Morphological and Functional Development of the Auditory System

  • Ola A. Selnes
  • Harry A. Whitaker


There is an extensive body of literature available on both structural and functional properties of the auditory system in adult organisms (Bekesy, 1960; Rasmussen and Windle, 1965; Tobias, 1970–1972; Whit-field, 1967). While most of the anatomical and physiological studies are concerned with subhuman species, particularly the rat, cat, rabbit, and monkey, a few such studies have also been done on humans (Tasker and Organ, 1973). Much less work has been done on the development of the auditory system, at least in humans, and so far, no systematic treatment of morphological and functional characteristics of the developing auditory system is available. Such an undertaking would, needless to say, be of great value both for an understanding of auditory perception in general and for an understanding of more specialized auditory functions, like processing of linguistic stimuli.


Hair Cell Speech Perception Auditory Cortex Auditory System Outer Hair Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aleksandrovskaya, M. M., and Chizenkova, R. A. Analysis of changes of Glial cell number in the auditory cortex of the brain during sound stimulation of different intensity. Fiziologicheskii Zhurnal SSSR, 1973, 59, 870–874.Google Scholar
  2. Alexander, G. Zur vergleichenden, pathologischen Anatomie des Gehörorgans und Gehirn einer unvollkommenem Albinotischen weissen Katzen. Archiv fuer Ohrenheilkund, 1900, 50, 159–181.CrossRefGoogle Scholar
  3. Barden, T. P., Peltzman, P., and Graham, J. T. Human fetus electroencephalographic responses to acoustic signals. American Journal of Obstetrics and Gynecology, 1968, 100, 1128–1134.Google Scholar
  4. Bast, T. H., and Anson, B. J. The temporal bone and ear. Springfield, Illinois: Charles C Thomas, 1949.Google Scholar
  5. Batkin, S., Groth, H., Watson, J. R., and Ansberry, M. Effects of auditory deprivation on the development of auditory sensitivity in the Albino rat. Electroencephalography and Clinical Neurophysiology, 1970, 28, 351–359.CrossRefGoogle Scholar
  6. Beagley, H. A. The cortical evoked response in audiometry. Proceedings of the Royal Society of Medicine, 1972, 65, 87.Google Scholar
  7. Bekesy, G. Experiments in hearing. New York: McGraw-Hill, 1960.Google Scholar
  8. Berlin, C. I., Hughes, L. F., Lowe-Bell, S. S., and Berlin, H. L. Dichotic right ear advantages in children 5 to 13. Cortex, 1973, 9, 394–402.Google Scholar
  9. Bredberg, G. Cellular pattern and nerve supply of the human organ of Corti. Acta Oto-laryngologica, 1968, 23 (Suppl.), 1–135.Google Scholar
  10. Burdick, C. K., and Miller, J. D. Discrimination of speech sounds by chinchillas: Steady state /i/ vs. /a/. Journal of the Acoustical Society of America, 1974, 56 (Suppl.) S 52, Abstr. Z4.CrossRefGoogle Scholar
  11. Candiollo, L., and Levi, A. C. Studies on the morphogenesis of the middle ear muscles in man. Archivfuer Klinischeund Experimentelle Ohren-Nasen-und Kehlkopfheilkunde, 1969, 195, 55–67.CrossRefGoogle Scholar
  12. Conel, J. L. The postnatal development of the human brain. Cambridge: Harvard University Press, 1939-1967.Google Scholar
  13. Costa, A. Embryogenesis of the ear and its central projection. Advances in Experimental Medicine and Biology, 1972, 30, 291–303.Google Scholar
  14. Dallos, P., Billone, M. C., Durant, J. D., Wang, C., and Raynor, S. Cochlear inner and outer hair cells: Functional difference. Science, 1972, 177, 356–358.CrossRefGoogle Scholar
  15. Dwornicka, G., Jasienska, A., Smolarz, W., and Waryk, R. Attempt of determining the fetal reaction to acoustic stimulation. Acta Otolaryngologica, 1964, 57, 571.CrossRefGoogle Scholar
  16. Eagles, E., and Wishik, S. A study of hearing in children. Transactions of the American Academy of Ophthalmology and Oto-laryngology, 1961, 65, 261–282.Google Scholar
  17. Elimas, P. D. Speech perception in early infancy. In L. B. Cohen and P. Salapatek (Eds.), Infant perception. (Vol. 2). New York: Academic Press, 1975.Google Scholar
  18. Elimas, P. D., Siqueland, E. R., Jusczyk, P., and Vigorito, J. Speech perception in infants. Science, 1971, 172, 303–306.CrossRefGoogle Scholar
  19. Ellingson, R. J., and Wilcott, R. C. Development of evoked responses in visual and auditory cortices in kittens. Journal of Neurophysiology, 1960, 23, 363–375.Google Scholar
  20. Ellingson, R. J., Danahy, T., Nelson, B., and Lathrop, G. H. Variability of auditory evoked potentials in human newborns. Electroencepholography and Clinical Neurophysiology, 1974, 36, 155–162.CrossRefGoogle Scholar
  21. Elliott, G. B., and Elliott, A. Observations on the constitution of the petrosa. American Journal of Roentgenology and Radium Therapy, 1964, 91, 633–639.Google Scholar
  22. Fior, R. Physiological maturation of auditory function between 3 and 13 years of age. Audiology, 1972, 11, 317–321.CrossRefGoogle Scholar
  23. Fisch, L. Deafness as part of a hereditary syndrome. Journal Laryngology, 1959, 73, 355–382.Google Scholar
  24. Fleischer, K. Untersuchungen zur entwicklung der Innerohrfunktion. Zeitschrift fuer Laryngologie, Rhinologie, Otologie, 1955, 34, 733–740.Google Scholar
  25. Frank, S. T. Aural signs of coronary-artery disease. New England Journal of Medicine, 1973, 289, 327–328.Google Scholar
  26. Froding, C. A. Acoustic investigation of newborn infants. Acta Otolaryngologica, 1960, 52, 31–40.CrossRefGoogle Scholar
  27. Gardner, M. B., and Gardner, R. S. Problem of Localization in the median plane: Effect of pinnae cavity occlusion. Journal of the Acoustical Society of America, 1973, 53, 400–408.CrossRefGoogle Scholar
  28. Gilbert, J. H. V. Speech perception in children. In E. Cohen and S. J. Nootebohm (Eds.), Dynamic aspects of speech perception. Berlin: Springer Verlag, 1975.Google Scholar
  29. Graziani, L. J., and Weitzman, E. D. Sensory evoked responses in the neonatal period and their application. Handbook of Electroencephalography and Clinical Neurophysiology, 1972, 15B, 73–88.Google Scholar
  30. Grollman, S. The human body. New York: Macmillan, 1974.Google Scholar
  31. Gyllenstein, L., Malmfors, T., and Norlin, M. L. Growth alterations in the auditory cortex of visually deprived mice. Journal of Comparative Neurology, 1966, 126, 463–470.CrossRefGoogle Scholar
  32. Hall, J. G. The cochlea and the cochlear nuclei in neonatal asphyxia. Acta Otolaryngologica, 1964, 194 (Suppl.), 1–193.Google Scholar
  33. Hardy, J., Dougherty, A., and Hardy, W. Hearing responses and audiologic screening in infants. Journal of Pediatrics, 1959, 55, 382–390.CrossRefGoogle Scholar
  34. Hecox, K. Electrophysiological correlates of human auditory development. In L. B. Cohen and P. Salapatek (Eds.), Infant perception (Vol. 2). New York: Academic Press, 1975.Google Scholar
  35. Hudson, W. R., Durham, N. C., and Ruben, R. Hereditary deafness in the dalmatian dog. Archives of Otolaryngology, 1962, 75, 213–219.CrossRefGoogle Scholar
  36. Johansson, B., Wedenberg, E., and Westin, B. Measurement of tone response by the human fetus: A preliminary report. Acta Otolaryngologica, 1964, 57, 188–192.CrossRefGoogle Scholar
  37. Kane, E. C. Synaptic organization in the dorsal cochlear nucleus of the cat: A light and electron microscope study. Journal of Comparative Neurology, 1974, 155, 301–330.CrossRefGoogle Scholar
  38. Kuhl, P. K., and Miller, J. D. Discrimination of speech sounds by the chinchilla: /t/ vs. /d/ in CV syllables, journal of the Acoustical Society of America, 1974, 56 (Suppl.), S 52, Abstr. Z5.CrossRefGoogle Scholar
  39. Kuhl, P. K., and Miller, J. D. Speech perception by the chinchilla: phonetic boundaries for synthetic VOT stimuli. Journal of the Acoustical Society of America, 1975, 57 (Suppl.), S 49, Abstr. X13.CrossRefGoogle Scholar
  40. Langman, J. Medical embryology. Baltimore: Williams and Wilkins, 1969.Google Scholar
  41. Lichstein, E., Chadda, K. D., Naik, D., and Gupta, P. K. Diagonal ear-lobe crease: Prevalence and implications as a coronary risk factor. New England Journal of Medicine, 1974, 290, 615–616.CrossRefGoogle Scholar
  42. Lierse, W., and Horstmann, E. Quantitative anatomy of the cerebral vascular bed with special emphasis on homogeneity and inhomogeneity in small parts of the gray and white matter. Acta Neurologica Scandinavica, 1965, 14 (Suppl.), 15–19.Google Scholar
  43. Lim, D. J. Fine morphology of the tectorial membrane, its relationship to the organ of Corti. Archives of Otolaryngology, 1972, 96, 199–215.CrossRefGoogle Scholar
  44. Lindeman, H. H., Ades, H. W., Bredberg, G., and Engström, H. The sensory hair cells and the tectorial membrane in the development of the cat’s organ of Corti. Acta Otolaryngologica, 1971, 72, 229–242.CrossRefGoogle Scholar
  45. MacKay, D. G. Metamorphosis of a critical interval: Age-linked changes in the delay in auditory feedback which causes maximal disruption of speech. Journal of the Acoustical Society of America, 1968, 43, 811–821.CrossRefGoogle Scholar
  46. Mehta, J., and Hamby, R. I. Diagonal ear-lobe crease as a coronary risk factor. New England Journal of Medicine, 1974, 291, 260.Google Scholar
  47. Moffitt, A. R. Consonant cue perception by twenty-four-week-old infants. Child Development, 1971, 42, 717–731.CrossRefGoogle Scholar
  48. Morest, D. K. The laminar structure of the medial geniculate body of the cat. Journal of Anatomy, 1965, 99, 143–160.Google Scholar
  49. Morest, D. K. The growth of synapses in the human brain: A study of the calyces of the trapezoid body. Zeitschrift fuer Anatomie und Entwicklungsgeschichte, 1968, 127, 201–220.CrossRefGoogle Scholar
  50. Morest, D. K. The differentiation of cerebral dendrites: A study of postmigratory neuroblasts in the medial nucleus of the trapezoid body. Zeitschift fuer Anatomie und Entwicklungsgeschichte, 1969, 128, 271–289. (a)CrossRefGoogle Scholar
  51. Morest, D. K. The growth of dendrites in the mammalian brain. Zeitschrift fuer Anatomie und Entwicklungsgeschichte, 1969, 128, 290–317. (b)CrossRefGoogle Scholar
  52. Morest, D. K. (1971) Dendrodendritic synapses of cells that have axons: The fine structure of the Golgi Type II cells in the medial geniculate body of the cat. Zeitschrift fuer Anatomie und Entwicklungsgeschichte, 1971, 133, 216–246.CrossRefGoogle Scholar
  53. Morse, P. A. The discrimination of speech and nonspeech stimuli in early infancy. Journal of Experimental Child Psychology, 1972, 14, 477–492.CrossRefGoogle Scholar
  54. Murphy, K. P., and Smyth, C. N. Responses of fetus to auditory stimulation. Lancet, 1962, 1, 972–973.CrossRefGoogle Scholar
  55. Naftalin, L., Harrison, M. S., and Stephens, A. The character of the tectorial membrane. Journal of Laryngology and Otology, 1964, 78, 1061–1078.Google Scholar
  56. Nikolov, T., and Dragwanski, M. Modifications histochemiques du cortex sous l’action du Bruit et des vibrations. Journal Francais d’ O.R.L., 1973, 22, 409–411.Google Scholar
  57. Patten, B. M., and Carlson, B. M. Foundations of embryology. New York: McGraw-Hill, 1974.Google Scholar
  58. Peiper, A. Sinnesempfindungen des Kindes vor seiner Geburt. Monatschrift fuer Kinderheilkunde, 1925, 29, 236–241.Google Scholar
  59. Politzer, G. Die Entstehung des Ganglion Acusticum beim Menschen. Acta Anatomica, 1956, 26, 1–13.Google Scholar
  60. Pujol, R., and Hilding, D. Anatomy and physiology of the onset of auditory function. Acta Otolaryngologica, 1973, 76, 1–10.CrossRefGoogle Scholar
  61. Pujol, R., and Marty, R. Structural and physiological relationships of the maturing auditory system. In Jilek and Trojan. (Eds.), Ontogenesis of the brain. Prague: Charles University Press, 1968. Pp. 377–385.Google Scholar
  62. Rasmussen, G. L., and Windle, W. F. Neural mechanisms of the auditory and vestibular systems. Springfield, Illinois: Charles C Thomas, 1965.Google Scholar
  63. Rawitz, B. Ueber die Beziehungen zwischen unvollkommenem Albinismus und Taubheit. Archiv fuer Anatomie und Physiologie, Physiologische Abteilung, 1897, 21, 402–415.Google Scholar
  64. Ryugo, D. K., Ryugo, R., Globus, A., and Killackey, H. P. Increased spine density in auditory cortex following visual or somatic deafferentation. Brain Research, 1975, 90, 143–146.CrossRefGoogle Scholar
  65. Sakabe, N., Arayamat, T., and Suzuki, T. Human fetal evoked response to acoustic stimulation. Acta Otolaryngologica, 1969, 252 (Suppl.), 29–36.CrossRefGoogle Scholar
  66. Schiefelbusch, R. L., and Lloyd, L. L. (Eds.). Language perspectives-acquisition, retardation, and intervention. Baltimore: University Park Press, 1974.Google Scholar
  67. Scibetta, J. J., Rosen, M. G., Hochberg, C. J., and Chik, L. Human fetal brain responses to sound during labor. American journal of Obstetrics and Gynecology, 1971, 109, 82–85.Google Scholar
  68. Scott, M. Ear creases, heart disease and smoking. New England Journal of Medicine, 1974, 290, 1205.Google Scholar
  69. Shaw, E. A. G. The outer ear. In W. D. Keidel and W. D. Neff (Eds.), Handbook of sensory physiology (Vol. 5). Berlin: Springer Verlag, 1974Google Scholar
  70. Stratton, P. M, and Connolly, K. Discrimination by newborns of the intensity, frequency and temporal characteristics of auditory stimuli. British Journal of Psychology, 1973, 64, 219–232.CrossRefGoogle Scholar
  71. Taguchi, K., Picton, T. W., Orpin, J. A., and Goodman, W. S. Evoked response audi-ometry in newborn infants. Acta Otolaryngologica, 1969, 252 (Suppl.), 5–17.CrossRefGoogle Scholar
  72. Tasker, R. R., and Organ, L. W. Stimulation mapping of the upper human auditory pathway. Journal of Neurosurgery, 1973, 38, 320–325.CrossRefGoogle Scholar
  73. Tees, R. C. Effects of early auditory restriction in the rat on adult pattern discrimination. Journal of Comparative Physiology, 1967, 63, 389–393. (a)Google Scholar
  74. Tees, R. C. Duration discrimination in the rat after early auditory deprivation. Perceptual and Motor Skills, 1967, 25, 249–255. (b)CrossRefGoogle Scholar
  75. Tobias, J. V. Foundations of modern auditory theory (Vols. 1 and 2). New York: Academic Press, 1970–1972.Google Scholar
  76. Trehub, S. E. Infants’ sensitivity to vowel and tonal contrasts. Developmental Psychology, 1973, 9, 91–96.CrossRefGoogle Scholar
  77. Tuchmann-Duplessis, H., Auroux, M., and Haegel, P. Illustrated human embryology (Vol. 3). New York: Springer verlag, 1974.Google Scholar
  78. Walker, J. L., and Halas, E. S. Neuronal coding at subcortical auditory nuclei. Physiology and Behavior, 1972, 8, 1099–1106.CrossRefGoogle Scholar
  79. Warren, R. M., and Warren, R. P. A comparison of speech perception in childhood, maturity and old age by means of the verbal transformation effect. Journal of Verbal Learning and Verbal Behavior, 1966, 5, 142–146.CrossRefGoogle Scholar
  80. Wedenberg, E. Hörselsbestemning på; nyfödda. Nord. Med. 1956, 56, 1022–1024.Google Scholar
  81. Wertheimer, M. Psychomotor coordination of auditory and visual space at birth. Science, 1961, 134, 1692.CrossRefGoogle Scholar
  82. West, C. D., and Harrison, J. M. Transneuronal cell atrophy in the congenitally deaf white cat. Journal of Comparative Neurology, 1973, 151, 377–398.CrossRefGoogle Scholar
  83. Whitfield, L. C. The auditory pathway. New York: Williams and Wilkins, 1967.Google Scholar
  84. Wormith, S. J., Pankhurst, D., and Moffitt, A. R. Frequency discrimination by young infants. Child Development, 1975, 46, 272–275.CrossRefGoogle Scholar
  85. Wright, I. Hearing and balance. In J. A. Davis and J. Dobbing (Eds.), Scientific foundations of paediatrics. Philadelphia: Saunders, 1974.Google Scholar
  86. Yakolev, P. I., and Lecours, A.-R. The myelogenetic cycles of regional maturation of the brain. In A. Minkowski (Ed.), Regional development of the brain in early life. Philadelphia: Davis, 1967.Google Scholar
  87. Zemlin, W. R. Speech and hearing science. Englewood Cliffs, New Jersey: Prentice-Hall, 1968.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Ola A. Selnes
    • 1
  • Harry A. Whitaker
    • 1
  1. 1.Department of PsychologyUniversity of RochesterRochesterUSA

Personalised recommendations