Neuronal-glial interactions during development and aging

  • Antonia Vernadakis
Part of the Faseb Monographs book series (FASEBM, volume 3)


Integration of the central nervous system is an expression of cerebral homeostasis that is essential for the internal ability of the organism to adapt to its changing environment throughout life. It is generally accepted that neurons undergo no further division after differentiation, whereas glial cells continue to proliferate throughout life. The increase in glial cells with advanced age may reflect a compensatory process of the brain to overcome neuronal loss or neuronal functional changes that may occur with age. Therefore, these neuronal-glial interactions during development and aging may play a key role in the integrative capacity of the brain. One of the mechanisms contributing to brain stability is the blood-brain barrier, which regulates the neuronal-glial microenvironment in the mature organism. Neuronal intercommunication is mediated via neurotransmitter substances and a shift may occur from excitation to inhibition and vice versa in some CNS areas with aging. Studies of some aspects of cholinergic, monoaminergic and amino acid neurotransmission show that their maturational patterns are CNS-area specific and that some neurotransmitter processes decline with advanced age. Glial cells, besides participating in the regulation of extraneuronal environment, are also proposed to be involved in neurotransmission mechanisms in the adult and aging CNS and since they are the major CNS cellular compartment that changes with age they may thus contribute significantly to the maintenance of CNS integrative ability and adaptation with age.—Vernadakis, A. Neuronal-glial interactions during development and aging. Federation Proc. 34: 89–95, 1975.


Glial Cell Purkinje Cell Cerebral Hemisphere Choline Acetyltransferase Glial Cell Proliferation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.







choline acetyltransferase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altman, J. In: The Neurosciences, edited by G. C. Quarton, T. Melnechuk and F. O. Schmidt. New York: Rockefeller Univ. Press, 1967, p. 723–743.Google Scholar
  2. 2.
    Altman, J. In: Handbook of Neurochemistry, Vol. 2, edited by A. Lajtha. New York: Plenum, 1969, p. 137–182.Google Scholar
  3. 3.
    Brizzee, K. R., N. Sherwood and P. S. Timiras. J. Gerontol. 23: 289, 1968.PubMedGoogle Scholar
  4. 4.
    Brizzee, K. R., J. Vogt and X. Kharetchko. Progr. Brain Res. 4: 136, 1964.CrossRefGoogle Scholar
  5. 5.
    Critchley, M. In: Problems of Aging, edited by E. V. Cowdry. Baltimore: Williams & Wilkins, 1942.Google Scholar
  6. 6.
    Curtis, D. R., L. Hösli, G. A. R. Johnston and I. H. Jonnton. Brain Res. 5: 112, 1967.CrossRefGoogle Scholar
  7. 7.
    Curtis, D. R., AND G. A. R. Johnston. In: Handbook of Neurochemistry, Vol. 4, edited by A. Lajtha. New York: Plenum, 1970, p. 115–134.Google Scholar
  8. 8.
    Duncan, D. J. J. Comp. Neurol. 59: 47, 1934.CrossRefGoogle Scholar
  9. 9.
    Filogamo, G., AND P. C. Marcinsio. Neurosci. Res. 4: 29, 1971.PubMedGoogle Scholar
  10. 10.
    Giacobini, E. In: Morphological and Biochemical Correlates of Neural Activity, edited by M. M. Cohen and R. S. Snider. New York: Harper, 1964, p. 15–38.Google Scholar
  11. 11.
    Hanaway, J. J. Comp. Neurol. 131: 1, 1967.PubMedCrossRefGoogle Scholar
  12. 12.
    Hebb, C. Nature 192: 527, 1961.PubMedCrossRefGoogle Scholar
  13. 13.
    Hebb, C. Ann. Rev. Physiol. 32: 165, 1970.CrossRefGoogle Scholar
  14. 14.
    Henn, F. A., AND Hamberger, A. Proc. Natl. Acad. Sci. U.S. 68: 2686, 1971.CrossRefGoogle Scholar
  15. 15.
    Hydén, H. In: The Neurosciences, edited by G. C. Quarton, T. Melnechuk and F. O. Schmidt. New York: Rockefeller Univ. Press, 1967, p. 765–771.Google Scholar
  16. 16.
    Inakai,T. J. Comp. Neurol. 45: 1, 1928.Google Scholar
  17. 17.
    Iversen, L. L. Brit. J. Pharmacol. 41: 571, 1971.CrossRefGoogle Scholar
  18. 18.
    Iversen, L. L., AND P. J. Salt. Brit. J. Pharmacol. 40: 528, 1970.CrossRefGoogle Scholar
  19. 19.
    Jacobsen, J. G., AND L. H. Smith, JR. Physiol. Rev. 48: 424, 1968.PubMedGoogle Scholar
  20. 20.
    Johnson, J. L. Brain Res. 37: 1, 1972.PubMedCrossRefGoogle Scholar
  21. 21.
    Kellogg, C., A. Vernadakis AND C. O. Rutledge. J. Neurochem. 18: 1931, 1971.PubMedCrossRefGoogle Scholar
  22. 22.
    Krnjevic, K. Nature 228: 119, 1970.PubMedCrossRefGoogle Scholar
  23. 23.
    Mirsky, A. E., AND H. Ris. Nature 163: 666, 1949.PubMedCrossRefGoogle Scholar
  24. 24.
    Obata, K., AND K. Takeda. J. Neurochem. 16: 1043, 1969.PubMedCrossRefGoogle Scholar
  25. 25.
    Otsuka, K., K. Obata, Y. Migata AND Y. Tanaka. J. Neurochem. 18: 297, 1971.CrossRefGoogle Scholar
  26. 26.
    Roberts, E., AND K. Kuriyama. Brain Res. 8: 1, 1968.PubMedCrossRefGoogle Scholar
  27. 27.
    Rutledge, C. O. J. Pharmacol. Exptl. Ther. 171: 188, 1970.Google Scholar
  28. 28.
    Rutledge, C. O., AND J. Jonason. J. Pharmacol. Exptl. Ther. 157: 493. 1967.Google Scholar
  29. 29.
    Timiras, P. S. Developmental Physiology and Aging. New York: Macmillan, 1972, chapt. 26, p. 502–526.Google Scholar
  30. 30.
    Timiras, P.S., D. B. Hudson AND S. Oklund. Progr. Brain. Res. 40: 267, 1973.CrossRefGoogle Scholar
  31. 31.
    Timiras, P. S., A. Vernadakis AND A. Sherwood. In: Biology of Gestation, edited by N. Assali. New York: Academic, 1968, p. 261–319.Google Scholar
  32. 32.
    Vernadakis, A. J. Gerontology 28: 281, 1973.Google Scholar
  33. 33.
    Vernadakis, A. Progr. Brain Res. 40: 1973, p. 231.CrossRefGoogle Scholar
  34. 34.
    Vernadakis, A. Mech. Ageing Develop. 2: 371, 1973.CrossRefGoogle Scholar
  35. 35.
    Vernadakis, A. In: Drugs and the Developing Brain, edited by A. Vernadakis and N. Weiner. New York: Plenum, 1974, p. 133–148.CrossRefGoogle Scholar
  36. 36.
    Vernadakis, A. In: Proceedings of the Mie Conference of the International Society for Psychoneuroendocrinology, edited by N. Hatotani. New York: Karger. 1974, p. 251–258.Google Scholar
  37. 37.
    Vernadakis, A., and D. A. Gibson. Abstracts, 4th Int. Mtg. Intern. Soc. Neurochem., Aug. 26–31, 1973, Tokyo, Japan.Google Scholar
  38. 38.
    Vernadakis, A., and D. A. Gibson. In: Conferences on the Problems and Priorities in Perinatal Pharmacology, edited by J. Dancis and J. C. Hwang. New York: Raven. 1974, p. 65–76.Google Scholar
  39. 39.
    Vernadakis, A., and D. M. Woodbury. Arch. Neurol. 12: 284, 1965.PubMedCrossRefGoogle Scholar
  40. 40.
    Vernadakis, A., and D. M. Woodbury. In: Steroid Hormones and Brain Function, edited by C. H. Sawyer and R. A. Gorski, UCLA Forum in Medical Sciences: Univ. of California Press, 1971, p. 35–42.Google Scholar
  41. 41.
    Vernadakis, A., and D. M. Woodbury. In: Influence of Hormones on the Nervous System, edited by D. H. Ford. Basel: Karger, 1971, p. 85–97.Google Scholar
  42. 42.
    Woodbury, D. M. Progr. Brain Res. 29: 297, 1968.CrossRefGoogle Scholar

Copyright information

© Federation of American Societies 1975

Authors and Affiliations

  • Antonia Vernadakis
    • 1
  1. 1.Departments of Psychiatry and PharmacologyUniversity of Colorado School of MedicineDenverUSA

Personalised recommendations