The Hyper-β- and Hyperpre- β-lipoproteinemias

  • Waldo R. Fisher


The physiologic role of VLDL and chylomicrons in the transport of triglyceride has been recognized for many years. The important role of LDL in the delivery of cholesterol and phospholipid to the cells of the body, however, has been brought into sharp focus only within the past several years. The studies by Goldstein and Brown have clearly established this role for LDL,1,2 and the disease a-β-lipoproteinemia provides a clinical testimonial to the consequences of defective cholesterol transport by LDL.3 The elegant studies by Goldstein and Brown have demonstrated, in fibroblasts, the presence of receptors which specifically recognize LDL and VLDL, and it is the absence of the high-affinity LDL receptor which characterizes the homozygous subject with familial hyper-β-lipoproteinemia.4,5 These individuals and their heterozygous kindred, who have a decrease but not an absence in the number of high-affinity receptors, have a resultant impairment in LDL catabolism with increased concentrations of plasma LDL. The major clinical consequence of this hyper-β-lipoproteinemia is the development of premature atherosclerosis.


Bile Acid Nicotinic Acid Lipoprotein Lipase Plasma Triglyceride Lipoprotein Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Goldstein and M. S. Brown. 1973. Familial hypercholesterolemia: Identification of a defect in the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity associated with overproduction of cholesterol. Proc. Natl. Acad. Sci. U.S.A. 70:2804–2808.PubMedGoogle Scholar
  2. 2.
    J. L. Goldstein and M. S. Brown. 1975. Lipoprotein receptors, cholesterol metabolism, and atherosclerosis. Arch. Pathol. 99:181–184.PubMedGoogle Scholar
  3. 3.
    D. S. Fredrickson, A. M. Gotto, and R. I. Levy. 1972. Familial lipoprotein deficiency. In: The Metabolic Basis of Inherited Disease, 3rd ed. Ed. by J. B. Stanbury, J. B. Wyngaarden and D. S. Fredrickson. McGraw-Hill, New York, pp. 493–530.Google Scholar
  4. 4.
    J. L. Goldstein and M. S. Brown. 1974. Binding and degradation of low density lipoprotein by cultured human fibroblasts. J. Biol Chem. 249:5153–5162.PubMedGoogle Scholar
  5. 5.
    M. S. Brown and J. L. Goldstein. 1974. Expression of the familial hypercholes-terolemia gene in heterozygotes: Mechanism for a dominant disorder in man. Science 185:61–63.PubMedGoogle Scholar
  6. 6.
    E. B. Smith. 1974. The relationship between plasma and tissue lipids in human atherosclerosis. Adv. Lipid Res. 12:1–49.PubMedGoogle Scholar
  7. 7.
    H. F. Hoff, R. L. Jackson, S. J. T. Mao, and A. M. Gotto, Jr. 1974. Localization of low-density lipoproteins in atherosclerotic lesions from human normolipemics employing a purified fluorescent-labeled antibody. Biochim. Biophys. Acta 351:407–415.PubMedGoogle Scholar
  8. 8.
    E. L. Bierman and J. J. Albers. 1975. Lipoprotein uptake by cultured human arterial smooth muscle cells. Biochim. Biophys. Acta 388:198–202.PubMedGoogle Scholar
  9. 9.
    R. Ross and J. A. Glomset. 1973. Atherosclerosis and the arterial smooth muscle cell. Science 180:1332–1339.PubMedGoogle Scholar
  10. 10.
    Y. Stein, M. C. Glangeaud, M. Fainaru, and O. Stein. 1975. The removal of cholesterol from aortic smooth muscle cells in culture and Landschutz ascites cells by fractions of human high-density apolipoprotein. Biochim. Biophys. Acta 380:106–118.PubMedGoogle Scholar
  11. 11.
    J. W. Gofman, H. B. Jones, F. T. Lindgren, T. P. Lyon, H. A. Elliott, and B. Strisower. 1950. Blood lipids and human atherosclerosis. Circulation 2:161–178.PubMedGoogle Scholar
  12. 12.
    D. P. Barr, E. M. Russ, and H. A. Eder. 1951. Protein-lipid relationships in human plasma: In atherosclerosis and related conditions. Am. J. Med. 11:480–493.PubMedGoogle Scholar
  13. 13.
    W. B. Kannel, W. P. Castelli, T. Gordon, and P. M. McNamara. 1971. Serum cholesterol, lipoproteins, and the risk of coronary heart disease. The Framingham study. Ann. Intern. Med. 74:1–12.PubMedGoogle Scholar
  14. 14.
    J. Slack. 1969. Risks of ischaemic heart-disease in familial hyperlipoproteinaemic states. Lancet 2:1380–1382.PubMedGoogle Scholar
  15. 15.
    L. A. Carlson and L. E. Böttiger. 1972. Ischaemic heart-disease in relation to fasting values of plasma triglycerides and cholesterol. Lancet 1:865–868.PubMedGoogle Scholar
  16. 16.
    D. S. Fredrickson and R. I. Levy. 1972. Familial hyperlipoproteinemia. In: The Metabolic Basis of Inherited Disease, 3rd ed. Ed. by J. B. Stanbury, J. B. Wyngaarden and D. S. Fredrickson. McGraw-Hill, New York, pp. 545–614.Google Scholar
  17. 17.
    D. S. Fredrickson and R. S. Lees. 1965. A system for phenotyping hyperlipoproteinemia. Circulation 31:321–327.PubMedGoogle Scholar
  18. 18.
    J. L. Beaumont, L. A. Carlson, G. R. Cooper, Z. Fejfar, D. S. Fredrickson, and T. Strasser. 1970. Classification of hyperlipidaemias and hyperlipoproteinaemias. Bull. W.H.O. 43:891–915.PubMedGoogle Scholar
  19. 19.
    D. Seidel, P. Alaupovic, and R. H. Furman. 1969. A lipoprotein characterizing obstructive jaundice. I. Method for quantitative separation and identification of lipoproteins in jaundiced subjects. J. Clin. Invest. 48:1211–1223.PubMedGoogle Scholar
  20. 20.
    D. Seidel, P. Alaupovic, R. H. Furman, and W. J. McConathy. 1970. A lipoprotein characterizing obstructive jaundice. II. Isolation and partial characterization of the protein moieties of low density lipoproteins. J. Clin. Invest. 49:2396–2407.PubMedGoogle Scholar
  21. 21.
    D. Seidel, H. Greten, H. P. Geisen, H. Wengeler, and H. Wieland. 1972. Further aspects on the characterization of high and very low density lipoproteins in patients with liver disease. Eur. f. Clin. Invest. 2:359–364.Google Scholar
  22. 22.
    P. Müller, R. Fellin, J. Lambrecht, B. Agostini, H. Wieland, W. Rost, and D. Seidel. 1974. Hypertriglyceridaemia secondary to liver disease. Eur.J. Clin. Invest. 4:419–428.PubMedGoogle Scholar
  23. 23.
    J. B. Marsh and D. L. Drabkin. 1960. Experimental reconstruction of metabolic pattern of lipid nephrosis: Key role of hepatic protein synthesis in hyperlipemia. Metabolism 9:946–955.PubMedGoogle Scholar
  24. 24.
    S. R. Newmark, C. F. Anderson, J. V. Donadio, Jr., and R. D. Ellefson. 1975. Lipoprotein profiles in adult nephrotics. Mayo Clin. Proc 50:359–364.PubMedGoogle Scholar
  25. 25.
    D. Porte, Jr., D. D. O’Hara, and R. H. Williams. 1966. The relation between post-heparin lipolytic activity and plasma triglyceride in myxedema. Metabolism 15:107–113.PubMedGoogle Scholar
  26. 26.
    E. A. Nikkilä and M. Kekki. 1972. Plasma triglyceride metabolism in thyroid disease. J. Clin. Invest. 51:2103–2114.PubMedGoogle Scholar
  27. 27.
    B. R. Tulloch, B. Lewis, and T. R. Fraser. 1973. Triglyceride metabolism in thyroid disease. Lancet 1:391–394.PubMedGoogle Scholar
  28. 28.
    K. W. Walton, P. J. Scott, P. W. Dykes, and J. W. L. Davies. 1965. The significance of alterations in serum lipids in thyroid dysfunction. II. Alterations of the metabolism and turnover of 131I-low-density lipoproteins in hypothyroidism and thyrotoxicosis. Clin. Sci. 29:217–238.PubMedGoogle Scholar
  29. 29.
    N. J. Greenberger, F. T. Hatch, G. D. Drummey, and K. J. Isselbacher. 1966. Pancreatitis and hyperlipemia: A study of serum lipid alterations in 25 patients with acute pancreatitis. Medicine 45:161–174.Google Scholar
  30. 30.
    J. L. Cameron, D. M. Capuzzi, G. D. Zuidema, and S. Margolis. 1974. Acute pancreatitis with hyperlipemia. Evidence for a persistent defect in lipid metabolism. Am. J. Med. 56:482–487.PubMedGoogle Scholar
  31. 31.
    R. G. Farmer, E. I. Winkelman, H. B. Brown, and L. A. Lewis. 1973. Hyperlipoproteinemia and pancreatitis. Am. J. Med. 54:161–165.PubMedGoogle Scholar
  32. 32.
    D. J. Kudzma and G. Schonfeld. 1971. Alcoholic hyperlipidemia: Induction by alcohol but not by carbohydrate. J. Lab. Clin. Med. 77:384–395.PubMedGoogle Scholar
  33. 33.
    C. S. Lieber. 1974. Effects of ethanol upon lipid metabolism. Lipids 9:103–116.PubMedGoogle Scholar
  34. 34.
    H. Ginsberg, J. Olefsky, J. W. Farquhar, and G. M. Reaven. 1974. Moderate ethanol ingestion and plasma triglyceride levels. A study in normal and hypertriglyceridemic persons. Ann. Intern. Med. 80:143–149.PubMedGoogle Scholar
  35. 35.
    E. A. Nikkilä. 1969. Control of plasma and liver triglycéride kinetics by carbohydrate metabolism and insulin. Adv. Lipid Res. 7:63–134.PubMedGoogle Scholar
  36. 36.
    E. A. Nikkilä and M. Kekki. 1973. Plasma triglyceride transport kinetics in diabetes mellitus. Metabolism 22:1–22.PubMedGoogle Scholar
  37. 37.
    C. J. Glueck, R. Fallat, C. R. Buncher, R. Tsang, and P. Steiner. 1973. Familial combined hyperlipoproteinemia: Studies in 91 adults and 95 children from 33 kindreds. Metabolism 22:1403–1428.Google Scholar
  38. 38.
    H. G. Rose, P. Kranz, M. Weinstock, J. Juliano, and J. I. Haft. 1973. Inheritance of combined hyperlipoproteinemia: Evidence for a new lipoprotein phenotype. Am. J. Med. 54:148–160.PubMedGoogle Scholar
  39. 39.
    J. L. Goldstein, W. R. Hazzard, H. G. Schrott, E. L. Bierman, and A. G. Motulsky. 1973. Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J. Clin. Invest. 52:1544–1568.PubMedGoogle Scholar
  40. 40.
    W. R. Hazzard, J. L. Goldstein, H. G. Schrott, A. G. Motulsky, and E. L. Bierman. 1973. Hyperlipidemia in coronary heart disease. III. Evaluation of lipoprotein phenotypes of 156 genetically defined survivors of myocardial infarction. J. Clin. Invest. 52:1569–1577.PubMedGoogle Scholar
  41. 41.
    R. M. Greenhalgh, D. S. Rosengarten, I. Mervart. B. Lewis, J. S. Calnan, and P. Martin. 1971. Serum lipids and lipoproteins in peripheral vascular disease. Lancet 2:947–950.PubMedGoogle Scholar
  42. 42.
    J. L. de Gennes, J. Rouffy, and F. Chain. 1968. Complications vasculaires cerebrales des xanthomatoses tendineuses hypercholesterolemiques familiales. Soc. Med. Hop. Paris Mem. 119:569–586.Google Scholar
  43. 43.
    N. T. Mathew, D. Davis, J. S. Meyer, and K. Chandar. 1975. Hyperlipoproteinemia in occlusive cerebrovascular disease. J. Am. Med. Assoc. 232:262–266.Google Scholar
  44. 44.
    C. J. Glueck, R. I. Levy, and D. S. Fredrickson. 1968. Acute tendonitis and arthritis. A presenting symptom of familial type II hyperlipoproteinemia. J. Am. Med. Assoc. 206:2895–2897.Google Scholar
  45. 45.
    A. K. Khachadurian. 1968. Migratory polyarthritis in familial hypercholesterolemia (type II hyperlipoproteinemia). Arthritis Rheum. 11:385–392.PubMedGoogle Scholar
  46. 46.
    N. C. Nevin and J. Slack. 1968. Hyperlipidaemic xanthomatosis. II. Mode of inheritance in 55 families with essential hyperlipidaemia and xanthomatosis. J. Med. Genet. 5:9–28.PubMedGoogle Scholar
  47. 47.
    J. Jensen and D. H. Blankenhorn. 1972. The inheritance of familial hypercholesterolemia. Am. J. Med. 52:499–516.PubMedGoogle Scholar
  48. 48.
    H. G. Schrott, J. L. Goldstein, W. R. Hazzard, M. M. McGoodwin, and A. G. Motulsky. 1972. Familial hypercholesterolemia in a large kindred. Ann. Intern. Med. 76:711–720.PubMedGoogle Scholar
  49. 49.
    P. O. Kwiterovich, Jr., D. S. Fredrickson, and R. I. Levy. 1974. Familial hypercholesterolemia (one form of familial type II hyperlipoproteinemia). A study of its biochemical, genetic, and clinical presentation in childhood. J. Clin. Invest. 53:1237–1249.PubMedGoogle Scholar
  50. 50.
    C. J. Glueck, F. Heckman, M. Schoenfeld, P. Steiner, and W. Pearce. 1971. Neonatal familial type II hyperlipoproteinemia: Cord blood cholesterol in 1800 births. Metabolism 20:597–608.PubMedGoogle Scholar
  51. 51.
    E. A. Nikkilä and A. Aro. 1973. Family study of serum lipids and lipoproteins in coronary heart-disease. Lancet 1:954–958.PubMedGoogle Scholar
  52. 52.
    G. Schonfeld and D. J. Kudzma. 1973. Type IV hyperlipoproteinemia; a critical appraisal. Arch. Intern. Med. 132:55–62.PubMedGoogle Scholar
  53. 53.
    C. J. Glueck, R. I. Levy, and D. S. Fredrickson. 1969. Immunoreactive insulin, glucose tolerance, and carbohydrate inducibility in types II, III, IV, and V hyperlipoproteinemia. Diabetes 18:739–747.PubMedGoogle Scholar
  54. 54.
    J. W. Farquhar, A. Frank, R. C. Gross, and G. M. Reaven. 1966. Glucose, insulin, and triglyceride responses to high and low carbohydrate diets in man. J. Clin. Invest. 45:1648–1656.PubMedGoogle Scholar
  55. 55.
    G. M. Reaven, R. L. Lerner, M. P. Stern, and J. W. Farquhar. 1967. Role of insulin in endogenous hypertriglyceridemia. J. Clin. Invest. 46:1756–1767.PubMedGoogle Scholar
  56. 56.
    P. W. Adams, A. H. Kissebah, P. Harrigan, T. Stokes, and V. Wynn. 1974. The kinetics of plasma free fatty acid and triglyceride transport in patients with idiopathic hypertriglyceridaemia and their relation to carbohydrate metabolism. Eur. J. Clin. Invest. 4:149–161.PubMedGoogle Scholar
  57. 57.
    S. Sailer, K. Bolzano, F. Sandhofer, P. Spath, and H. Braunsteiner. 1968. Triglyceridspiegel und Insulinkonzentration im Plasma nach Oraler Glukosegabe bei Patienten mit Primärer Kohlenhydratinduzierter Hypertriglyceridämie. Schweiz. Med. Wochenschr. 98:1512–1517.PubMedGoogle Scholar
  58. 58.
    J. D. Bagdade, D. Porte, Jr., and E. L. Bierman. 1967. Diabetic lipemia. A form of acquired fat-induced lipemia. N. Engl. J. Med. 276:427–433.PubMedGoogle Scholar
  59. 59.
    J. D. Brunzell, W. R. Hazzard, D. Porte, Jr., and E. L. Bierman. 1973. Evidence for a common, saturable, triglyceride removal mechanism for chylomicrons and very low density lipoproteins in man. J. Clin. Invest. 52:1578–1585.PubMedGoogle Scholar
  60. 60.
    F. Parker, J. D. Bagdade, G. F. Odland, and E. L. Bierman. 1970. Evidence for the chylomicron origin of lipids accumulating in diabetic eruptive xanthomas: A correlative lipid biochemical, histochemical, and electron microscopic study. J. Clin. Invest. 49:2172–2187.PubMedGoogle Scholar
  61. 61.
    J. A. Goldman, C. J. Glueck, N. R. Abrams, P. Steiner, and J. H. Herman. 1972. Musculoskeletal disorders associated with type-IV hyperlipoproteinaemia. Lancet 2:449–452.PubMedGoogle Scholar
  62. 62.
    J. D. Brunzell, W. R. Hazzard, A. G. Motulsky, and E. L. Bierman. 1975. Evidence for diabetes mellitus and genetic forms of hypertriglyceridemia as independent entities. Metabolism 24:1115–1121.PubMedGoogle Scholar
  63. 63.
    P. H. Schreibman, D. E. Wilson, and R. A. Arky. 1969. Familial type IV hyperlipoproteinemia. N. Engl.J. Med. 281:981–985.PubMedGoogle Scholar
  64. 64.
    W. R. Fisher, M. G. Hammond, and G. L. Warmke. 1972. Measurements of the molecular weight variability of plasma low density lipoproteins among normals and subjects with hyper-α-lipoproteinemia. Demonstration of macromolecular heterogeneity. Biochemistry 11:519–525.PubMedGoogle Scholar
  65. 65.
    M. G. Hammond and W. R. Fisher. 1971. The characterization of a discrete series of low density lipoproteins in the disease, hyper-pre-α-lipoproteinemia. J. Biol. Chem. 246:5454–5465.PubMedGoogle Scholar
  66. 66.
    W. R. Fisher, M. G. Hammond, D. T. Hughes, M. C. Mengel, and G. L. Warmke. 1975. Macromolecular dispersion of human plasma low density lipoproteins (LDL) in hyperlipoproteinemia. Clin. Res. 23:420A.Google Scholar
  67. 67.
    W. R. Fisher, M. G. Hammond, M. C. Mengel, and G. L. Warmke. 1975. A genetic determinant of the phenotypic variance of the molecular weight of low density lipoprotein. Proc. Natl. Acad. Sci. U.S.A. 72:2347–2351.PubMedGoogle Scholar
  68. 68.
    A. M. Gotto, W. V. Brown, R. I. Levy, M. E. Birnbaumer, and D. S. Fredrickson. 1972. Evidence for the identity of the major apoprotein in low density and very low density lipoproteins in normal subjects and patients with familial hyperlipoproteinemia. J. Clin. Invest. 51:1486–1494.PubMedGoogle Scholar
  69. 69.
    J.-C. Pinon and P. Laudat. 1969. Apoproteine-β du plasma: Composition en acides amines dans Phypercholesterolemie du type II familiale. Biochim. Biophys. Acta 187:144–146.PubMedGoogle Scholar
  70. 70.
    J.-C. Pinon and P. Laudat. 1971. Low-density lipoprotein of human plasma: N-Terminal amino acids in familial hyperbetalipoproteinemia (type II). Clin. Chim. Acta 32:131–133.PubMedGoogle Scholar
  71. 71.
    J. Slack and G. L. Mills. 1970. Anomalous low density lipoproteins in familial hyper-betalipoproteinaemia. Clin. Chim. Acta 29:15–25.PubMedGoogle Scholar
  72. 72.
    R. B. Triplett and W. R. Fisher. 1976. The apoprotein in the structural organization of low density lipoprotein. (submitted).Google Scholar
  73. 73.
    R. Smith, J. R. Dawson, and C. Tanford. 1972. The size and number of polypeptide chains in human serum low density lipoprotein. J. Biol. Chem. 247:3376–3381.PubMedGoogle Scholar
  74. 74.
    D. M. Lee and P. Alaupovic. 1974. Physicochemical properties of low-density lipoproteins of normal human plasma. Biochem. J. 137:155–167.PubMedGoogle Scholar
  75. 75.
    S. Eisenberg, D. W. Bilheimer, R. I. Levy, and F. T. Lindgren. 1973. On the metabolic conversion of human plasma very low density lipoprotein to low density lipoprotein. Biochim. Biophys. Acta 326:361–377.PubMedGoogle Scholar
  76. 76.
    B. Shore and V. Shore. 1974. An apolipoprotein preferentially enriched in cholesteryl ester-rich very low density lipoproteins. Biochem. Biophys. Res. Commun. 58:1–7.PubMedGoogle Scholar
  77. 77.
    F. A. Shelburne and S. H. Quarfordt. 1974. A new apoprotein of human plasma very low density lipoproteins. J. Biol. Chem. 249:1428–1433.PubMedGoogle Scholar
  78. 78.
    D. S. Robinson and D. R. Wing. 1972. Clearing factor lipase and its role in the regulation of triglyceride utilization. Studies on the enzyme in adipose tissue. Adv. Exp. Med. Biol. 26:71–76.PubMedGoogle Scholar
  79. 79.
    C. J. Fielding. 1970. Human lipoprotein lipase. I. Purification and substrate specificity. Biochim. Biophys. Acta 206:109–117.PubMedGoogle Scholar
  80. 80.
    P. E. Fielding, V. G. Shore, and C. J. Fielding. 1974. Lipoprotein lipase: Properties of the enzyme isolated from post-heparin plasma. Biochemistry 13:4318–4323.PubMedGoogle Scholar
  81. 81.
    A. Bensadoun, C. Ehnholm, D. Steinberg and W. V. Brown. 1974. Purification and characterization of lipoprotein lipase from pig adipose tissue. J. Biol. Chem. 249:2220–2227.PubMedGoogle Scholar
  82. 82.
    H. Greten and B. Walter. 1973. Purification of rat adipose tissue lipoprotein lipase. FEBS Lett. 35:36–40.PubMedGoogle Scholar
  83. 83.
    C. J. Fielding and J. M. Higgins. 1974. Lipoprotein lipase: Comparative properties of the membrane-supported and solubilized enzyme species. Biochemistry 13:4324–4329.PubMedGoogle Scholar
  84. 84.
    B. Persson and B. Hood. 1970. Characterization of lipoprotein lipase activity eluted from human adipose tissue. Atherosclerosis 12:241–251.PubMedGoogle Scholar
  85. 85.
    D. M. Kornhauser and M. Vaughan. 1975. Release of lipoprotein lipase from fat cells in vitro. Biochim. Biophys. Acta 380:97–105.PubMedGoogle Scholar
  86. 86.
    J. E. Stewart and M. C. Schotz. 1974. Release of lipoprotein lipase activity from isolated fat cells. J. Biol. Chem. 249:904–907.PubMedGoogle Scholar
  87. 87.
    R. J. Havel, V. G. Shore, B. Shore, and D. M. Bier. 1970. Role of specific glycopeptides of human serum lipoproteins in the activation of lipoprotein lipase. Circ. Res. 27:595–600.PubMedGoogle Scholar
  88. 88.
    J. C. LaRosa, R. I. Levy, P. Herbert, S. E. Lux, and D. S. Fredrickson. 1970. A specific apoprotein activator for lipoprotein lipase. Biochem. Biophys. Res. Commun. 41:57–62.PubMedGoogle Scholar
  89. 89.
    W. V. Brown and M. L. Baginsky. 1972. Inhibition of lipoprotein lipase by an apoprotein of human very low density lipoprotein. Biochem. Biophys. Res. Commun. 46:375–382.PubMedGoogle Scholar
  90. 90.
    J. Boberg, P. H. Iverius, H. Lithell, and A.-M. Östlund. 1973. Effects of very low density lipoprotein peptides on lipoprotein lipase activities. Eur. J. Clin. Invest. 3:214.Google Scholar
  91. 91.
    R. J. Havel, J. P. Kane, and M. L. Kashyap. 1973. Interchange of apolipoproteins between chylomicrons and high density lipoproteins during alimentary lipemia in man. J. Clin. Invest. 52:32–38.PubMedGoogle Scholar
  92. 92.
    P. J. Dolphin and D. Rubinstein. 1974. The metabolism of very low density lipoprotein and chylomicrons by purified lipoprotein lipase from rat heart and adipose tissue. Biochem. Biophys. Res. Commun. 57:808–814.PubMedGoogle Scholar
  93. 93.
    J. K. Huttunen and E. A. Nikkilä. 1973. Postheparin plasma lipase in human subjects. Studies with chylomicrons, very-low density lipoproteins and a fat emulsion. Eur.J Clin. Invest. 3:483–490.PubMedGoogle Scholar
  94. 94.
    J. M. Higgins and C. J. Fielding. 1975. Lipoprotein lipase. Mechanism of formation of triglyceride-rich remnant particles from very low density lipoproteins and chylomicrons. Biochemistry 14:2288–2292.PubMedGoogle Scholar
  95. 95.
    R. D. Phair, M. G. Hammond, J. A. Bowden, M. Fried, W. R. Fisher, and M. Berman. 1975. A preliminary model for human lipoprotein metabolism in hyperlipoproteinemia. Fed. Proc. 34:2263–2270.PubMedGoogle Scholar
  96. 96.
    E. J. Blanchette-Mackie and R. O. Scow. 1971. Sites of lipoprotein lipase activity in adipose tissue perfused with chylomicrons. J. Cell Biol. 51:1–25.PubMedGoogle Scholar
  97. 97.
    R. P. Eaton, M. Berman, and D. Steinberg. 1969. Kinetic studies of plasma free fatty acid and triglyceride metabolism in man. J. Clin. Invest. 48:1560–1579.PubMedGoogle Scholar
  98. 98.
    C. H. Hollenberg. 1959. Effect of nutrition on activity and release of lipase from rat adipose tissue. Am. J. Phys. 197:667–670.Google Scholar
  99. 99.
    J. I. Kessler. 1963. Effect of diabetes and insulin on the activity of myocardial and adipose tissue lipoprotein lipase of rats. J. Clin. Invest. 42:362–366.PubMedGoogle Scholar
  100. 100.
    J. D. Schnatz and R. H. Williams. 1963. The effect of acute insulin deficiency in the rat on adipose tissue lipolytic activity and plasma lipids. Diabetes 12:174–177.PubMedGoogle Scholar
  101. 101.
    J. D. Bagdade, D. Porte, Jr., and E. L. Bierman. 1968. Acute insulin withdrawal and the regulation of plasma triglyceride removal in diabetic subjects. Diabetes 17:127–132.PubMedGoogle Scholar
  102. 102.
    G. Steiner. 1968. Lipoprotein lipase in fat-induced hyperlipemia. N. Engl. J. Med. 279:70–74.PubMedGoogle Scholar
  103. 103.
    H. Greten, R. I. Levy, and D. S. Fredrickson. 1969. Evidence for separate monoglyceride hydrolase and triglyceride lipase in post-heparin human plasma. J. Lipid Res. 10:326–330.PubMedGoogle Scholar
  104. 104.
    J. C. LaRosa, R. I. Levy, H. G. Windmueller, and D. S. Fredrickson. 1972. Comparison of the triglyceride lipase of liver, adipose tissue, and postheparin plasma. J. Lipid Res. 13:356–363.PubMedGoogle Scholar
  105. 105.
    G. Assmann, R. M. Krauss, D. S. Fredrickson, and R. I. Levy. 1973. Positional specificity of triglyceride lipases in post-heparin plasma. J. Biol. Chem. 248:7184–7190.PubMedGoogle Scholar
  106. 106.
    G. Assmann, R. M. Krauss, D. S. Fredrickson, and R. I. Levy. 1973. Characterization, subcellular localization, and partial purification of a heparin-released triglyceride lipase from rat liver. J. Biol. Chem. 248:1992–1999.PubMedGoogle Scholar
  107. 107.
    R. M. Krauss, R. I. Levy, and D. S. Fredrickson. 1974. Selective measurement of two lipase activities in postheparin plasma from normal subjects and patients with hyper-lipoproteinemia. J. Clin. Invest. 54:1107–1124.PubMedGoogle Scholar
  108. 108.
    D. Ganesan and H. B. Bass. 1975. Isolation of C-I and C-II activated lipoprotein lipases and protamine insensitive triglyceride lipase by heparin-Sepharose affinity chromatography. FEBS Lett. 53:1–4.PubMedGoogle Scholar
  109. 109.
    R. J. Havel. 1972. Mechanisms of hyperlipoproteinemia. Adv. Exp. Med. Biol. 26:57–70.PubMedGoogle Scholar
  110. 110.
    E. A. Nikkilä and M. Kekki. 1971. Measurement of plasma triglyceride turnover in the study of hyperglyceridemia. Scand. J. Clin. Lab. Invest. 27:105–111.Google Scholar
  111. 111.
    G. M. Reaven, D. B. Hill, R. C. Gross, and J. W. Farquhar. 1965. Kinetics of triglyceride turnover of very low density lipoproteins of human plasma. J. Clin. Invest. 44:1826–1833.PubMedGoogle Scholar
  112. 112.
    E. A. Nikkilä and M. Kekki. 1971. Polymorphism of plasma triglyceride kinetics in normal human adult subjects. Acta Med. Scand. 190:49–59.PubMedGoogle Scholar
  113. 113.
    J. Olefsky, J. W. Farquhar, and G. M. Reaven. 1974. Sex difference in the kinetics of triglyceride metabolism in normal and hypertriglyceridaemic human subjects. Eur.J. Clin. Invest. 4:121–127.PubMedGoogle Scholar
  114. 114.
    S. Sailer, F. Sandhofer, and H. Braunsteiner. 1966. Unsatzraten fur Freie Fettsäuren und Triglyceride im Plasma bei Essentieller Hyperlipämie. Klin. Wochenschr. 44:1032–1036.PubMedGoogle Scholar
  115. 115.
    S. H. Quarfordt, A. Frank, D. M. Shames, M. Berman, and D. Steinberg. 1970. Very low density lipoprotein triglyceride transport in type IV hyperlipoproteinemia and the effects of carbohydrate-rich diets. J. Clin. Invest. 49:2281–2297.PubMedGoogle Scholar
  116. 116.
    D. M. Shames, A. Frank, D. Steinberg, and M. Berman. 1970. Transport of plasma free fatty acids and triglycerides in man: A theoretical analysis. J. Clin. Invest. 49:2298–2314.PubMedGoogle Scholar
  117. 117.
    R. J. Havel, J. P. Kane, E. O. Balasse, N. Segel, and L. V. Basso. 1970. Splanchnic metabolism of free fatty acids and production of triglycerides of very low density lipoproteins in normotriglyceridemic and hypertriglyceridemic humans. J. Clin. Invest. 49:2017–2035.PubMedGoogle Scholar
  118. 118.
    K. Bolzano, F. Sandhofer, S. Sailer, and H. Braunsteiner. 1972. The effect of oral administration of sucrose on the turnover rate of plasma free fatty acids and on the esteriflcation rate of plasma free fatty acids to plasma triglycerides in normal subjects, patients with primary endogenous hypertriglyceridemia, and patients with well controlled diabetes mellitus. Horm. Metab. Res. 4:439–446.PubMedGoogle Scholar
  119. 119.
    J. Boberg, L. A. Carlson, U. Freyschuss, B. W. Lassers, and M. L. Wahlqvist. 1972. Splanchnic secretion rates of plasma triglycerides and total and splanchnic turnover of plasma free fatty acids in men with normo-and hypertriglyceridaemia. Eur.J. Clin. Invest. 2:454–466.PubMedGoogle Scholar
  120. 120.
    D. Gitlin, D. G. Cornwell, D. Nakasato, J. L. Oncley, W. L. Hughes, Jr., and C. A. Janeway. 1958. Studies on the metabolism of plasma proteins in the nephrotic syndrome. II. The lipoproteins. J. Clin. Invest. 37:172–184.PubMedGoogle Scholar
  121. 121.
    W. Volwiler, P. D. Goldsworthy, M. P. MacMartin, P. A. Wood, I. R. Mackay, and K. Fremont-Smith. 1955. Biosynthetic determination with radioactive sulfur of turnover rates of various plasma proteins in normal and cirrhotic man. J. Clin. Invest. 34:1126–1143.PubMedGoogle Scholar
  122. 122.
    P. J. Hurley and P. J. Scott. 1970. Plasma turnover of S f0–9 low-density lipoprotein in normal men and women. Atherosclerosis 11:51–76.PubMedGoogle Scholar
  123. 123.
    R. P. Eaton and D. M. Kipnis. 1972. Incorporation of 75Se selenomethionine into a protein component of plasma very-low-density lipoprotein in man. Diabetes 21:744–753.PubMedGoogle Scholar
  124. 124.
    H. B. Stähelin. 1975. 75Se-Selenomethionine-labeled lipoproteins in hyperlipidemic and normolipidemic humans. Metabolism 24:505–515.PubMedGoogle Scholar
  125. 125.
    W. J. Lossow, F. T. Lindgren, J. C. Murchio, G. R. Stevens, and L. C. Jensen. 1969. Particle size and protein content of six fractions of the S f > 20 plasma lipoproteins isolated by density gradient centrifugation. J. Lipid Res. 10:68–76.PubMedGoogle Scholar
  126. 126.
    S. Eisenberg, D. Bilheimer, F. Lindgren, and R. I. Levy. 1972. On the apoprotein composition of human plasma very low density lipoprotein subfractions. Biochim. Biophys. Acta 260:329–333.PubMedGoogle Scholar
  127. 127.
    M. S. Brown and J. L. Goldstein. 1974. Familial hypercholesterolemia: Defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Proc. Natl. Acad. Sci. U.S.A. 71:788–792.PubMedGoogle Scholar
  128. 128.
    A. K. Khachadurian, M. Lipson, and F. S. Kawahara. 1975. Diagnosis of familial hypercholesterolemia by measurement of sterol synthesis in cultured skin fibroblasts. Atherosclerosis 21:235–244.PubMedGoogle Scholar
  129. 129.
    A. M. Fogelman, J. Edmond, J. Seager, and G. Popjak. 1975. Abnormal induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase in leukocytes from subjects with heterozygous familial hypercholesterolemia. J. Biol. Chem. 250:2045–2055.PubMedGoogle Scholar
  130. 130.
    T. Langer, W. Strober, and R. I. Levy. 1972. The metabolism of low density lipoprotein in familial type II hyperlipoproteinemia. J. Clin. Invest. 51:1528–1536.PubMedGoogle Scholar
  131. 131.
    H. A. Feldman, H. Torsvik, A. M. Gifford, and R. S. Lees. 1974. Low density lipoprotein turnover in homozygous hyperbetalipoproteinemia. Circulation 49/50(Suppl III):20.Google Scholar
  132. 132.
    R. P. Robertson, D. J. Gavareski, J. D. Henderson, D. Porte, Jr., and E. L. Bierman. 1973. Accelerated triglyceride secretion; a metabolic consequence of obesity. J. Clin. Invest. 52:1620–1626.PubMedGoogle Scholar
  133. 133.
    J. Olefsky, G. M. Reaven, and J. W. Farquhar. 1974. Effects of weight reduction on obesity. Studies of lipid and carbohydrate metabolism in normal and hyperlipoproteinemic subjects. J. Clin. Invest. 53:64–76.PubMedGoogle Scholar
  134. 134.
    E. L. Bierman and D. Porte, Jr. 1968. Carbohydrate intolerance and lipemia. Ann. Intern. Med. 68:926–933.PubMedGoogle Scholar
  135. 135.
    L. B. Salans, J. L. Knittle, and J. Hirsch. 1968. The role of adipose cell size and adipose tissue insulin sensitivity in the carbohydrate intolerance of human obesity. J. Clin. Invest. 47:153–165.PubMedGoogle Scholar
  136. 136.
    K. Block and W. Kramer. 1948. The effect of pyruvate and insulin on fatty acid synthesis in vitro. J. Biol. Chem. 173:811–812.Google Scholar
  137. 137.
    R. O. Brady and S. Gurin. 1950. Biosynthesis of labeled fatty acids and cholesterol in experimental diabetes. J. Biol Chem. 187:589–596.PubMedGoogle Scholar
  138. 138.
    E. H. Ahrens, Jr., J. Hirsch, K. Oette, J. W. Farquhar, and Y. Stein. 1961. Carbohydrate-induced and fat-induced lipemia. Trans. Assoc. Am. Physicians 74:134–146.PubMedGoogle Scholar
  139. 139.
    R. B. McGandy, D. M. Hegsted, and F. J. Stare. 1967. Dietary fats, carbohydrates and atherosclerotic vascular disease. N. Engl.J. Med. 277:186–192.PubMedGoogle Scholar
  140. 140.
    P. J. Nestel. 1973. Triglyceride turnover in man; effects of dietary carbohydrate. Prog. Biochem. Pharmacol. 8:125–160.PubMedGoogle Scholar
  141. 141.
    E. A. Nikkilä and M. Kekki. 1972. Effects of dietary fructose and sucrose on plasma triglycéride metabolism in patients with endogenous hypertriglyceridemia. Acta Med. Scand., Suppl. 542:221–227.Google Scholar
  142. 142.
    C.-H. Wu, M. Hoshi, and W. W. Shreeve. 1974. Human plasma triglyceride labeling after high-sucrose feeding. I. Incorporation of sucrose-U-14C. Metabolism 23:1125–1140.PubMedGoogle Scholar
  143. 143.
    N. B. Ruderman, A. L. Jones, R. M. Krauss, and E. Shafrir. 1971. A biochemical and morphologic study of very low density lipoproteins in carbohydrate-induced hypertriglyceridemia. J. Clin. Invest. 50:1355–1368.PubMedGoogle Scholar
  144. 144.
    E. H. Ahrens, Jr., J. Hirsch, W. Insull, Jr., T. T. Tsaltas, R. Blomstrand, and M. L. Peterson. 1957. The influence of dietary fats on serum-lipid levels in man. Lancet 1:943–950.Google Scholar
  145. 145.
    R. B. Moore, J. T. Anderson, H. L. Taylor, A. Keys, and I. D. Frantz, Jr. 1968. Effect of dietary fat on the fecal excretion of cholesterol and its degradation products in man. J. Clin. Invest. 47:1517–1534.PubMedGoogle Scholar
  146. 146.
    P. J. Nestel, N. Havenstein, Y. Homma, T. W. Scott, and L. J. Cook. 1975. Increased sterol excretion with polyunsaturated-fat high-cholesterol diets. Metabolism 24:189–198.PubMedGoogle Scholar
  147. 147.
    S. M. Grundy and E. H. Ahrens, Jr. 1970. The effects of unsaturated dietary fats on absorption, excretion, synthesis, and distribution of cholesterol in man. J. Clin. Invest. 49:1135–1152.PubMedGoogle Scholar
  148. 148.
    P. J. Nestel and D. Steinberg. 1963. Fate of palmitate and linoleate perfused through the isolated rat liver at high concentrations. J. Lipid Res. 4:461–469.PubMedGoogle Scholar
  149. 149.
    D. N. Brindley, M. E. Smith, B. Sedgwick, and G. Hübscher. 1967. The effect of unsaturated fatty acids and the particle-free supernatant on the incorporation of palmitate into glycerides. Biochim. Biophys. Acta 144:285–295.PubMedGoogle Scholar
  150. 150.
    P. J. Nestel and P. Barter. 1971. Metabolism of palmitic and linoleic acids in man: Differences in turnover and conversion to glycerides. Clin. Sci. 40:345–350.PubMedGoogle Scholar
  151. 151.
    A. Chait, A. Onitiri, A. Nicoll, E. Rabaya, J. Davies, and B. Lewis. 1974. Reduction of serum triglyceride levels by polyunsaturated fat. Atherosclerosis 20:347–364.PubMedGoogle Scholar
  152. 152.
    J. D. Brunzell, D. Porte, Jr., and E. L. Bierman. 1975. Reversible abnormalities in postheparin lipolytic activity during the late phase of release in diabetes mellitus (postheparin lipolytic activity in diabetes). Metabolism 24:1123–1137.PubMedGoogle Scholar
  153. 153.
    H. R. Casdorph, ed. 1971. Treatment of the Hyperlipidemic States. Charles C. Thomas, Springfield, Illinois, 434 p.Google Scholar
  154. 154.
    R. S. Lees and D. E. Wilson. 1971. The treatment of hyperlipidemia. N. Engl.J. Med. 284:186–195.PubMedGoogle Scholar
  155. 155.
    D. Kritchevsky. 1974. New drugs affecting lipid metabolism. Lipids 9:97–102.Google Scholar
  156. 156.
    R. I. Levy, D. S. Fredrickson, R. Shulman, D. W. Bilheimer, J. L. Breslow, N.J. Stone, S. E. Lux, H. R. Sloan, R. M. Krauss, and P. N. Herbert. 1972. Dietary and drug treatment of primary hyperlipoproteinemia. Ann. Intern. Med. 77:267–294.Google Scholar
  157. 157.
    R. I. Levy, J. Morganroth, and B. M. Rifkind. 1974. Treatment of hyperlipidemia. N. Engl.J. Med. 290:1295–1302.PubMedGoogle Scholar
  158. 158.
    W. B. Parsons, Jr. 1971. Use of nicotinic acid compounds in treatment of hyperlipidemia. In: Treatment of the Hyperlipidemic States. Ed. by H. R. Casdorph, Charles C. Thomas. Springfield, Illinois, pp. 335–375.Google Scholar
  159. 159.
    A. A. Magide, N. B. Myant, and D. Reichl. 1975. The effect of nicotinic acid on the metabolism of the plasma lipoproteins of Rhesus monkeys. Atherosclerosis 21:205–215.PubMedGoogle Scholar
  160. 160.
    E. A. Nikkilä. 1972. Effect of drugs on plasma triglyceride metabolism. Adv. Exp. Med. Biol. 26:113–123.PubMedGoogle Scholar
  161. 161.
    L. A. Carlson and L. Orö. 1965. Persistence of the inhibitory effect of nicotinic acid on catecholamine-stimulated lipid mobilization during prolonged treatment with nicotinic acid. J. Atheroscler. Res. 5:436–439.PubMedGoogle Scholar
  162. 162.
    L. A. Carlson, L. Orö, and J. Östman. 1968. Effect of a single dose of nicotinic acid on plasma lipids in patients with hyperlipoproteinemia. Acta Med. Scand. 183:457–465.PubMedGoogle Scholar
  163. 163.
    G. Schlierf and E. Dorow. 1973. Diurnal patterns of triglycerides, free fatty acids, blood sugar, and insulin during carbohydrate-induction in man and their modification by nocturnal suppression of lipolysis. J. Clin. Invest. 52:732–740.PubMedGoogle Scholar
  164. 164.
    R. I. Levy and T. Langer. 1972. Hypolipidemic drugs and lipoprotein metabolism. Adv. Exp. Med. Biol. 26:155–163.PubMedGoogle Scholar
  165. 165.
    N. Svedmyr and L. Harthon. 1970. Comparison between the absorption of nicotinic acid and pentaerythritol tetranicotinate (Perycit®) from ordinary and enterocoated tablets. Acta Pharmacol. Toxicol. 28:66–74.Google Scholar
  166. 166.
    A. H. Kissebah, P. W. Adams, P. Harrigan, and V. Wynn. 1974. The mechanism of action of clofibrate and tetranicotinoylfructose (Bradilan) on the kinetics of plasma free fatty acid and triglyceride transport in type IV and type V hypertriglyceridae-mia. Eur. J. Clin. Invest. 4:163–174.PubMedGoogle Scholar
  167. 167.
    M. A. D’Costa and A. Angel. 1975. Inhibition of hormone-stimulated lipolysis by clofibrate; a possible mechanism for its hypolipidemic action. J. Clin. Invest. 55:138–148.PubMedGoogle Scholar
  168. 168.
    H. S. Sodhi, B. J. Kudchodkar, and L. Horlick. 1971. Effect of chlorophenoxyisobutyrate on the metabolism of endogenous glycerides in man. Metabolism 20:309–318.PubMedGoogle Scholar
  169. 169.
    B. M. Wolfe, J. P. Kane, R. J. Havel, and H. P. Brewster. 1973. Mechanism of the hypolipemic effect of clofibrate in postabsorptive man. J. Clin. Invest. 52:2146–2159.PubMedGoogle Scholar
  170. 170.
    E. L. Bierman, J. D. Brunzell, J. D. Bagdade, R. L. Lerner, W. R. Hazzard, and D. Porte, Jr. 1970. On the mechanism of action of Atromid-S on triglyceride transport in man. Trans. Assoc. Am. Physicians 83:211–224.PubMedGoogle Scholar
  171. 171.
    P. J. Scott and P. J. Hurley. 1969. Effect of clofibrate on low-density lipoprotein turnover in essential hypercholesterolaemia. J. Atheroscler. Res. 9:25–34.PubMedGoogle Scholar
  172. 172.
    S. M. Grundy, E. H. Ahrens, Jr., G. Salen, P. H. Schreibman, and P. J. Nestel. 1972. Mechanisms of action of clofibrate on cholesterol metabolism in patients with hyperlipidemia. J. Lipid Res. 13:531–551.PubMedGoogle Scholar
  173. 173.
    W. E. Connor and D. S. Lin. 1974. The intestinal absorption of dietary cholesterol by hypercholesterolemic (type II) and normocholesterolemic humans. J. Clin. Invest. 53:1062–1070.PubMedGoogle Scholar
  174. 174.
    T. A. Miettinen, R. Pelkonen, E. A. Nikkilä, and O. Heinonen. 1967. Low excretion of fecal bile acids in a family with hypercholesterolemia. Acta Med. Scand. 182:645–650.PubMedGoogle Scholar
  175. 175.
    K. Einarsson and K. Hellström. 1972. The formation of bile acids in patients with three types of hyperlipoproteinaemia. Eur. J. Clin. Invest. 2:225–230.PubMedGoogle Scholar
  176. 176.
    M. G. Korman, R. D. Ellefson, and A. F. Hofmann. 1975. Fasting serum bile acid levels in the primary hyperlipoproteinemias. Mayo Clin. Proc. 50:76–78.PubMedGoogle Scholar
  177. 177.
    S. A. Hashim and T. B. Van Itallie. 1965. Cholestyramine resin therapy for hypercholesteremia; clinical and metabolic studies. J. Am. Med. Assoc. 192:89–91.Google Scholar
  178. 178.
    R. B. Moore, C. A. Crane, and I. D. Frantz, Jr. 1968. Effect of cholestyramine on the fecal excretion of intravenously administered cholesterol-4-14C and its degradation products in a hypercholesterolemic patient. J. Clin. Invest. 47:1664–1671.PubMedGoogle Scholar
  179. 179.
    J. T. Garbutt and T. J. Kenney. 1972. Effect of cholestyramine on bile acid metabolism in normal man. J. Clin. Invest. 51:2781–2789.PubMedGoogle Scholar
  180. 180.
    K. Einarsson, K. Hellström, and M. Kallner. 1974. The effect of cholestyramine on the elimination of cholesterol as bile acids in patients with hyperlipoproteinaemia type II and IV. Eur. J. Clin. Invest. 4:405–410.PubMedGoogle Scholar
  181. 181.
    D. S. Goodman and R. P. Noble. 1968. Turnover of plasma cholesterol in man. J. Clin. Invest. 47:231–241.PubMedGoogle Scholar
  182. 182.
    A. Sedaghat and E. H. Ahrens, Jr. 1975. Lack of effect of cholestyramine on the pharmacokinetics of clofibrate in man. Eur. J. Clin. Invest. 5:177–185.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Waldo R. Fisher
    • 1
  1. 1.J. Hillis Miller Health Center, Department of MedicineUniversity of FloridaGainesvilleUSA

Personalised recommendations