Spin Waves and Magnetization Oscillation in Superfluid 3He

  • Kazumi Maki


Since a pioneering NMR experiment by Osheroff et al,1 it has been gradually realized that the superfluid phases of liquid 3He possess extraordinary magnetic properties. All of the extraordinary magnetic properties reflect the fact that the condensates in both the A and B phases of superfluid 3He comprise the triplet pairs as first recognized by Leggett.2,3 The ground state of superfluid 3He is highly degenerate as to the spin configuration as well as the orbital configuration of the triplet pairs. This implies that the superfluid 3He possesses a class of gapless collective modes associated with the rotation of the spin configuration (i.e., Goldstone boson). As pointed out by Leggett2,3 the dipole interaction energy between nuclear spins of He atoms, though extremely small, will lift partially the high degeneracy of the ground state. The dipole interaction introduces correlations between the orbital and the spin configuration of the condensate, giving rise to an additional shift in the NMR frequencies for example.


Spin WAVES Goldstone Boson Equilibrium Configuration Spin Current Spin Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    D. D. Osheroff, W. J. Gully, R. C. Richardson, and D. M. Lee, Phys. Rev. Lett. 29 920 (1972).ADSCrossRefGoogle Scholar
  2. (2).
    A. J. Leggett, Phys. Rev. Lett. 29 1227 (1972).ADSCrossRefGoogle Scholar
  3. (3).
    A. J. Leggett, Phys. Rev. Lett. 31 352 (1973); and Ann. Phys. (N.Y.) 85 11 (1974).ADSCrossRefGoogle Scholar
  4. (4).
    K. Maki and T. Tsuneto, Prog. Theor. Phys. 52 773 (1974).ADSCrossRefGoogle Scholar
  5. (5).
    K. Maki and T. Tsuneto, Phys. Rev. B 11, Jan. (1975), in press.Google Scholar
  6. (6).
    K. Maki, Phys. Rev. B 11, Feb. (1975), in press.Google Scholar
  7. (7).
    K. Maki and C.-R. Hu, J. Low Temp. Phys.18 377 (1975);ADSCrossRefGoogle Scholar
  8. (7a).
    K. Maki ,C.-R. Hu,J. Low Temp. Phys. 19 259 (1975).ADSCrossRefGoogle Scholar
  9. (8).
    R. A. Webb, R. L. Kleinberg, and J. C. Wheatley, Phys. Rev. Lett. 33 145 (1974).ADSCrossRefGoogle Scholar
  10. (9).
    R. A. Webb, R. L. Kleinberg, and J. C. Wheatley, Phys. Lett. A 48 421 (1974).ADSCrossRefGoogle Scholar
  11. (10).
    P. W. Anderson and W. F. Brinkman, Phys. Rev. Lett.30 1108 (1973).ADSCrossRefGoogle Scholar
  12. (11).
    V. Ambegaokar and N. D. Mermin, Phys. Rev. Lett.30 81 (1973).ADSCrossRefGoogle Scholar
  13. (12).
    K. Maki and H. Ebisawa, J. Low Temp. Phys.15213 (1974).ADSCrossRefGoogle Scholar
  14. (13).
    R. Combescot, Phys. Rev. Lett. 33 946 (1974) and preprint.ADSCrossRefGoogle Scholar
  15. (14).
    R. Combescot and H. Ebisawa, Phys. Rev. Lett.33 811 (1974).ADSGoogle Scholar
  16. (15).
    K. Maki and H. Ebisawa, Phys. Rev. B 11, May (1975), in press.Google Scholar
  17. (16).
    R. Combescot, Phys. Rev. Lett.34 8 (1975).ADSCrossRefGoogle Scholar
  18. (17).
    R. Balian and N. R. Werthamer, Phys. Rev. 131 1553 (1963).ADSCrossRefGoogle Scholar
  19. (18).
    D. N. Paulson, J. Kojima, and J. C. Wheatley, Phys. Rev. Lett. 32 1098 (1974).ADSCrossRefGoogle Scholar
  20. (19).
    A. I. Ahonen, M. T. Kaikala, and M. Krusius, and O. V. Lounasmaa, Phys. Rev. Lett. 33 628 (1974).ADSCrossRefGoogle Scholar
  21. (20).
    K. Maki, J. Low Temp. Phys. 16 465 (1974).ADSCrossRefGoogle Scholar
  22. (21).
    W. F. Brinkman, H. Smith, D. D. Osheroff, and E. I. Blount, Phys. Rev. Lett. 33 624 (1974).ADSCrossRefGoogle Scholar
  23. (22).
    W. F. Brinkman, Phys. Lett. A 49 411 (1974).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Kazumi Maki
    • 1
  1. 1.Department of PhysicsUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations