    CAS  Google Scholar 

  • ———. 1967. Synthesis of new types of pterocarpans. Indian J. Chem.5: 607–609.

    CAS  Google Scholar 

  • Kalyanasundaram, R. 1963. The physiology of toxic action and defence reactions in infectious diseases of plants. J. Madras Univ.33B: 137–178.

    CAS  Google Scholar 

  • Kato, N., H. Imaseki, N. Nakashima, &I. Uritani. 1971. Structure of a new sesquiterpenoid, ipomeamaronol in diseased sweet potato root tissue. Tetrahedron Lett. 843–846.

  • Katsui, N., A. Matsunaga, K. Imaizumi, T. Masamune, &K. Tomiyama. 1971. The structure and synthesis of rishitinol, a new sesquiterpene alcohol from diseased potato tubers (1). Tetrahedron Lett. 83–86.

  • -,A. Murai, M. Takasugi, K. Imaizumi, &T. Masamune. 1968. The structure of rishitin, a new antifungal compound from diseased potato tubers. Chem. Commun. 43.

  • Katsura, S. 1942a. Studies on the constituents of the volatile oil from the root ofChamaecyparis formosensis Matsum. Part II. J. Chem. Soc. Japan63: 1465–1469.

    CAS  Google Scholar 

  • —. 1942b. Studies on the constituents of the volatile oil from the root ofChamaecyparis formosensis Matsum. Part VI. J. Chem. Soc. Japan63: 1483–1485.

    CAS  Google Scholar 

  • Kawamura, S. 1938. Constitution of rhapontin. J. Pharm. Soc. Japan58: 83–85.

    Google Scholar 

  • Kawase, Y. 1959. Reactions of active methylene compounds. VI. A new synthesis of coumestrol, 6,7′-dihydroxy-coumarino (3′,4′: 3,2) coumarone. Bull. Chem. Soc. Japan32: 690–691.

    CAS  Google Scholar 

  • Keeling, B. L. 1967. Studies on the nature of barley resistance toHelminthosporium teres. Diss. Abstr.27B: 4208–4209.

    Google Scholar 

  • Keen, N. T. 1971. Hydroxyphaseollin production by soybeans resistant and susceptible toPhytophthora megasperma var.sojae. Physiol. Pl. Pathol.1: 265–275.

    CAS  Google Scholar 

  • Kepler, J. A., M. E. Wall, J. E. Mason, C. Bassett, A. T. McPhail, &G. A. Sim. 1967. The structure of fomannosin, a novel sesquiterpene metabolite of the fungusFomes annosus. J. Amer. Chem. Soc.89: 1260–1261.

    CAS  Google Scholar 

  • Khastgir, H. N., P. C. Duttagupta, &P. Sengupta. 1961. The structure of psoralidin. Tetrahedron14: 275–283.

    Google Scholar 

  • King, F. E. &M. F. Grundon. 1949. The constitution of chlorophorin, a constituent of Iroko, the timber ofChlorophora excelsa. Part I. J. Chem. Soc. 3348–3352.

  • -,C. B. Cotterill, D. H. Godson, L. Jurd, &T. J. King. 1953. The chemistry of extractives from heartwoods. Part XIII. Colourless constituents ofPterocarpus species. J. Ohem. Soc. 3693–3697.

  • -,M. F. Grundon, &K. G. Neill. 1952. The chemistry of extractives from heartwoods. Part IX. Constituents of the heartwood ofFerreirea spectabilis. J. Chem. Soc. 4580–4584.

  • King, T. J. &L. B. De Silva. 1968. Optically active gossypol fromThespesia populnea. Tetrahedron Lett. 261–263.

  • Kiyosawa, S. &H. Fujimaki. 1967. Studies on mixture inoculation ofPyricularia oryzae on rice. I. Effects of mixture inoculation and concentration on the formation of susceptible lesions in the injection inoculation. Bull. Natl. Inst. Agric. Sci. Ser. D. Pl. Physiol.17: 1–19.

    Google Scholar 

  • Klarman, W. L. 1965. Heat induced susceptibility of soybeans to non-pathogenic fungi. Phytopathology55: 505(Abstr.).

    Google Scholar 

  • —. 1968. The importance of a phytoalexin in determining resistance of soybeans to three isolates ofPhytophthora. Netherlands J. Pl. Pathol.74: 171–175 (Suppl. 1).

    CAS  Google Scholar 

  • — &J. W. Gerdemann. 1963a. Induced susceptibility in soybean plants genetically resistant toPhytophthora sojae. Phytopathology53: 863–864.

    Google Scholar 

  • ——. 1963b. Resistance of soybeans to threePhytophthora species due to the production of a phytoalexin. Phytopathology53: 1317–1320.

    Google Scholar 

  • — &J. B. Sanford. 1968. Isolation and purification of an antifungal principle from infected soybeans. Life Sci.7: 1095–1103.

    PubMed  CAS  Google Scholar 

  • Klement, Z. &L. Lovrekovich. 1961. Defence reactions induced by phytopathogenic bacteria in bean pods. Phytopathol. Z.41: 217–227.

    Google Scholar 

  • ——. 1962. Studies on host-parasite relations in bean pods infected with bacteria. Phytopathol. Z.45: 81–88.

    Google Scholar 

  • Klinkowski, M. 1966a. Phytoalexine: Begriff und methodische Fragen. Ein Beitrag zur Phytoalexin-Theorie von K. O. Müller. Forsch. & Fortschr.40: 321–327.

    Google Scholar 

  • -. 1966b. Die Phytoalexin-theorie von K. O. Müller. Abh. Sächs. Acad. Wiss. Leipzig, Math—Naturwiss. Kl. 49 No. 3: 1–23.

  • Klisiewicz, J. M. &L. B. Johnson. 1968. Host parasite relationship in safflower resistant and susceptible toPhytophthora root rot. Phytopathology58: 1022–1025.

    Google Scholar 

  • Klun, J. A. &T. A. Brindley. 1966. Role of 6-methoxybenzoxazolinone in inbred resistance of host plant (maize) to first-brood larvae of European corn borer. J. Econ. Entomol.59: 711–718.

    CAS  Google Scholar 

  • — &J. F. Robinson. 1969. Concentration of two 1,4-benzoxazinones in dent corn at various stages of development of the plant and its relation to resistance of the host plant to the European corn borer. J. Econ. Entomol.62: 214–220.

    CAS  Google Scholar 

  • —,W. D. Guthrie, A. R. Hallauer, &W. A. Russell. 1970. Genetic nature of the concentration of 2,4-dihydroxy-7-methoxy-2H-l,4-benzoxazin-3 (4H)-one and resistance to the European corn borer in a diallel set of eleven maize inbreds. Crop Sci. (Madison)10: 87–90.

    CAS  Google Scholar 

  • —,C. L. Tipton, &T. A. Brindley. 1967. 2,4-dihydroxy-7-methoxy-l,4-benzoxazin-3-one (DIMBOA), an active agent in the resistance of maize to the European corn borer. J. Econ. Entomol.60: 1529–1533.

    CAS  Google Scholar 

  • Kojima, R., S. Fukushima, A. Ueno, &Y. Saiki. 1970. Antitumor activity of Leguminosae plants constituents. I. Antitumor activity of constituents ofSophora subprostrata. Chem. Pharm. Bull.18: 2555–2563.

    PubMed  CAS  Google Scholar 

  • Komatsu, M., T. Tomimori, K. Hatayama, &Y. Makiguchi. 1970. Studies on the constituents ofSophora species. III. Constituents of the root ofSophora subprostrata Chun et T. Chen (3). J. Pharm. Soc. Japan90: 459–462.

    CAS  Google Scholar 

  • Koshimizu, K., E. Y. Spencer, &A. Stoessl. 1963. The antifungal factor in barley. Canad. J. Bot.41: 744–746.

    CAS  Google Scholar 

  • Koyama, T. 1955. Constituents ofCoix species. II. Chemical structure of coixol. J. Pharm. Soc. Japan75: 702–704.

    CAS  Google Scholar 

  • — &M. Yamato. 1955. Constituents ofCoix species. I. Constituents of the root ofCoix lachryma-jobi. J. Pharm. Soc. Japan75: 699–701.

    CAS  Google Scholar 

  • —— &K. Kubota. 1956. Constituents ofCoix species.III. Syntheses of coixol and its related compounds. J. Pharm. Soc. Japan76: 1002–1005.

    CAS  Google Scholar 

  • Krishnaswamy, N. R. &S. Prasanna. 1970. Occurrence of desmethylwedelolactone and 2-formyl-α-terthienyl inEclipta alba and the facile oxidation of αterthienylmethanol. Indian J. Chem.8: 761–762.

    CAS  Google Scholar 

  • — &T. R. Seshadri. 1962. Naturally occurring phenylcoumarins. In: Recent Progress in the Chemistry of Natural and Synthetic Colouring Matters and Related Fields. Gore, T. S., B. S. Joshi, S. V. Sunthankar, & B. D. Tilak. (Eds.). Academic Press, New York, 235–253.

    Google Scholar 

  • Krzywanski, Z. 1970. Phytoalexins. Wiad. Bot.14: 109–124.

    CAS  Google Scholar 

  • Kubota, T. 1958. Volatile constituents of black-rotted sweet potato and related substances. Tetrahedron4: 68–86.

    CAS  Google Scholar 

  • -, &N. Ichikawa. 1954a. On the chemical constitution of ipomeanine, a new ketone from the black-rotted sweet potato. Chemy. Ind. 902–903.

  • ——, 1954b. Studies on the black rot disease of sweet potato. IX. On the chemical constitution of ipomeanine. J. Chem. Soc. Japan75: 450–456.

    Google Scholar 

  • - &K. Naya. 1954. On the chemical constitution of batatic acid. A new furan keto-acid from the black rotted sweet potato. Chemy. Ind. 1427.

  • — &T. Matsuuba. 1952a. Investigation on the chemical constitution of ipomeamarone. I. Ozonolysis of ipomeamarone and constitution of ipomic lactone. Proc. Imp. Acad. Japan28: 44–47.

    CAS  Google Scholar 

  • ——. 1952b. Investigation on the chemical constitution of ipomeamarone. II. On the constitution of ipomeanic acid. Proc. Imp. Acad. Japan28: 83–84.

    CAS  Google Scholar 

  • ——. 1952c. Chemical studies on the black rot disease of sweet potato. II. Ozonolysis of ipomeamarone. J. Inst. Polytechn. Osaka City Univ. Ser. C. Chem.2: 94–102.

    Google Scholar 

  • ——. 1952d. Chemical studies on the black rot disease of sweet potato. III. On the constitution of ipomic lactone, the ozonolysis product of ipomeamarone. J. Inst. Polytechn. Osaka City Univ. Ser. C. Chem.2: 103–109.

    Google Scholar 

  • ——. 1952e. Investigation on the chemical constitution of ipomeamarone. III. On the chemical constitution of ipomeamarone. Proc. Imp. Acad. Japan28: 198–199.

    CAS  Google Scholar 

  • —— 1953a. Chemical studies on the black rot disease of sweet potato. IV. On the chemical constitution of ipomeanic acid, the ozonolysis product of ipomeamarone. J. Inst. Polytechn. Osaka City Univ. Ser. C. Chem.4: 104–107.

    CAS  Google Scholar 

  • ——. 1953b. Chemical studies on the black rot disease of sweet potato. III. Ozonolysis of ipomeamarone. J. Chem. Soc. Japan74: 101–109.

    Google Scholar 

  • ——, 1953c. Chemical studies on the black rot disease of sweet potato. VII. The reaction of ipomeamarone with phenyl magnesium bromide. J. Inst. Polytechn. Osaka City Univ. Ser. C. Chem.4: 248–252.

    Google Scholar 

  • ——. 1953d. Chemical studies on the black rot disease of sweet potato. V. On the chemical constitution of ipomeamarone. J. Inst. Polytechn. Osaka City Univ. Ser. C. Chem.4: 108–111.

    CAS  Google Scholar 

  • ——. 1953e. Chemical studies on the black rot disease of sweet potato. VI. On the chemical structure of ipomeamarone. J. Chem. Soc. Japan74: 248–251.

    Google Scholar 

  • - & -.1956. The synthesis of (±)-ipomeamarone. Chemy. Ind. 521–522.

  • - & -.1957. The constitution of myoporone, a new furanoterpene fromMyoporum. Chemy. Ind. 491–492.

  • - & -. 1958a. The synthesis of (±)-ipomeamarone [(±)-ngaione] and its steric isomers. J. Chem. Soc. 3667–3673.

  • ——. 1958b. On the constitution of myoporone (Natural furan derivatives. IL). Bull. Chem. Soc. Japan31: 491–494.

    CAS  Google Scholar 

  • —— &N. Ichikawa. 1954. Chemical studies on the black rot disease of sweet potato. VIII. On the reaction of phenyl magnesium bromide on ipomeamarone. J. Chem. Soc. Japan75: 447–450.

    Google Scholar 

  • —,H. Yamaguchi, K. Naya, &T. Matsuura. 1952a. Chemical studies on the black rot disease of sweet potato. I. On volatile substances of blackrotted sweet potato. J. Inst. Polytechn. Osaka City Univ. Ser. C. Chem.2: 82–93.

    CAS  Google Scholar 

  • ————. 1952b. Chemical studies on the black rot disease of sweet potato. I. On the volatile constituents of black rotted sweet potato. J. Chem. Soc. Japan73: 897–899.

    CAS  Google Scholar 

  • ————. 1953. Chemical studies on the black rot disease of sweet potato. II. Some properties of ipomeamarone. J. Chem. Soc. Japan74: 44–47.

    Google Scholar 

  • Kuć, J. 1957. A biochemical study of the resistance of potato tuber tissue to attack by various fungi. Phytopathology47: 676–680.

    Google Scholar 

  • —. 1968. Biochemical control of disease resistance in plants. World Rev. Pest Control7: 42–55.

    Google Scholar 

  • —,A. J. Ullstrup, &F. W. Quackenbush. 1955. Production of fungistatic substances by plant tissue after inoculation. Science122: 1186–1187.

    PubMed  Google Scholar 

  • —,R. E. Henze, A. J. Ullstrup, &F. W. Quackenbush. 1956. Chlorogenic and caffeic acids as fungistatic agents produced by potatoes in response to inoculation withHelminthosporium carbonum J. Amer. Chem. Soc.78: 3123–3125.

    Google Scholar 

  • Lai, M., G. Semeniuk, &C. W. Hesseltine. 1968. Nutrients affecting ochratoxin-A production byAspergillus spp. Phytopathology58: 1056 (Abstr.).

    Google Scholar 

  • Lam, J., F. Kaufmann, &O. Bendixen. 1968. Chemical constituents of the genusDahlia. III. A chemotaxonomic evaluation of someDahlia coccinea strains. Phytochemistry7: 269–275.

    CAS  Google Scholar 

  • Leath, K. T. &J. B. Rowell. 1970. Nutritional and inhibitory factors in the resistance ofZea mays toPuccinia graminis. Phytopathology60: 1097–1100.

    CAS  Google Scholar 

  • Lebreton, P., K. R. Markham, W. T. Swift, Oung-Boran, &T. J. Mabry. 1967. Flavanoids ofBaptisia australis (Leguminosae). Phytochemistry6: 1675–1680.

    CAS  Google Scholar 

  • Leonhardt, H. &K. Fay. 1935. Zur Kenntnis der Inhaltsstoffe des roten Sandelholzes. Pterokarpin. Arch. Pharm. & Ber. Deutsch. Pharm. Ges.273: 53–60.

    CAS  Google Scholar 

  • — &E. Oechler. 1935. Zur Kenntnis der Inhaltsstoffe des roten Sandelholzes. Homopterokarpin. Arch. Pharm. & Ber. Deutsch. Pharm. Ges.273: 447–452.

    CAS  Google Scholar 

  • Letcher, R. M., D. A. Widdowson, B. J. Deverall, &J. W. Mansfield. 1970. Identification and activity of wyerone acid as a phytoalexin in broad bean (Vicia faba) after infection byBotrytis. Phytochemistry9: 249–252.

    CAS  Google Scholar 

  • Lim, S. M., A. L. Hooker, &J. D. Paxton. 1970. Isolation of phytoalexins from corn with monogenic resistance toHelminthosporium turcicum. Phytopathology60: 1071–1075.

    CAS  Google Scholar 

  • —,J. D. Paxton, &A. L. Hooker. 1968. Phytoalexin production in corn resistant toHelminthosporium turcicum. Phytopathology58: 720–721.

    Google Scholar 

  • Lin, J., S. Yoshida, &N. Takahashi. 1971. Metabolites produced byStreptomyces mobaraensis. Agric. Biol. Chem.35: 363–369.

    CAS  Google Scholar 

  • Link, K. P. &J. C. Walker. 1933. The isolation of oatechol from pigmented onion scales and its significance in relation to disease resistance in onions. J. Biol. Chem.100: 379–383.

    CAS  Google Scholar 

  • —,H. R. Angell, &J. C. Walker. 1929a. The isolation of protocatechuic acid from pigmented onion scales and its significance in relation to disease resistance in onions. J. Biol. Chem.81: 369–375.

    CAS  Google Scholar 

  • —,A. D. Dickson, &J. C. Walker. 1929b. Further observations on the occurrence of protocatechuic acid in pigmented onion scales and its relation to disease resistance in onion. J. Biol. Chem.84: 719–725.

    CAS  Google Scholar 

  • Livingston, A. L., E. M. Bickoff, R. E. Lundin, &L. Jurd. 1964. Trifoliol, a new coumestan from ladino clover. Tetrahedron20: 1963–1970.

    CAS  Google Scholar 

  • S. C. Witt, R. E. Lundin, &E. M. Bickoff. 1965. Medicagol, a new coumestan from alfalfa. J. Org. Chem.30: 2353–2358.

    CAS  Google Scholar 

  • Locci, R. &J. Kuć. 1967. Steroid alkaloids as compounds produced by potato tubers under stress. Phytopathology57: 1272–1273.

    CAS  Google Scholar 

  • Loder, J. W., S. Mongolsuk, A. Robertson, &W. B. Whalley. 1957. Diospyrol, a constituent ofDiospyros mollis. J. Chem. Soc. 2233–2237.

  • Loman, A. A. 1970. The effect of heartwood fungi ofPinus contorta var.latifolia on pinosylvin, pinosylvinmonomethyl ether, pinobanksin and pinocembrin. Canad. J. Bot.48: 737–747.

    CAS  Google Scholar 

  • Long, D. W. 1963. Inhibition ofFusarium wilt symptoms in cowpea by species ofCephalosporium. Phytopathology53: 881(Abstr.).

    Google Scholar 

  • Loper, G. M. 1968a. Accumulation of coumestrol in barrel medic (Medicago littoralis). Crop Sci. (Madison)8: 317–319.

    Google Scholar 

  • — 1968b. Effect of aphid infestation on the coumestrol content of alfalfa varieties differing in aphid resistance. Crop Sci. (Madison)8: 104–106.

    CAS  Google Scholar 

  • — &C. H. Hanson. 1964. Influence of controlled environmental factors and two foliar pathogens on coumestrol in alfalfa. Crop Sci. (Madison)4: 480–482.

    CAS  Google Scholar 

  • —— &J. H. Graham. 1967. Coumestrol content of alfalfa as affected by selection for resistance to foliar diseases. Crop Sci. (Madison)7: 189–192.

    CAS  Google Scholar 

  • Ludwig, R. A., E. Y. Spencer, &C. H. Unwin. 1960. An antifungal factor from barley of possible significance in disease resistance. Canad. J. Bot.38: 21–29.

    CAS  Google Scholar 

  • Lukefahr, M. D. &D. F. Martin. 1966. Cotton plant pigments as a source of resistance to the bollworm and tobacco budworm. J. Econ. Entomol.59: 176–179.

    CAS  Google Scholar 

  • Lyman, C. M., A. S. El-Nockrashy, &J. W. Dollahite. 1963. Gossyverdurin. A newly isolated pigment from cottonseed pigment gland. J. Amer. Oil Chem. Soc.40: 571–575.

    CAS  Google Scholar 

  • Lyman, R. L., E. M. Bickoff, A. N. Booth, &A. L. Livingston. 1959. Detection of coumestrol in leguminous plants. Arch. Biochem. Biophys.80: 61–67.

    CAS  Google Scholar 

  • Lyr, H. 1961. Hemmungsanalytische Untersuchungen an einigen Ektoenzymen Holzzerstörender Pilze. Enzymologia23: 231–248.

    PubMed  CAS  Google Scholar 

  • Maekawa, E. &K. Kitao. 1970. Isolation of pterocarpanoid compounds as heartwood constituents ofMaackia amurensis var.Buergeri. Wood Res.50: 29–35.

    CAS  Google Scholar 

  • Magrou, J. 1924a. L’ immunité humorale chez les plantes. Rev. Pathol. Vég. Entomol. Agric. France11: 189–192.

    Google Scholar 

  • —. 1924b. A propos du pouvoir fungicide des tubercules d’ ophrydées. Ann. Sci. Nat. Bot.6: 265–270.

    Google Scholar 

  • Maizel, J. V., H. J. Burkhardt, &H. K. Mitchell. 1964. Avenacin, an antimicrobial substance isolated fromAvena sativa. I. Isolation and antimicrobial activity. Biochemistry3: 424–426.

    CAS  Google Scholar 

  • Mallabaev, A., M. R. Yagudaev, I. M. Saitbaeva, &G. P. Sidyakin. 1970. Isocoumarin artemidin fromArtemisia dracunculus. Khim. Prir. Soedin.6: 467–468.

    CAS  Google Scholar 

  • Mansfield, J. W. &B. J. Deverall. 1971. Mode of action in breaking resistance ofVicia faba toBorryris cinerea. Nature232: 339.

    PubMed  CAS  Google Scholar 

  • Marchlewski, L. 1899. Gossypol, ein Bestandtheil der Baumwollsamen. J. Prakt. Chem.60: 84–90.

    CAS  Google Scholar 

  • Martin, J. T. 1967. Natural chemical protection in plants. Proc. 4th British Insect. Fungic. Conf.2: 557–561.

    CAS  Google Scholar 

  • —,E. A. Baker, &R. J. W. Byrde. 1966. The fungitoxicities of plant furocoumarins. Ann. Appl. Biol.57: 501–508.

    CAS  Google Scholar 

  • Maruzzella, J. C. 1960. The anti-fungal properties of essential oil vapours. Soap, Perfumery, Cosmetics33: 835–837.

    Google Scholar 

  • — &J. Balter. 1959. The action of essential oils on phytopathogenic fungi. Pl. Dis. Reporter43: 1143–1147.

    CAS  Google Scholar 

  • — &L. Liguori. 1958. The in vitro antifungal activity of essential oils. J. Amer. Pharm. Assoc.47: 250–254.

    CAS  Google Scholar 

  • —,J. Balter, &A. Katz. 1959a. The action of perfume oil vapours on fungi. Amer. Perfumer, Aromatics74: 21–22.

    CAS  Google Scholar 

  • ———. 1959b. Further studies on the action of perfume oil vapours on micro-organisms. Perfumery, Essential Oil Rec.50: 955–957.

    Google Scholar 

  • —,D. A. Scrandis, J. B. Scrandis, &G. Grabon. 1960. Action of odoriferous organic chemicals and essential oils on wood destroying fungi. PI. Dis. Reporter44: 789–792.

    CAS  Google Scholar 

  • Matsui, M., K. Mori, &S. Arasaki. 1964. Synthesis of isocoumarins. Part I. (±)-mellein. Agric. Biol. Chem.28: 896–899.

    CAS  Google Scholar 

  • —— &Y. Ozawa. 1966. Synthesis of isocoumarins. Part II. Oospolactone. Agric. Biol. Chem.30: 193–195.

    CAS  Google Scholar 

  • Matsuura, T. 1956. Chemische Untersuchungen über Schwarz-flecke der Batate. XI. Mitteil. Synthese des Ipomeamarons und seiner damit zusammenhängenden Verbindungen II. Synthese des Phenylanalogs von Ipomeamaron. J. Inst. Polytechn. Osaka City Univ. Ser. C. Chem.5: 42–48.

    Google Scholar 

  • —,K. Naya, &T. Kubota. 1956. Chemical studies on the black rot disease of sweet potato. XI. Synthesis of phenyl-analog of ipomeamarone. J. Chem. Soc. Japan77: 248–251.

    CAS  Google Scholar 

  • McDowall, F. H. 1925. Constituents ofMyoporum laetum Forst. (The “Ngaio”). Part I. J. Chem. Soc.127: 2200–2207.

    CAS  Google Scholar 

  • -. 1927. Constituents ofMyoporum laetum, Forst. (The “Ngaio”). Part II. Hydrogenation of ngaione and ngaiol and dehydration of ngaiol. J. Chem. Soc. 731–740.

  • -. 1928. Constituents ofMyoporum laetum Forst. (The “Ngaio”). Part III. The oxide rings of ngaione. J. Ohem. Soc. 1324–1331.

  • McGahren, W. J. &L. A. Mitscher. 1968. Dihydroisocoumarins from aSporormia fungus. J. Org. Chem.33: 1577–1580.

    CAS  Google Scholar 

  • McGookin, A., A. Robertson, &W. B. Whalley. 1940. The chemistry of the “Insoluble Red” woods. Part I. Pterocarpin and homopterocarpin. J. Chem. Soc. 787–795.

  • McLean, J. G., D. Le Tootneau, &J. W. Guthrie. 1961. Relation of histochemical tests for phenols toVerticillium wilt resistance of potatoes. Phytopathology51: 84–89.

    CAS  Google Scholar 

  • McMichael, S. C. 1960. Combined effects of glandless genes gl2 and gl3 on pigment glands in the cotton plant. Agron. J.52: 385–386.

    Google Scholar 

  • Menke, G. H., P. N. Patel, &J. C. Walker. 1964. Physiology ofRhizopus stolonifer infection on carrot. Z. Pflanzenkrankh.71: 128–140.

    CAS  Google Scholar 

  • Metlitskii, L. V. &O. L. Ozeretskovskaya. 1970. Phytoncides and phytoalexins and their role in plant immunity. Mikol. Fitopatol.4: 146–156.

    CAS  Google Scholar 

  • ——,N. I. Vasyukova, M. A. Davydova, N. A. Dorozhkin, Z. I. Remneva, &V. G. Ivanyuk. 1970. Potato resistance toPhytophthora infestons as related to leaf phytoalexin activity. Prikl. Biokhim. Mikrobiol.6: 568–573.

    CAS  Google Scholar 

  • Meyer, W. A., P. N. Thapliyal, J. A. Frank, &J. B. Sinclair. 1971. Detection of phytoalexin in soybean roots. Phytopathology61: 584–585.

    CAS  Google Scholar 

  • Minamikawa, T., T. Akazawa, &I. Uritani. 1963. Analytical study of umbelliferone and scopoletin synthesis in sweet potato roots infected byCeratocystis fimbriata. Pl. Physiol. (Lancaster)38: 493–497.

    CAS  Google Scholar 

  • ———. 1964. Two glucosides of coumarin derivatives in sweet potato roots infected byCeratocystis fimbriata. Agric. Biol. Chem.28: 230–233.

    CAS  Google Scholar 

  • Mitchell, J. W., N. Mandava, J. F. Worley, &M. E. Drowne. 1971. Fatty hormones in pollen and immature seeds of bean. J. Agric. Food Chem.19: 391–393.

    CAS  Google Scholar 

  • ———,J. R. Plimmer, &M. V. Smith. 1970. Brassins-a new family of plant hormones from rape pollen. Nature225: 1065–1066.

    PubMed  CAS  Google Scholar 

  • Mitscher, L. A., W. Andres, &W. McCrae. 1964. Reticulol, a new metabolic isocoumarin. Experientia20: 258–259.

    PubMed  CAS  Google Scholar 

  • Mizukami, T. 1953. Observations on the reactions of plants to the infection of some pathogens. I. On the difference of the influence of the barley juice on the conidial germination ofFusarium nivale and F.solani. Ann. Phytopathol. Soc. Japan17: 57–60.

    Google Scholar 

  • Molot, P. M. 1969a. Recherches sur la résistance du mais a l’ Helminthosporiose et aux Fusarioses. II. Facteurs de résistance. Ann. Phytopathol.1: 353–366.

    CAS  Google Scholar 

  • —. 1969b. Recherches sur la résistance du mais a l’ Helminthosporiose et aux Fusarioses. III Mode d’ action des composés phénoliques. Ann. Phytopathol.1: 367–383.

    CAS  Google Scholar 

  • — &P. Anglade. 1968. Résistance commune des lignées de mais a l’ Helminthosporiose (Helminthosporium turcicum Pass.) et a la pyrale (Ostrinia nubilalis HBN.) en relation avec la présence d’ une substance identifiable a la 6-méthoxy-2-(3)-benzoxazolinone. Ann. Épiphyties19: 75–95.

    Google Scholar 

  • Mongolsuk, S., A. Robertson, &R. Towers. 1957. 2:4:3′:5′-tetrahydroxystilbene fromArtocarpus lakoocha. J. Chem. Soc. 2231–2233.

  • Moore, A. T. &M. L. Rollins. 1961. New information on the morphology of the gossypol pigment gland of cottonseed. J. Amer. Oil Chem. Soc.38: 156–160.

    Google Scholar 

  • Moore, L. D. &W. H. Wills. 1969. Heat-induced susceptibility of black shank resistant tobacco toPhytophthora parasitica var.nicotianae. Phytopathology59: 1974–1975.

    Google Scholar 

  • Müller, K. O. 1956. ige einfache Versuche zum Nachweis von Phytoalexinen. Phytopathol. Z.27: 237–254.

    Google Scholar 

  • — 1958a. Studies on phytoalexins. I. The formation and the immunological significance of phytoalexin produced byPhaseolus vulgaris in response to infection withSclerotinia fructicola andPhytophthora infestans. Austral. J. Biol. Sci.11: 275–300.

    Google Scholar 

  • —. 1958b. Relationship between phytoalexin output and the number of infections involved. Nature182: 167–168.

    Google Scholar 

  • —. 1959. The phytoalexin concept and its methodological significance.In: Recent Advan. Bot. (9th International Botanical Congress)1: 396–400.

    Google Scholar 

  • —. 1969. Die Phytoalexine, in Sicht einer allgemeinen Immunbiologie. Zentralbl. Bakteriol. Hyg. 2. Abt.123: 259–265.

    Google Scholar 

  • — &H. Börger. 1940. Experimentelle Untersuchungen über die Phytophthora—Resistenz der Kartoffel. Arb. Biol. Reichsanstalt. Landw. Forstw. Berlin23: 189–231.

    Google Scholar 

  • Muller P. 1964. A. Synthesen in der Furanreihe. B. Synthese von Dehydroorchinol. Diss. Eidgenössischen Technischen Hochschule, Zürich, Nr. 3588, 64p.

  • Mulvena, D., E. C. Webb, &B. Zerner. 1969. 3,4-dihydroxybenzaldehyde, a fungistatic substance from green Cavendish bananas. Phytochemistry8: 393–395.

    CAS  Google Scholar 

  • Mussell, H. W. &R. C. Staples. 1971. Phytoalexin-like compounds apparently involved in strawberry resistance toPhytophthora fragariae. Phytopathology61: 515–517.

    CAS  Google Scholar 

  • Nakatsuka, T. &Y. Hirose. 1956. Terpenoids. Part I. The structure of occidentalol, a new sesquiterpene alcohol fromThuja occidentalis L. Bull. Agric. Chem. Soc. Japan20: 215–218.

    CAS  Google Scholar 

  • Nakazaki, M. 1962. Absolute configuration of (+)-occidol. Bull. Chem. Soc. Japan35: 1387–1389.

    Google Scholar 

  • Nicolls, J. M. 1970. Antifungal activity inPassiflora species. Ann. Bot. (London)34: 229–237.

    Google Scholar 

  • Nishikawa, E. 1933. Biochemistry of filamentous fungi. No. 2. A metabolic product ofAspergillus melleus Yukawa. J. Agric. Chem. Soc. Japan9: 772–774.

    CAS  Google Scholar 

  • Nishimura, S. 1964. Interactions betweenHelminthosporium victoriae spores and oat leaves. Phytopathology54: 902(Abstr.).

    Google Scholar 

  • — &R. P. Scheffer. 1965. Interactions betweenHelminthosporium victoriae spores and oat tissue. Phytopathology55: 629–634.

    Google Scholar 

  • Nitta, K., J. Imai, I. Yamamoto, &Y. Yamamoto. 1963c. Studies on the metabolic products ofOospora sp. (Oospora astringenes). Part V. Determination of the chemical structure of oosponol by synthesis. Agric. Biol. Chem.27: 817–821.

    CAS  Google Scholar 

  • —,C. Takura, I. Yamamoto, &Y. Yamamoto. 1963b. Studies on the metabolic products ofOospora sp. (Oospora astringenes). Part IV. Confirmation of the chemical structure of oospolactone by the synthetical approach. Agric. Biol. Chem.27: 813–816.

    CAS  Google Scholar 

  • —,Y. Yamamoto, T. Inoue, &T. Hyodo. 1966. Studies on the metabolic products ofOospora astringenes. VII. Biogenesis of oospolactone and oosponol. Chem. Pharm. Bull.14: 363–369.

    PubMed  CAS  Google Scholar 

  • —,Y. Yamamoto, I. Yamamoto, &S. Yamatodani. 1963a. Studies on the metabolic products ofOospora sp. (Oospora astringenes). Part VI. Chemical structure of oospoglycol (K-1) and its formation from oosponol by the fungus. Agric. Biol. Chem.27: 822–827.

    CAS  Google Scholar 

  • Nobécourt, P. 1923. Sur la production d’ anticorps par les tubercules des Ophrydées. Comp. Rend. Hebd. Séances Acad. Sci.177: 1055–1057.

    Google Scholar 

  • —. 1946. Les mécanismes d’ l’ immunité naturelle chez les végétaux. Rev. Int. Bot. Appl. Agric. Trop.26: 529–542.

    Google Scholar 

  • Nonaka, F. 1967. Inactivation of pisatin by pathogenic fungi. Agric. Bull. Saga Univ.24: 109–121.

    Google Scholar 

  • — &K. Yasui. 1966. On the selective toxicity of ipomeamarone towards the phytopathogens. Agric. Bull. Saga Univ.22: 39–49.

    Google Scholar 

  • —,S. Isayama, &.H. Furukawa. 1966. On the phytoalexin produced by the results of the interaction between soybean pods and phytopathogens. Agric. Bull. Saga Univ.22: 51–63.

    Google Scholar 

  • Nüesch, J. 1963. Defence reactions in orchid bulbs. Symp. Soc. Gen. Microbiol. No. 13. Symbiotic Associations. 335–343.

  • Oba, K., H. Shibata, &I. Uritani. 1970. The mechanism supplying acetyl-CoA for terpene biosynthesis in sweet potato with black rot: Incorporation of acetate-2-14C, pyruvate-3-14C and citrate-2,4-14C into ipomeamarone. Pl. Cell. Physiol.11: 507–510.

    CAS  Google Scholar 

  • Oguni, I. &I. Uritani. 1970. The incorporation of farnesol-2-14C into ipomeamarone. Agric. Biol. Chem.34: 156–158.

    CAS  Google Scholar 

  • ——. 1971. Utilization of ethanol-2-14C for the biosynthesis of ipomeamarone by sweet potato root tissue infected withCeratocystis fimbriata. Agric. Biol. Chem.35: 357–362.

    CAS  Google Scholar 

  • —,K. Oshima, H. Imaseki, &I. Uritani. 1969. Biochemical studies on the terpene metabolism in sweet potato root tissue with black rot. Effect of do and C15 terpenols on acetate-2-14C incorporation into ipomeamarone. Agric. Biol. Chem.33: 50–62.

    CAS  Google Scholar 

  • Ohata, K. &T. Kozaka. 1967. Interaction between two races ofPiricularia oryzae in lesion-formation in rice plants and accumulation of fluorescent compounds associated with infection. Bull. Natl. Inst. Agric. Sci. Ser. C. Phytopathol. & Entomol.21: 111–132.

    Google Scholar 

  • Ohno, T. 1952. The bitter substance produced in black rotten sweet potato. II. On the constitution of ipomeamarone. Part I. Bull. Chem. Soc. Japan25: 222–225.

    CAS  Google Scholar 

  • — &T. Takeuchi. 1949. The bitter substance produced in black-rotted sweet potato. I. Botyu-Kagaku (Scientific Insect Control)12: 26–29.

    Google Scholar 

  • — &M. Toyao. 1952. The bitter substance produced in black rotten sweet potato. III. On the constitution of ipomeamarone. Part 2. Bull. Chem. Soc. Japan25: 414–418.

    CAS  Google Scholar 

  • Okaisabor, E. K. 1967. Studies on smut disease ofDahlia caused byEntyloma calendulae f.dahliae. Ph.D. Thesis, University of Exeter, U.K. 241p.

    Google Scholar 

  • —. 1969. Pathogenesis of leaf smut disease ofDahlia caused byEntyloma calendulae i. sp.dahliae. Mycopathol. Mycol. Appl.39: 155–163.

    CAS  Google Scholar 

  • Oku, H. 1960. Biochemical studies onCochliobolus miyabeanus. VI. Breakdown of disease resistance of rice plant by treatment with reducing agents. Ann. Phytopathol. Soc. Japan25: 92–98.

    Google Scholar 

  • — &T. Nakanishi. 1962. Relation of phytoalexin-like antifungal substance to resistance of rice plant againstHelminthosporium leaf spot disease. Takamine Kenkyusho Nempo (Ann. Rep. Takamine Lab.)14: 120–128.

    CAS  Google Scholar 

  • Olah, A. F. &R. T. Sherwood. 1971. Flavones, isoflavones and coumestans in alfalfa infected byAscochyta imperfecta. Phytopathology61: 65–69.

    CAS  Google Scholar 

  • Ollis, W. D. 1966. The neoflavanoids, a new class of natural products. Experientia22: 777–783.

    PubMed  CAS  Google Scholar 

  • -. 1968. New structural variants among the isoflavanoid and neoflavanoid classes.In: Recent Advances in Phytochemistry. Mabry, T. J., R. E. Alston, & V. C. Runeckles. (Eds.).1: 329–378.

  • Oort, A. J. P. 1967. Fytoalexinen. Meded. Directeur Tuinb.30: 261–266.

    Google Scholar 

  • Oshima, K. &I. Uritani. 1967. The enzymatic synthesis of a β-hydroxy-βmethylglutaric acid derivative in sweet potato in response to infection by the black rot fungus. Agric. Biol. Chem.31: 1105–1107.

    CAS  Google Scholar 

  • ——. 1968a. Enzymatic synthesis of a β-hydroxy-β-methylglutaric acid derivative by a cell-free system from sweet potato with black rot. J. Biochem. (Tokyo)63: 617–625.

    CAS  Google Scholar 

  • ——. 1968b. Phytopathological chemistry of the black rotted sweet potato. LXIII. Participation of mevalonate in the biosynthetic pathway of ipomeamarone. Agric. Biol. Chem.32: 1146–1152.

    CAS  Google Scholar 

  • Oshima-Oba, K. &I. Uritani. 1969. Enzymatic synthesis of isopentenyl pyrophosphate in sweet potato root tissue in response to infection by black rot fungus. Pl. Cell Physiol.10: 827–843.

    CAS  Google Scholar 

  • —,I. Sugiuka, &I. Uritani. 1969. The incorporation of leucine-U-14C into ipomeamarone. Agric. Biol. Chem.33: 586–591.

    Google Scholar 

  • Oung-Boran, P. Lebreton, &G. Netien. 1969. Contribution a l’étude biochimique et pharmacologique deBaptisia australis. Pl. Med.17: 301–318.

    CAS  Google Scholar 

  • Ozeretskovskaya, O. L., N. I. Vasyukova, &L. V. Metlitskii. 1969a. Study of potato phytoalexins. Doklady Botan. Sci.189: 158–160.

    Google Scholar 

  • -,M. A. Davydova, N. I. Vasyukova, &L. V. Metlitskii. 1969b. Participation of α-solanine and α-chaconine glycoalkaloids in the protective properties of integumentary, cut and necrotic tissues of a potato tuber. Biokhim. Immuniteta Pokoya Rast. 22–32.

  • Pahthasarathy, M. R., R. N. Puri, &T. R. Seshadri. 1969. New components ofPterocarpus dalbergioides heartwood. Indian J. Chem.7: 118–120.

    Google Scholar 

  • Patil, S. S., R. L. Powelson, &R. A. Young. 1964. Relation of chlorogenic acid and free phenols in potato roots to infection byVerticillium albo-atrum. Phytopathology54: 531–535.

    CAS  Google Scholar 

  • —,M. Zucker, &A. E. Dimond. 1966. Biosynthesis of chlorogenic acid in potato roots resistant and susceptible toVerticillium albo-atrum. Phytopathology56: 971–974.

    CAS  Google Scholar 

  • Patterson, E. L., W. W. Andres, &N. Bohonos. 1966. Isolation of the optical antipode of mellein from an unidentified fungus. Experientia22: 209–210.

    PubMed  CAS  Google Scholar 

  • Paxton, J. D. &D. W. Chamberlain. 1967. Acquired local resistance of soybean plants toPhytophthora species. Phytopathology57: 352–353.

    Google Scholar 

  • ——. 1969. Phytoalexin production and disease resistance in soybeans as affected by age. Phytopathology59: 775–777.

    CAS  Google Scholar 

  • Pelter, A. &P. I. Amenechi. 1969. Isoflavonoid and pterocarpinoid extractives ofLonchocarpus laxiflorus. J. Chem. Soc. (C). 887–896.

  • Perrin, D. D. &D. R. Perrin. 1962. The N.m.r. spectrum of pisatin. J. Amer. Chem. Soc.84: 1922–1925.

    CAS  Google Scholar 

  • Perrin, D. R. 1964. The structure of phaseollin. Tetrahedron Lett. 29–35.

  • —. 1971. Physicochemioal properties of phaseollin. Phytopathol. Z.70: 227–229.

    CAS  Google Scholar 

  • — &W. Bottomley. 1961. Pisatin; an antifungal substance fromPisum sativum L. Nature191: 76–77.

    PubMed  CAS  Google Scholar 

  • ——. 1962. Studies on phytoalexins. V. The structure of pisatin fromPisum sativum L. J. Amer. Chem. Soc.84: 1919–1922.

    CAS  Google Scholar 

  • — &I. A. M. Cruickshank. 1965. Studies on phytoalexins. VII. Chemical stimulation of pisatin formation inPisum sativum L. Austral. J. Biol. Sci.18: 803–816.

    CAS  Google Scholar 

  • ——. 1969. The antifungal activity of pterocarpans towardsMonilinia fructicola. Phytochemistry8: 971–978.

    CAS  Google Scholar 

  • Pierre, R. E. 1966. Histopathology and phytoalexin induction in beans resistant or susceptible toFusarium andThielaviopsis. Ph.D. Thesis, Cornell University, U. S. A. 154p.

    Google Scholar 

  • —. 1971. Phytoalexin induction in beans resistant or susceptible toFusarium andThielaviopsis. Phytopathology61: 322–327.

    CAS  Google Scholar 

  • — &D. F. Bateman. 1967. Induction and distribution of phytoalexins in Rhizoctonia-infected bean hypocotyls. Phytopathology57: 1154–1160.

    CAS  Google Scholar 

  • — &R. L. Millar. 1965. Histology of pathogen-suscept relationship ofStemphylium botryosum and alfalfa. Phytopathology55: 909–914.

    Google Scholar 

  • Pope, G. S. &H. G. Wright. 1954. Oestrogenic isoflavones in red clover and subterranean clover. Chemy. Ind. 1019–1020.

  • -,P. V. Elcoate, S. A. Simpson, &D. G. Andrews. 1953. Isolation of an oestrogenic isoflavone (biochanin A) from red clover. Chemy. Ind. 1092.

  • Purkayastha, R. P. &B. J. Deverall. 1964. A phytoalexin type of reaction in theBotrytis infection of leaves of bean (Viciafaba L.). Nature201: 938–939.

    Google Scholar 

  • ——. 1965a. The growth ofBotrytis fabae andB. cinerea into leaves of beanVicia faba L.). Ann. Appl. Biol.56: 139–147.

    CAS  Google Scholar 

  • ——. 1965b. The detection of antifungal substances before and after infection of beans (Viciafaba) byBotrytis spp. Ann. Appl. Biol.56: 269–277.

    CAS  Google Scholar 

  • Quilico, A., F. Piozzi, &M. Pavan. 1957. The structure of dendrolasin. Tetrahedron1: 177–185.

    CAS  Google Scholar 

  • Raa, J. 1968a. Polyphenols and natural resistance of apple leaves againstVenturia inaequalis. Netherlands J. Pl. Pathol.74: 37–45 (Suppl. 1).

    CAS  Google Scholar 

  • —. 1968b. Natural resistance of apple plants toVenturia inaequalis. A biochemical study of its mechanism. Ph.D. Thesis, University of Utrecht, Netherlands. 100p.

    Google Scholar 

  • Rahe, J. E., J. Kuć, C. M. Chuang, &E. B. Williams. 1969. Correlation of phenolic metabolism with histological changes inPhaseolus vulgaris inoculated with fungi. Netherlands J. Pl. Pathol.75: 58–71.

    CAS  Google Scholar 

  • Rall, G. J H., J. P. Englebrecht, &A. J. Brink. 1970.Neorautanenia pterocarpans. The isolation, structure and absolute configuration of (-)-2-hydroxypterocarpin, a new pterocarpan fromN. edulis. Tetrahedron26: 5007–5012.

    CAS  Google Scholar 

  • ———. 1971. The chemistry ofNeorautanenia edulis C. A. Sm. The constitution of (-)-2-isopentenyl-3-hydroxy-8,9-methylenedioxypterocarpan, a new pterocarpan from the root bark. J. S. African Chem. Inst.24: 56–60.

    CAS  Google Scholar 

  • Raudnitz, H. &G. Perlmann. 1935. Über santal, Pterocarpin und Homo-pterocarpin, die farblosen Begleiter des Santalins (II. Mitteil.). Ber. Deutsch. Chem. Ges.68: 1862–1866.

    Google Scholar 

  • Reeves, D. L. 1969. Phytoalexins and ortho-dihydroxy phenols and their relation toFusarium root rot resistance in beans. Ph.D. Thesis, Colorado State University, U. S. A. 77p.

    Google Scholar 

  • Reimann, J. E. &R. U. Byerrum. 1964. Studies on the biosynthesis of 2,4-dihydroxy-7-methoxy-2H-l,4-benzoxazin-3-one. Biochemistry3: 847–851.

    PubMed  CAS  Google Scholar 

  • Rennerfelt, E. 1956. The natural resistance to decay of certain conifers. Friesia5: 361–365.

    Google Scholar 

  • — &G. Nacht. 1955. The fungicidal activity of some constituents from heartwood of conifers. Svensk. Bot. Tidskr.49: 419–432.

    Google Scholar 

  • Rigassi, N. 1963. Synthese von Iso-orchinol und verwandten Verbindungen. Diss. Eidgenössischen Technischen Hochschule, Zürich. Nr. 3325. 52p.

  • Robertson, A. &W. B. Whalley. 1954. The chemistry of the “Insoluble Red Woods.” Part V. Pterocarpin and an oxidation product of homopterocarpin. J. Chem. Soc. 1440–1441.

  • Robertson, N. F., J. Friend, &M. Aveyard. 1969. Production of phenolic acids by potato tissue culture after infection byPhytophthora infestons. Phytochemistry8: 7(Abstr.).

    Google Scholar 

  • ———,J. Brown, M. Huffee, &A. L. Homans. 1968. The accumulation of phenolic acids in tissue culture pathogen combinations ofSolanum tuberosum andPhytophthora infestons. J. Gen. Microbiol.54: 261–268.

    PubMed  CAS  Google Scholar 

  • Romanuk, M., V. Herout, &F. Sorm. 1958a. On terpenes. XCIII. The composition of costus oil (fromSaussurea lappa Clarke). Collect. Czech. Chem. Commun.23: 2188–2193.

    Google Scholar 

  • ——— 1958b. O terpenech. XCIII. Slozeni silice kostusové (ZeSaussurea lappa. Clarke). Chem. Listy52: 1969–1974.

    Google Scholar 

  • Rubin, B. A. &E. V. Artsikhovskaya. 1966. The biochemical and physiological background of plant immunity. Sel’ Skokhoz Biol.1: 33–48.

    CAS  Google Scholar 

  • Ruscoe, Q. W. 1967. Studies on the dark leaf spot diseases of brassicae caused byAlternaria brassicicola andA. brassicae. Ph.D. Thesis, University of Exeter, U.K. 310p.

    Google Scholar 

  • Ryan, H. &R. Fitzgerald. 1913. On the identity of baphinitone with homopterocarpin. Proc. Royal Irish Acad.30B: 106–108.

    Google Scholar 

  • Sadgopal. 1960a. Exploratory studies in the development of essential oils and their constituents in aromatic plants. Part I. Oil of agarwood. Soap, Perfumery, Cosmetics33: 41–46.

    Google Scholar 

  • —. 1960b. Exploratory studies in the development of essential oils and their constituents in aromatic plants. Indian Oil & Soap J.25: 353–363.

    Google Scholar 

  • — &B. S. Varma. 1952a. Agar oil from the wood ofAquilaria agallocha Roxburgh. Soap, Perfumery, Cosmetics25: 169–174.

    CAS  Google Scholar 

  • ——. 1952b. Agar oil from the wood ofAquilaria agallocha Roxburgh. Indian Forester78: 26–33.

    Google Scholar 

  • - & -. 1952c. Agar oil from the wood ofAquilaria agallocha Roxburgh. Indian Forest Leaflet (Chemistry of Forest Products) No. 127. Forest Res. Inst., Dehra Dun, India.

  • Saitoh, T. &S. Shibata. 1969. Chemical studies on the Oriental plant drugs. XXII. Some new constituents of licorice root. (2). Glycyrol, 5-0-methyl glycyrol and isoglycyrol. Chem. Pharm. Bull.17: 729–734.

    PubMed  CAS  Google Scholar 

  • Sakai, T., K. Nishimura, &Y. Hirose. 1963. The constituents of the volatile oil from the wood ofTorreya nucifera. Tetrahedron Lett. 1171–1173.

  • Sassa, T., H. Aoki, M. Namiki, &K. Munakata. 1968. Plant growth promoting metabolites ofSclerotinia sclerotiorum. Part I. Isolation and structures of sclerotinin A and B. Agric. Biol. Chem.32: 1432–1439.

    CAS  Google Scholar 

  • Sasaki, M., Y. Kaneko, K. Oshita, H. Takamatsu, Y. Asao, &T. Yokotsuka. 1970. Studies on the compounds produced by molds. Part VII. Isolation of isocoumarin compounds. Agric. Biol. Chem.34: 1296–1300.

    CAS  Google Scholar 

  • Sato, N. &K. Tomiyama. 1969. Localized accumulation of rishitin in the potato-tuber tissue infected by an incompatible race ofPhytophthora infestons. Ann. Phytopathol. Soc. Japan35: 202–206.

    CAS  Google Scholar 

  • ——N. Katsut, &T. Masamune. 1968a. Isolation of rishitin from tubers of interspecific potato varieties containing different late-blight resistance genes. Ann. Phytopathol. Soc. Japan34: 140–142.

    Google Scholar 

  • ————. 1968b. Isolation of rishitin from tomato plants. Ann. Phytopathol. Soc. Japan34: 344–345.

    CAS  Google Scholar 

  • Saundehs, P. J. W. 1967. Host/parasite interaction in blackspot disease of roses caused byDiplocarpon rosae Wolf. Ann. Appl. Biol.60: 129–136.

    Google Scholar 

  • Sawhney, P. L. &T. R. Seshadri. 1954. Special chemical components of commercial woods and related plant materials: Part I. The neutral components from heartwoods and sapwoods ofPterocarpus dalbergioides (Andaman padauk) andPterocarpus macrocarpus (Burma padauk). J. Sci. Ind. Res. India13B: 5–8.

    CAS  Google Scholar 

  • Scheel, L. D., V. B. Perone, R. L. Larkin, &R. E. Kupel. 1963. The isolation and characterization of two phototoxic furanocoumarins (psoralens) from diseased celery. Biochemistry2: 1127–1131.

    PubMed  CAS  Google Scholar 

  • Schellenbaum, M. 1959. Isolierung und Konstitutionsaufklärung des Orchinols. Diss. Eidgenössischen Technischen Hochschule, Zürich. Nr. 2977. 55p.

  • Schmiedeknecht, M. 1963. Parasit-Wirt-Beziehungen bei Pseudopeziza-Arten der Futterleguminosen. Sitzungsber. Deutsch. Akad. Wiss. Berlin Kl. Landw. Wiss.12: 31–39.

    Google Scholar 

  • Schntathorst, W. C. &D. E. Mathre. 1966. Cross protection in cotton with strains ofVerticillium albo-atrum. Phytopathology56: 1204–1209.

    Google Scholar 

  • Schneider, A. 1952. Über das Vorkommen gerbstoffartiger Kondensationsprodukte von Anthocyanidinen in den Samenschalen vonPisum arvense. Naturwissenschaften39: 452–453.

    CAS  Google Scholar 

  • Schwochau, M. E. &L. A. Hadwiger. 1969. Regulation of gene expression by actinomycin D and other compounds which change the conformation of DNA. Arch. Biochem. Biophys.134: 34–41.

    PubMed  CAS  Google Scholar 

  • Scott, K., A. Millerd, &N. H. White. 1957. Mechanism of resistance in barley varieties to powdery mildew disease. Austral. J. Sci.19: 207–208.

    CAS  Google Scholar 

  • Searcy, J. W., N. D. Davis, &U. L. Diener. 1969. Biosynthesis of ochratoxin A. Appl. Microbiol.18: 622–627.

    PubMed  CAS  Google Scholar 

  • Sebe, Y. 1943. Perilla ketone. J. Chem. Soc. Japan64: 1130–1136.

    CAS  Google Scholar 

  • Semmler, F. W. &J. Feldstein. 1914. Zur Kenntnis der Bestandteile ätherischer Öle. (Über Bestandteile des Costuswurzel—Öles.). Ber. Deutsch. Chem. Ges.47: 2687–2694.

    CAS  Google Scholar 

  • Seres, J. 1964. Über Orchinol und verwandte Verbindungen. Diss. Eidgenössischen Technischen Hochschule, Zürich. Nr. 3528. 63p.

  • Seshadri, T. R. 1966. Chemistry ofPterocarpus woods. J. Univ. Bombay35: 1–15.

    Google Scholar 

  • Shain, L. 1967. Resistance of sapwood in stems of loblolly pine to infection byFomes annosus. Phytopathology57: 1034–1045.

    Google Scholar 

  • —. 1971. The response of sapwood of Norway spruce to infection byFomes annosus. Phytopathology61: 301–307.

    CAS  Google Scholar 

  • Shamshurin, A. A. 1966. The problem of phytoestrogens in animal husbandry. Mendeleev Chemistry J.11: 371–374.

    Google Scholar 

  • —,M. A. Yampol’skaya, &L. L. Simonova. 1966. Phytoestrogens. I. Syntheses among coumestan derivatives: 8,13-diallylcoumestrol. Chem. Nat. Compounds2: 42–45.

    Google Scholar 

  • Shepherd, C. J. &M. Mandryk. 1962. Auto-inhibitors of germination and sporulation inPeronospora tabacina Adam. Trans. Brit. Mycol. Soc.45: 233–244.

    Google Scholar 

  • ——. 1963. Germination of conidia ofPeronospora tabacina Adam. II. Germination in vivo. Austral. J. Biol. Sci.16: 77–87.

    CAS  Google Scholar 

  • Sherwood, R. T., A. F. Olah, W. H. Oleson, &E. E. Jones. 1970. Effect of disease and injury on accumulation of a flavonoid estrogen, coumestrol, in alfalfa. Phytopathology60: 684–688.

    CAS  Google Scholar 

  • Shibata, S. &Y. Nishikawa. 1963. Studies on the constituents of Japanese and Chinese crude drugs. VII. On the constituents of the roots ofSophora subprostrata Chun et T. Chen andSophora japonica L. Chem. Pharm. Bull.11: 167–177.

    CAS  Google Scholar 

  • — &T. Saitoh. 1968. The chemical studies on the Oriental plant drugs. XIX. Some new constituents of licorice root. (1). The structure of licoricidin. Chem. Pharm. Bull.16: 1932–1936.

    PubMed  CAS  Google Scholar 

  • Shiozaki, M., K. Mori, &M. Matsui. 1968. Synthesis of isocoumarins. Part III. Oosponol diacetate. Agric. Biol. Chem.32: 42–45.

    CAS  Google Scholar 

  • Sijpesteijn, A. K. 1969. Aspects of natural disease resistance. Meded. Rijks. Land. Wetenschappen Gent34: 379–391.

    Google Scholar 

  • Silva Braga, A., O. R. Gottlieb, W. B. Eyton, K. Kurosawa, &W. D. Ollis. 1968. A Química de Leguminosas Brasileiras. XV. Constituintes doMachaerium villosum. 1. Parte. Anais Acad. Brasil Ci.40: 33–37.

    Google Scholar 

  • Simonova, L. L. &A. A. Shamshubin. 1967. Phytoestrogens. III. Synthesis of 7,11-dihydroxycoumestane via the flavylium salt. Chem. Nat. Compounds3: 310–311.

    Google Scholar 

  • Sinha, A. K. &N. Trivedi. 1969. Immunization of rice plants againstHelminthosporium infection. Nature223: 963–964.

    Google Scholar 

  • — &R. K. S. Wood. 1968. Studies on the nature of resistance in tomato plants toVerticillium albo-atrum. Ann. Appl. Biol.62: 319–327.

    Google Scholar 

  • Smadhana, B. S., A. F. Schmitthenner, &C. W. Ellett. 1969. Formation of phytoalexin inPeperomia in relation to resistance toPhytophthora nicotianae var.parasitica. Phytopathology59: 405–410.

    Google Scholar 

  • Smissman, E. E., J. B. Lapidus, &S. D. Beck. 1957a. Isolation and synthesis of an insect resistance factor from corn plants. J. Amer. Chem. Soc.79: 4697–4698.

    CAS  Google Scholar 

  • ———. 1957b. Corn plant resistance factor. J. Org. Chem.22: 220.

    CAS  Google Scholar 

  • —,O. Kristiansen, &S. D. Beck. 1962. Presence of 6-methoxybenzoxazolinone in uninjured corn tissue. J. Pharm. Sci.51: 292.

    PubMed  CAS  Google Scholar 

  • Smith, D. G., A. G. McInnes, V. J. Higgins, &R. L. Millar. 1971. Nature of the phytoalexin produced by alfalfa in response to fungal infection. Physiol. Pl. Pathol.1: 41–44.

    CAS  Google Scholar 

  • Smith, F. H. 1967. Determination of gossypol in leaves and flower buds ofGossypium. J. Amer. Oil Chem. Soc.44: 267–269.

    CAS  Google Scholar 

  • Smith, I. M. 1970. Biochemical changes in French bean pods infected withColletotrichum lindemuthianum. Ann. Appl. Biol.65: 93–103.

    CAS  Google Scholar 

  • —. 1971. The induction of antifungal inhibitors in pods of tropical legumes. Physiol. Pl. Pathol.1: 85–94.

    CAS  Google Scholar 

  • Sondheimer, E. 1957. The isolation and identification of 3-methyl-6-methoxy-8hydroxy-3,4-dihydroisocoumarin from carrots. J. Amer. Chem. Soc.79: 5036–5039.

    CAS  Google Scholar 

  • —. 1961. Possible identity of a fungitoxic compound from carrot roots. Phytopathology51: 71–72.

    CAS  Google Scholar 

  • Sörensen, N. A. 1961. Some naturally occurring acetylenic compounds. Proc. Chem. Soc. (London) 98–110.

  • —. 1963. Chemical taxonomy of acetylenic compounds.In: Chemical Plant Taxonomy. Swain, T. (Ed.). Academic Press, New York. 219–252.

    Google Scholar 

  • Späth, E. &J. Schläger. 1940. Über die Inhaltsstoffe des roten Sandelholzes. I. Mitteil. Die Konstitution des Homopterocarpins. Ber. Deutsch. Chem. Ges.73: 1–12.

    Google Scholar 

  • Spencer, P. M. &G. A. Carter. 1964. Antifungal activity in orange tissue infected withAspergillus niger. Nature203: 894–895.

    Google Scholar 

  • Spencer, R. R..,B. E. Knuckles, &E. M. Bickoff. 1966a. 7-hydroxy-11,12-dimethoxycoumestan. Characterization and synthesis. J. Org. Chem.31: 988–989.

    CAS  Google Scholar 

  • —.,E. M. Bickoff, R. E. Lundin, &B. E. Knuckles. 1966b. Lucernol and sativol, two new coumestans from alfalfa (Medicago sativa). J. Agric. Food Chem.14: 162–165.

    CAS  Google Scholar 

  • Srinivasan, K. V. 1969. Physiology of disease resistance in sugarcane with particular reference to red rot. Proc. Indian Acad. Sci.69B: 120–132.

    Google Scholar 

  • Stall, R. E. &A. A. Cook. 1968. Inhibition ofXanthomonas vesicatoria in extracts from hypersensitive and susceptible pepper leaves. Phytopathology58: 1584–1587.

    Google Scholar 

  • Staron, T., C. Allard, N. D. Xuong, M. Chambre, &H. Grabowski. 1964. Sur l’ action antibiotique de l’α-amino-7-butyryllactone extraite des pois. Comp. Rend. Hebd. Séances Acad. Sci.259: 3114–3117.

    CAS  Google Scholar 

  • Steyn, P. S. &C. W. Holzapfel. 1967. The synthesis of ochratoxins A and B, metabolites ofAspergillus ochraceus Wilh. Tetrahedron23: 4449–4461.

    PubMed  CAS  Google Scholar 

  • —— &N. P. Ferreira. 1970. The biosynthesis of the ochratoxins, metabolites ofAspergillus ochraceus. Phytochemistry9: 1977–1983.

    CAS  Google Scholar 

  • Stholasuta, P., J. A. Bailey, V. Severin, &B. J. Deverall. 1971. Effect of bacterial inoculation of bean and pea leaves on the accumulation of phaseollin and pisatin. Physiol. Pl. Pathol.1: 177–183.

    CAS  Google Scholar 

  • Stodola, F. H., C. Cabot, &C. R. Benjamin. 1964. Structure of ramulosin a metabolic product of the fungusPestalotia ramulosa. Biochem. J.93: 92–97.

    PubMed  CAS  Google Scholar 

  • Stoessl, A. 1965. The antifungal factors in barley. III. Isolation of pcoumaroylagmatine. Phytochemistry4: 973–976.

    CAS  Google Scholar 

  • -. 1966a. Some antifungal factors in barley. Advances Chem. No. 53. (Natural Pest Control Agents) 80–89.

  • -. 1966b. The antifungal factors in barley. The constitutions of hordatines A and B. Tetrahedron Lett. 2287–2292.

  • -. 1966c. The antifungal factors in barley. Isolation and synthesis of hordatine A. Tetrahedron Lett. 2849–2851.

  • —. 1967. The antifungal factors in barley. IV. Isolation, structure and synthesis of the hordatines. Canad. J. Chem.45: 1745–1760.

    CAS  Google Scholar 

  • —. 1969. 8-hydroxy-6-methoxy-3-methylisocoumarin and other metabolites ofCeratocystis fimbriata. Biochem. Biophys. Res. Commun.35: 186–192.

    PubMed  CAS  Google Scholar 

  • —&C. H. Unwin. 1970. The antifungal factors in barley. V. Antifungal activity of the hordatines. Canad. J. Bot.48: 465–470.

    CAS  Google Scholar 

  • Suginome, H. 1959. Oxygen heterocycles. A new isoflavanone fromSophora japonica L. J. Org. Chem.24: 1655–1662.

    CAS  Google Scholar 

  • -. 1960. Oxygen heterocycles; the structure of the isoflavanone sophorol. Tetrahedron Lett. 16–20.

  • —. 1962. Oxygen heterocycles. Maackiain, a new naturally occurring chromanocoumaran. Experientia18: 161–163.

    PubMed  CAS  Google Scholar 

  • —. 1966a. Sophorol. Bull. Chem. Soc. Japan39: 1525–1529.

    CAS  Google Scholar 

  • —. 1966b. Maackiain. Bull. Chem. Soc. Japan39: 1529–1534.

    CAS  Google Scholar 

  • — &T. Iwadare. 1960. The synthesis of the pterocarpan ring system. Bull. Chem. Soc. Japan33: 568.

    Google Scholar 

  • ——. 1962. sauerstoff-Heteroringe. Die Konfiguration und Synthese des d,l-homopterocarpins. Experientia18: 163–164.

    PubMed  CAS  Google Scholar 

  • ——. 1966. The synthesis of d,l-homopterocarpin. Bull. Chem. Soc. Japan39: 1535–1541.

    CAS  Google Scholar 

  • Sutherland, M. D. &R. J. Park. 1967. Sesquiterpenes and their biogenesis inMyoporum deserti A. Cunn.In: Terpenoids in Plants. Pridham, J. B. (Ed.). Academic Press, London. 147–157.

    Google Scholar 

  • Suzuki, N. 1957. Studies on the violet root rot of sweet potatoes caused byHelicobasidium mompa Tanaka. VI. Histochemical studies of the infected tissues. I. Chemical changes as results of infection. Bull. Natl. Inst. Agric. Sci. Ser. C. Phytopathol. & Entomol.8: 69–126.

    Google Scholar 

  • — &S. Toyoda. 1957. Studies on the violet root rot of sweet potatoes caused byHelicobasidium mompa Tanaka. VII. Histochemical studies of the infected tissues. 2. Stimulated respiration and behaviour of phosphorus in infected tissues and their relation to defense reaction. Bull. Natl. Inst. Agric. Sci. Ser. C. Phytopathol. & Entomol.8: 131–173.

    Google Scholar 

  • Suzuki, Y. 1970. Fusamarin, a new metabolite from a species ofFusarium. Agric. Biol. Chem.34: 760–766.

    CAS  Google Scholar 

  • Swinburne, T. R. 1964. Rotting of apples of the variety “Bramley’s Seedling” byNectria galligena Bres. Nature204: 493–494.

    Google Scholar 

  • Taira, T. &Y. Fukagawa. 1958. On the bitter substance separated from alcohol distillation of sweet potato mash. J. Agric. Chem. Soc. Japan32: 513–514.

    CAS  Google Scholar 

  • Takaoka, M. 1939. The phenolic substances of white hellebore (Veratrum grandiflorum Loes. fil.). J. Chem. Soc. Japan60: 1261–1264.

    CAS  Google Scholar 

  • —. 1940. Phenolic substances of white hellebore (Veratrum grandiflorum Loes. fil). J. Fac. Sci. Hokkaido Imp. Univ.3: 1–16.

    CAS  Google Scholar 

  • Tamura, S., C. F. Chang, A. Suzuki, &S. Kumai. 1967. Isolation and structure of a novel isoflavone derivative in red clover. Agric. Biol. Chem.31: 1108–1109.

    CAS  Google Scholar 

  • ————. 1969. Chemical studies on “clover sickness.” Part I. Isolation and structural elucidation of two new isoflavanoids in red clover. Agric. Biol. Chem.33: 391–397.

    CAS  Google Scholar 

  • Theron, J. J., K. J. Van Der Merwe, N. Liebenberg, H. J. B. Joubert, &W. Nel. 1966. Acute liver injury in ducklings and rats as a result of ochratoxin poisoning. J. Pathol. Bacteriol.91: 521–529.

    PubMed  CAS  Google Scholar 

  • Thomas, C. A. &E. H. Allen. 1969. An antifungal polyacetylene compound fromPhytophthora-iniected safflower hypocotyls. Phytopathology59: 1053 (Abstr.).

    Google Scholar 

  • ——. 1970a. An antifungal polyacetylene compound from Phytophthora-infected safflower. Phytopathology60: 261–263.

    PubMed  CAS  Google Scholar 

  • ——. 1970b. Concentration of safynol inPhytophthora-iniected safflower. Phytopathology60: 1153.

    CAS  Google Scholar 

  • — &D. E. Zimmer. 1970. Resistance of Biggs safflower toPhytophthora root rot and its inheritance. Phytopathology60: 63–64.

    Google Scholar 

  • Tomiyama, K., N. Ishizaka, N. Sato, T. Masamune, &N. Katsui. 1968b. “Rishitin” a phytoalexin-like substance. Its role in the defence reaction of potato tubers to infection.In: Biochemical Regulation in Diseased Plants and Injury. The Phytopathological Society of Japan (Tokyo). 287–292.

  • —,T. Sakuma, N. Ishtzaka, N. Sato, N. Katsui, M. Takasugi, &T. Masamune. 1968a. A new antifungal substance isolated from resistant potato tuber tissue infected by pathogens. Phytopathology58: 115–116.

    CAS  Google Scholar 

  • Tschesche, R., F. J. Kämmerer, &G. Wulff. 1969. Über Glykoside mit lactonbildendem Aglykon. II. Über die Struktur der antibiotisch aktiven Substanzen der Tulpe (Tulipa gesneriana L.). Chem. Ber.102: 2057–2071.

    CAS  Google Scholar 

  • Turner, E. M. C. 1956. The nature of the resistance of oats to the take-all fungus. II. Inhibition of growth and respiration ofOphiobolus graminis Sacc. and other fungi by a constituent of oat sap. J. Exp. Bot.7: 80–92.

    CAS  Google Scholar 

  • —. 1961. An enzymic basis for pathogenic specificity inOphiobolus graminis. J. Exp. Bot.12: 169–175.

    CAS  Google Scholar 

  • Uchiyama, M. &M. Matsui. 1967. A new approach to the synthesis of isoflavones, 2′-hydroxyisoflavones and an alternative synthesis of (±)-pterocarpin. Agric. Biol. Chem.31: 1490–1498.

    CAS  Google Scholar 

  • — &K. Ooba. 1968. Synthesis of oxygen heterocycles. Part III. A synthesis of dl-maackiain. J. Agric. Chem. Soc. Japan42: 688–691.

    CAS  Google Scholar 

  • Uehara, K. 1958a. On some properties of phytoalexins produced as a result of the interaction between pea (Pisum sativum L.) andAscochyta pisi Lib. I. On the activity as affected by ultra-violet irradiation and on some physicochemical properties of phytoalexin. Ann. Phytopathol. Soc. Japan23: 230–234.

    Google Scholar 

  • —. 1958b. On the phytoalexin production of the soybean pod in reaction toFusarium spp., the causal fungus of pod blight. I. Some experiments on the phytoalexin production as affected by host plant conditions and on the nature of the phytoalexin produced. Ann. Phytopathol. Soc. Japan23: 225–229.

    Google Scholar 

  • —. 1958c. On the phytoalexin production by the host plant as a result of interaction between the rice plant and the blast fungus (Piricularia oryzae Cav.). Ann. Phytopathol. Soc. Japan23: 127–130.

    Google Scholar 

  • —. 1959. On the phytoalexin production of the soybean pod in reaction toFusarium spp. the causal fungus of pod blight. II. On the effect of conditions of the spore suspension of the causal fungus upon phytoalexin production. Ann. Phytopathol. Soc. Japan24: 224–228.

    Google Scholar 

  • —. 1960a. On some properties of phytoalexin produced as a result of the interaction between pea (Pisum sativum L.) andAscochyta pisi Lib. II. Effect of duration of mounting the spore suspension on the pea pod and pre-infectional treatment of pea pods with ether or heat upon phytoalexin production. Ann. Phytopathol. Soc. Japan25: 85–91.

    Google Scholar 

  • —. 1960b. On the phytoalexin produced by the results of the interaction between rice plants and the leaf blight bacterium (Xanthomonas oryzae). Ann. Phytopathol. Soc. Japan25: 149–155.

    Google Scholar 

  • -. 1962. Formation of phytoalexin and its functions in plants. Special Rep. Pl. Pathol. Lab. Hiroshima Agric. Coll. 1–87.

  • —. 1963. On the production of phytoalexin by metallic salts. Bull. Hiroshima Agric. Coll.2: 41–44.

    Google Scholar 

  • —. 1964a. Relationship between the host specificity of pathogen and phytoalexin. Ann. Phytopathol. Soc. Japan29: 103–110.

    Google Scholar 

  • —. 1964b. Comparison of the ultra-violet absorption spectrum curves of phytoalexins produced by different host and parasite interactions. Ann. Phytopathol. Soc. Japan29: 1–5.

    Google Scholar 

  • —. 1965. Phytoalexins. Ann. Phytopathol. Soc. Japan31: 334–338.

    Google Scholar 

  • — &T. Kiku. 1969. Inactivation of ipomeamarone byCorticium rolfsii (Sacc.) Curzi. Bull. Fac. Agric. Kagoshima Univ.19: 73–80.

    Google Scholar 

  • Urech, J., B. Fechtig, J. Nüesch, &E. Vischer. 1963. Hircinol eine antifungischwirksame Substanz aus knollen vonLoroglossum hircinum (L.) Rich. Helv. Chim. Acta46: 2758–2766.

    CAS  Google Scholar 

  • Uritani, I. 1953a. Phytopathological chemistry of black-rotted sweet potato. Part 5. Physiology of the polyphenols in injured sweet potato. J. Agric. Chem. Soc. Japan27: 57–62.

    CAS  Google Scholar 

  • —. 1953b. Phytopathological chemistry of black-rotted sweet potato. Part 7. Isolation and identification of polyphenols from the injured sweet potato. J. Agric. Chem. Soc. Japan27: 165–168.

    CAS  Google Scholar 

  • —. 1967. Abnormal substances produced in fungus-contaminated foodstuffs. J. Assoc. Off. Analytical Chemists50: 105–114.

    CAS  Google Scholar 

  • — &T. Akazawa. 1955. Antibiotic effect onCeratocystis fimbriata of ipomeamarone, an abnormal metabolite in black rot of sweet potato. Science121: 216–217.

    PubMed  Google Scholar 

  • — &I. Hoshiya. 1953. Phytopathological chemistry of the black-rotted sweet potato. Part 6. Isolation of coumarin substances from sweet potato and their physiology. J. Agric. Chem. Soc. Japan27: 161–164.

    CAS  Google Scholar 

  • — &M. Maramatsu. 1953. Isolation and identification of polyphenols from injured sweet potato. J. Agric. Chem. Soc. Japan27: 29.

    CAS  Google Scholar 

  • — &M. Miyano. 1955. Derivatives of caffeic acid in sweet potato attacked by black rot. Nature175: 812.

    CAS  Google Scholar 

  • — &K. Oshima. 1965. Effects of ipomeamarone on respiratory enzyme system in mitochondria. Agric. Biol. Chem.29: 641–648.

    CAS  Google Scholar 

  • — &M. A. Stahmann. 1961. Pectolytic enzymes ofCeratocystis fimbriata. Phytopathology51: 277–285.

    CAS  Google Scholar 

  • —,H. Nomura, &T. Teramura. 1967. Comparative analysis of terpenoids in roots ofIpomoea species induced by inoculation ofCeratocystis fimbriata. Agric. Biol. Chem.31: 385–388.

    CAS  Google Scholar 

  • —,M. Uritani, &H. Yamada. 1960. Similar metabolic alterations induced in sweet potatoes by poisonous chemicals and byCeratostomella fimbriata. Phytopathology50: 30–34.

    CAS  Google Scholar 

  • Valenta, J. R. &H. D. Sisler. 1962. Evidence for a chemical basis of resistance of lima bean plants to downy mildew. Phytopathology52: 1030–1037.

    CAS  Google Scholar 

  • Valle, E. 1957. On anti-fungal factors in potato leaves. Acta Chem. Scand.11: 395–397.

    CAS  Google Scholar 

  • Van Den Ende, G. 1964. The interaction of some phytopathogenic fungi with plant tissue. Netherlands J. Pl. Pathol.70: 37–52.

    Google Scholar 

  • —. 1965. Neue Untersuchungen über die Phytoalexin-Bildung. TagBer. Deutsch. Akad. Landw. Wiss. Berlin74: 283–313.

    Google Scholar 

  • —. 1969. Phytoalexin-Bildung bei der Wechselwirkung zwischenSclerotinia fructicola und Wirtsgeweben. Phytopathol. Z.64: 68–76.

    Google Scholar 

  • Van Der Merwe, K. J., P. S. Steyn, &L. Fourie. 1965b. Mycotoxins. Part II. The constitution of ochratoxins A, B and C, metabolites ofAspergillus ochraceus Wilh. J. Chem. Soc. (C). 7083–088.

  • ———,D. B. Scott, &J. J. Theron. 1965a. Ochratoxin A, a toxic metabolite produced byAspergillus ochraceus Wilh. Nature205: 1112–1113.

    Google Scholar 

  • Van Duuben, B. L. 1961. Chemistry of edulin, neorautone and related compounds fromNeorautanenia edulis C. A. Sm. J. Org. Chem.26: 5013–5020.

    Google Scholar 

  • Van Etten, H. D. &D. F. Bateman. 1970a. Isolation of phaseollin from Rhizoctonia-infected bean tissue. Phytopathology60: 385–386.

    Google Scholar 

  • ——. 1970b. Responses ofRhizoctonia solani to phaseollin. Phytopathology60: 1019 (Abstr.).

    Google Scholar 

  • Van Walbeek, W., W. Scott, P. M. Harwig, &J. W. Lawrence. 1969.Penicillium viridicatum Westling: A new source of ochratoxin A. Canad. J. Microbiol.15: 1281–1285.

    Google Scholar 

  • Varns, J. L. &J. Kuć. 1971. Suppression of rishitin and phytuberin accumulation and hypersensitive response in potato by compatible races ofPhytophthora infestans. Phytopathology61: 178–181.

    CAS  Google Scholar 

  • —— &E. B. Williams. 1971. Terpenoid accumulation as a biochemical response of the potato tuber toPhytophthora infestans. Phytopathology61: 174–177.

    CAS  Google Scholar 

  • Virtanen, A. I. 1961. Some aspects of factors in the maize plant with toxic effects on insect larvae. Acta Chem. Fenn.34B: 29–31.

    CAS  Google Scholar 

  • — &P. K. Hietala. 1955a. An anti-fungi factor in rye seedlings. Acta Chem. Fenn.28B: 165–166.

    Google Scholar 

  • ——. 1955b. 2(3)-benzoxazolinone, ananti-Fusarium factor in rye seedlings. Acta Chem. Scand.9: 1543–1544.

    CAS  Google Scholar 

  • ——. 1957. Additional information on the antifungal factor in red clover. Acta Chem. Fenn.30B: 99.

    Google Scholar 

  • ——. 1958. Isolation of an anti-Sclerotinia factor, 7-hydroxy-4′-methoxy-isoflavone from red clover. Acta Chem. Scand.12: 597.

    Google Scholar 

  • —— 1959. On the structures of the precursors of benzoxazolinone in rye seedlings. Acta Chem. Fenn.32B: 138.

    CAS  Google Scholar 

  • ——. 1960. Precursors of benzoxazolinone in rye plants. I. Precursor II, the aglycone. Acta Chem. Scand.14: 499–502.

    Google Scholar 

  • — &O. Wahlroos. 1963. Absence of 6-methoxybenzoxazolinone in uninjured maize tissue. J. Pharm. Sci.52: 713–714.

    PubMed  CAS  Google Scholar 

  • —,P. K. Hietala, &O. Wahlroos. 1956. An anti-fungal factor in maize and wheat plants. Acta Chem. Fenn.29B: 143.

    CAS  Google Scholar 

  • ———. 1957. Antimicrobial substances in cereals and fodder plants. Arch. Biochem. Biophys.69: 486–500.

    PubMed  CAS  Google Scholar 

  • Wahlroos, O. &A. I. Virtanen. 1958. On the antifungal effect of benzoxazolinone and 6-methoxybenzoxazolinone, respectively, onFusarium nivale. Acta Chem. Scand.12: 124–128.

    CAS  Google Scholar 

  • ——. 1964. Free 2,4-dihydroxy-7-methoxy-l,4-benzoxazin-3-one in maize. J. Pharm. Sci.53: 844–845.

    PubMed  CAS  Google Scholar 

  • Wain, R. L. 1969. Naturally occurring fungicides. Proc. Symp. “Potentials in Crop Protection” New York State Agric. Expt. Sta. Geneva, 26–32.

  • -,D. M. Spencer, &C. H. Fawcett. 1961. Antifungal compounds in seedlings ofVicia faba. In: Fungicides in Agriculture and Horticulture. Society of Chemical Industry Monograph No. 15. 109–131.

  • Wanzlick, H., R. Gritzky, &H. Heidepriem. 1963. Die synthese des Wedelolactons. Chem. Ber.96: 305–307.

    CAS  Google Scholar 

  • Ward, M. H. 1902. The question of predisposition and “immunity” in plants. Proc. Cambridge Philos. Soc.11: 307–328.

    Google Scholar 

  • Watanabe, H. &H. Iwata. 1950. Studies on the black-rotten sweet potato. Part 1. Antihelmintic action of the essential oil of the black-rotten sweet potato. J. Agric. Chem. Soc. Japan24: 521–524.

    Google Scholar 

  • ——. 1952. Studies on the black-rotten sweet potato. Part 2. Toxic action of the essential oil of the black-rotten sweet potato. J. Agric. Chem. Soc. Japan26: 180–183.

    CAS  Google Scholar 

  • — &S. Nishiyama. 1952. Studies on the black-rotten sweet potato. Part 3. Chemioal properties of ipomeamarone. J. Agric. Chem. Soc. Japan26: 200–202.

    CAS  Google Scholar 

  • Whitney, N. J. &C. G. Mortimore. 1959a. An antifungal substance in the corn plant and its effect on the growth of two stalk-rotting fungi. Nature183: 341.

    PubMed  CAS  Google Scholar 

  • ——. 1959b. Isolation of the antifungal substance 6-methoxybenzoxazolinone, from field corn (Zea mays L.) in Canada. Nature184: 1320.

    PubMed  CAS  Google Scholar 

  • ——. 1961. Effect of 6-methoxybenzoxazolinone on the growth ofXanthomonas stewartii (Em-Smith) Dowson and its presence in sweet corn (Zea mays var.saccharata Barley). Nature189: 596–597.

    CAS  Google Scholar 

  • Wilson, B. J., D. T. C. Yang, &M. R. Boyd. 1970. Toxicity of mould-damaged sweet potatoes (Ipomoea batatas). Nature227: 521–522.

    PubMed  CAS  Google Scholar 

  • Wit-Elshove, A. de. 1968. Breakdown of pisatin by some fungi pathogenic toPisum sativum. Netherlands J. Pl. Pathol.74: 44–47.

    Google Scholar 

  • —. 1969. The role of pisatin in the resistance of pea plants—some further experiments on the breakdown of pisatin. Netherlands J. Pl. Pathol.75: 164–168.

    Google Scholar 

  • — &A. Fuchs. 1971. The influence of the carbohydrate source on pisatin breakdown by fungi pathogenic to pea (Pisum sativum). Physiol. Pl. Pathol.1: 17–24.

    Google Scholar 

  • Withers, W. A. &F. E. Carruth. 1915. Gossypol, the toxic substance in cotton-seed meal. J. Agric. Res.5: 261–288.

    CAS  Google Scholar 

  • Wong, E. &G. C. M. Latch. 1971. Coumestans in diseased white clover. Phytochemistry10: 466–468.

    CAS  Google Scholar 

  • Wood, A. B., F. V. Robinson, R. C. Araujo Lago. 1969. Conformation and hydrogen bonding of gossypol. Chemy. Ind. 1738–1739.

  • Wood, R. K. S. 1967. Physiological Plant Pathology. Blackwell Scientific Publications. Oxford & Edinburgh.

    Google Scholar 

  • Wyllie, T. D. &L. F. Williams. 1965. The effects of temperature and leaf age on the development of lesions caused byPeronospora manshurica on soybeans. Phytopathology55: 166–170.

    PubMed  CAS  Google Scholar 

  • Yabuta, T. &Y. Sumiki. 1933. A new metabolic product ofAspergillus ochraceus: ochracin. J. Agric. Chem. Soc. Japan9: 1264–1275.

    CAS  Google Scholar 

  • Yamamoto, I. 1961. Studies on the metabolic products ofOospora sp. Part I. Isolation and purification of two new compounds and eburicoic acid. Agric. Biol. Chem.25: 400–404.

    CAS  Google Scholar 

  • —,K. Nitta, &Y. Yamamoto. 1961. Studies on the metabolic products ofOospora sp. Part II. Chemical structure of oospolactone (O-1). Agric. Biol. Chem.25: 405–409.

    CAS  Google Scholar 

  • ———. 1962. Studies on the metabolic products ofOospora sp. (Oospora astringenes). Part III. Chemical structure of oosponol (O-2). Agric. Biol. Chem.26: 486–493.

    CAS  Google Scholar 

  • Yamatodani, S., T. Yamano, Y. Kozu, &M. Abe. 1963. Isolation of a new isocoumarin derivative, K-1, from the saprophytic culture ofOospora astringenes. J. Agric. Chem. Soc. Japan37: 240–243.

    CAS  Google Scholar 

  • Yoshihira, K., S. Natori, &P. Kanchanapee. 1967. The structure of diospyrol, the principle from the fruit ofDiospyros mollis. Tetrahedron Lett. 4857–4860.

  • Zilg, H. &H. Grisebach. 1968a. Biosynthesis of isoflavones. XVII. Identification and biosynthesis of coumestanes inSoja hispida. Phytochemistry7: 1765–1772.

    CAS  Google Scholar 

  • ——. 1968b. Biosynthesis of isoflavones. XVII. Identification and biosynthesis of coumestanes inSoja hispida. Addendum. Phytochemistry8: 527.

    Google Scholar 

  • ——. 1969. Coumestanes inCicer arietinum. Phytochemistry8: 2261–2263.

    CAS  Google Scholar 

  • Zotov, V. V. &R. Gadiev. 1970. Resistance of grapevines to pests and diseases. Fiziol. Sel’ Skokhoz. Rast.9: 413–449.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingham, J.L. Phytoalexins and other natural products as factors in plant disease resistance. Bot. Rev 38, 343–424 (1972). https://doi.org/10.1007/BF02860009

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02860009

Keywords

Navigation