Skip to main content

Molecular and Cellular Mechanisms in Photomedicine: Porphyrins in Cancer Treatment

  • Chapter
Primary Photo-Processes in Biology and Medicine

Abstract

The use of visible light in combination with a photosensitizing dye for the treatment of various types of tumors has been repeatedly attempted since the early 1900s when topically applied eosin and sunlight were shown to induce the regression of skin tumors1. This approach appears to be particularly attractive since i) several photosensitizers with a polycyclic chemical structure, including xanthenes2, acridines3, and psoralens4, display a preferential affinity for neoplastic as compared with normal cells; and ii) most cell constituents, in particular proteins and nucleic acids, are insensitive to the direct action of visible light. In principle, these two properties should allow one to restrict the photodynamic effects causing cell inactivation and necrosis to the dye-loaded tissue, with no concomitant damage to normal dye-free tissues, provided a suitable set of light wavelengths is selected for irradiation. Thus, photodynamic therapy exhibits a potential advantage with respect to other therapeutic modalities for tumors which are based on the use of ionizing radiations; in the latter cases, the simultaneous irreversible damage of normal tissues often limits the extent and efficacy of the treatment. Toward this aim, an ideal photosensitizer should have the following properties: i) lack of systemic toxicity; ii) selective uptake and retention by malignant tissues; iii) selective absorption of the incident light; and iv) efficient generation of photoreactive species leading to destruction of malignant tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Tappeiner and A. Jesionek, Therapeutische versuche mit fluoreszierenden stoffe, Muench Med. Wochschr. 1: 2042 (1903).

    Google Scholar 

  2. T. J. Dougherty, Activated dyes as anti-tumor agents, J. Natl. Cancer Inst. 51:1333 (1974).

    Google Scholar 

  3. S. Okuda, S. Misura, T. Otani, M. Ischii and M. Tatsuta, Experimental and clinical studies on HpD-photoradiation therapy for upper gastrointestinal cancer, in: “Porphyrins in Tumor Phototherapy”, A. Andreoni and R. Cubeddu, eds., Plenum Publishing Corp., New York (1984),pp. 413–421.

    Chapter  Google Scholar 

  4. H. Roenigk, Photochemotherapy for mycosis fungoides, Arch. Dermatol. 113:1047 (1977).

    Article  Google Scholar 

  5. F. H. J. Figge, G. S. Weiland and L. O. J. Manganiello, Cancer detection and therapy. Affinity of neoplastic, embryonic and traumatized tissues for porphyrins and metalloporphyrins, Proc. Soc. Exp. Biol. Med. 68:640 (1948)

    Google Scholar 

  6. J. Eichler, J. Knof and H. Lenz, Measurements on the depth of penetration of light in tissue, Rad. Environ. Biophys. 14: 239 (1977).

    Article  Google Scholar 

  7. G. Jori and J. D. Spikes, Photobiochemistry of porphyrins, in: “Topics in Photomedicine”, K. C. Smith, ed., Plenum Publishing Corp., New York (1984),pp. 183–318.

    Google Scholar 

  8. D. Kessel and T. J. Dougherty, “Porphyrin Photosensitization; Plenum Publishing Corp., New York (1983).

    Book  Google Scholar 

  9. M. W. Berns, G. S. Berns, J. Coffey and A. G. Wile, Exposure (dose) tables for hematoporphyrin derivative photoradiation therapy, Lasers in Surgery and Medicine 4:107 (1984).

    Article  Google Scholar 

  10. R. J. Carpenter, H. B. Neel, R. J. Ryan and D. R. Sanderson, Tumor fluorescence with hematoporphyrin derivative, Ann. Otol. Rhinol. Laryngol. 88:661 (1977).

    Google Scholar 

  11. C. J. Gomer, D. R. Doiron, N. Rucker, N. J. Razum and S. W. Fountain, Action spectrum (620–640 nm) for hematoporphyrin derivative induced cell killing, Photochem. Photobiol. 39:365 (1984).

    Article  Google Scholar 

  12. J. C. Kennedy and K. Oswald, Hematoporphyrin derivative photo-radiation therapy. In theory and in practice, pp. 365–374, in: “Porphyrins in Tumor Phototherapy”, A. Andreoni and R. Cubeddu, eds., Plenum Publishing Corp., New York (1984).

    Google Scholar 

  13. R. Bonnett, R. J. Ridge and P. A. Scourides, On the nature of hematoporphyrin derivative, J. Chem. Soc. Perkin 1:3135 (1981).

    Article  Google Scholar 

  14. S. Granelli, I. Diamond, A. F. McDonagh, C. B. Wilson and S. L. Nielsen, Photochemotherapy of glioma cells by visible light and hematoporphyrin, Cancer Res. 35:2567 (1975).

    Google Scholar 

  15. T. J. Dougherty, Hematoporphyrin as a photo-sensitizer of tumors, Photochem. Photobiol. 38:377 (1983).

    Article  Google Scholar 

  16. M. C. Berenbaum, R. Bonnett and P. A. Scourides, In vivo biological activity of the components of hematoporphyrin derivative, Br. J. Cancer 45:571 (1982).

    Article  Google Scholar 

  17. G. Jori, E. Reddi, L. Tomio, B. Salvato and F. Calzavara, Time-dependence of hematoporphyrin distribution in selected tissues of normal rats and in ascites hepatoma, Tumori 65:425 (1979).

    Google Scholar 

  18. P. Gervais, J. G. Besner, P. Band, S. Mailhot, R. Leclaire and J. M. Houle, Extraction tissutaire de differentes dérivés de l’hematoporphyrine utilisés en oncologie clinique et expérimentale, Ann. pharmaceutiques francaises 41:159 (1983).

    Google Scholar 

  19. P. L. Zorat, L. Tomio, L. Corti, F. Calzavara, G. Jori and E. Reddi, Hematoporphyrin phototherapy of malignant tumors, pp. 381–387, in: “Porphyrins in Tumor Phototherapy”, A. Andreoni and R. Cubeddu, eds., Plenum Publishing Corp., New York (1984).

    Chapter  Google Scholar 

  20. T. Patrice, M. F. Le Bodic, C. Roussakis and L. Le Bodic, NdYAG destruction of tumor sensitized or non-sensitized by HpD, pp. 247–250, in: “Porphyrins in Tumor Pototherapy”, A. Andreoni and R. Cubeddu, eds., Plenum Publishing Corp., New York (1984).

    Chapter  Google Scholar 

  21. T. J. Dougherty, W. R. Potter and K. R. Weishaupt, The structure of the active component of hematoporphyrin derivative, pp. 23–35, in: “Porphyrins in Tumor Phototherapy”, A. Andreoni and R. Cubeddu, eds., Plenum Publishing Corp., New York (1984).

    Chapter  Google Scholar 

  22. A. Pasqua, A. Poletti and S. M. Murgia, Ultrafiltration techniques as a tool for the investigation of hematoporphyrin aggregates in aqueous solution, Med. Biol. Environ. 10:286 (1982).

    Google Scholar 

  23. A. Andreoni, R. Cubeddu, S. De Silvestri, P. Laporta, G. Jori and E. Reddi, Hematoporphyrin derivative: experimental evidence for aggregated species, Chem. Phys. Letters 88:37 (1982).

    Article  Google Scholar 

  24. G. Jori, L. Tornio, E. Reddi, E. Rossi and F. Calzavara, Preferential delivery of liposome-incorporated porphyrins to neo-plastic cells in tumor-bearing rats, Br. J. Cancer 48:307 (1983).

    Article  Google Scholar 

  25. P. Koskelo and U. Muller-Eberhard, Interaction of porphyrins with proteins, Semin. Hernatol. 14:221 (1977).

    Google Scholar 

  26. G. Jori, M. Beltramini, E. Reddi, B. Salvato, A. Pagnan, L. Ziron, Lti Tornio and T. Tsanov, Evidence for a major role of plasma lipoproteins as hematoporphyrin carriers in vivo, Cancer Letters, in the press.

    Google Scholar 

  27. P. Morliere, J. P. Reyftmann, S. Goldstein, R. Santus, L. Dubertret and D. Lagrange, Interaction of low density lipoproteins with porphyrins, Abstracts 9th International Congress of Photobiology Philadelphia (1984)

    Google Scholar 

  28. C. J. Gomer, Evaluation of in vivo tissue localization and in vitro photosensitization reactions of hematoporphyrin derivative, PhD Thesis, Buffalo (1978).

    Google Scholar 

  29. C. J. Gomer and T. J. Dougherty, Determination of 3H- and 14C-hematoporphyrin distribution in malignant and normal tissue, Cancer Res. 39:146 (1979).

    Google Scholar 

  30. I. Cozzani, G. Jori, E. Reddi, A. Fortunato, L. Tornio and P. L. Zorat, Distribution of endogenous and injected porphyrins at the subcellular level in rat hepatocytes and in ascites hepatoma, Chem. Biol. Interactions 37:67 (1981).

    Article  Google Scholar 

  31. J. Winkelman, The distribution of tetraphenylporphinesulfonate in the tumor-bearing rat, Cancer Res. 22:589 (1962).

    Google Scholar 

  32. A. Musser, J. M. Wagner and N. Datta-Gupta, Distribution of tetraphenylporphinesulfonate and tetracarboxyphenylporphine in tumor-bearing mice, J. Natl. Cancer Inst. 61:1397 (1978).

    Google Scholar 

  33. L. Tornio, P. L. Zorat, F. Calzavara, E. Reddi and G. Joni, Effect of hematoporphyrin and red light on AH-130 solid tumors in rats, Acta Radiol. Oncol. 22:49 (1983).

    Article  Google Scholar 

  34. S. H. Selman, R. Keck, J. E. Klaunig, M. Kreimer-Birnbaum, P. J. Goldblat and S. L. Britton, Acute blood flow changes in transplantable FANF-induced urothelial tumors treated with hematoporphyrin derivative, Surg. Forum 34:676 (1983).

    Google Scholar 

  35. L. I. Grossweiner and G. C. Goyal, Photosensitized lysis of liposomes by hematoporphyrin derivative, Photochem. Photobiol. 37:529 (1983).

    Article  Google Scholar 

  36. A. Andreoni and R. Cubeddu, eds., Porphyrins in Tumor Photo-therapy, Plenum Publishing Corp., New York (1984).

    Google Scholar 

  37. J. H. Li, Y. P. Chen, S. D. Zhao, L. T. Zhang and S. Z. Song, Application of hematoporphyrin derivative and laser-induced photodynamical reaction in the treatment of lung cancer, Lasers in Surgery and Medicine 4:31 (1984).

    Article  Google Scholar 

  38. C. J. Gomer, D. R. Doiron, J. V. Jester, B. C. Szirth and A. L. Murphree, Hematoporphyrin derivative photoradiation therapy for the treatment of intraocular tumors: examination of acute normal ocular tissue toxicity, Cancer Res. 43:721 (1983).

    Google Scholar 

  39. E. R. Lows, D. A. Cortese, J. H. Kinsey, R. T. Eagan and R. F. Anderson, Photoradiation therapy in the treatment of malignant brain tumors: a phase I (feasibility) study, Neurosurgery 9:672 (1981).

    Article  Google Scholar 

  40. D. Mew, C. K. Wat, G. H. N. Towers and J. Levy, Photoimmunotherapy: treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates, J. Immunol. 130:1473 (1983).

    Google Scholar 

  41. T. Christensen, A. Wahl and L. Smedshammer, Effects of hematoporphyrin derivative light in combination with hyperthermia on cells in culture, Br. J. Cancer, in the press.

    Google Scholar 

  42. S. M. Waldow, B. W. Henderson and T. J. Dougherty, Enhanced tumor control following sequential treatments of photodynamic therapy and localized microwave hyperthermia in vivo, Lasers in Surgery and Medicine 4:79 (1984).

    Article  Google Scholar 

  43. I. Cozzani, G. Jori, E. Reddi, L. Tornio, P.L. Zorat, T. Sicuro and G. Malvaldi, Interaction of free and liposome-bound porphyrins with normal and malignant cells: biochemical and photosensitization studies in vitro and in vivo, in: “Porphyrins in Tumor Phototherapy”, A. Andreoni and R. Cubeddu, ed.,Plenum Press, N.Y.& London (1984).

    Google Scholar 

  44. G. Jori, I. Cozzani, E. Reddi, E. Rossi, L. Tornio, G. Mandoliti and G. Malvaldi, In vitro and in vivo studies on the interaction of hematoporphyrin and its dimethylester with normal and malignant cells, in: “Porphyrin Localization and Treatment of Tumors”, D. Doiron, ed., Alan R. Liss Inc., N.Y. (1984).

    Google Scholar 

  45. I. Cozzani, G. Jori, G. Bertoloni, C. Milanesi, P. Carlini, T. Sicuro and A. Ruschi, Efficient photo-sensitization of malignant human cells in vitro by liposome-bound porphyrins, Chem. Biol. Interactions, In press.

    Google Scholar 

  46. G. Jori, L. Tornio, E. Reddi, L. Corti, P.L. Zorat and F. Calzavara, Preferential delivery of liposome-incorporated porphyrins to neoplastic cells in tumor-bearing rats, Br. J. Cancer 48:307(1983).

    Google Scholar 

  47. V. Facchini, M. Cela, A. Gadducci, A. Tau and I. Cozzani, Phototherapy of tumors sensitized byliposome-bound porphyrins locally infiltered in neoplastic areas, Med. Biol. Environ.12:471(1984).

    Google Scholar 

  48. Y. Hayata, H. Kato, C. Konaka, J. Ono and N. Takizawa. HpD and laser photoradiation in the treatment of lung cancer. Chest 81: 269 (1982).

    Article  Google Scholar 

  49. H. Verweij, T.M.A.R. Dubbelman and J. Van Steveninck. Photodynamic protein crosslinking. Biochim.Biophys.Acta 647: 87 (1981).

    Article  Google Scholar 

  50. D. Kessel. Transport and binding of HpD and related porphyrins by murine leukemia L1210 cells. Cancer Res. 41: 1318 (1981).

    Google Scholar 

  51. T.M.A.R. Dubbelman and J. Van Steveninck. Photodynamic effect of HpD on transmembrane transport systems of murine L929 fibroblasts. Biochim.Biophys.Acta 771: 201 (1984.

    Article  Google Scholar 

  52. K.W. Kohn and R.A.G. Ewig. DNA-protein crosslinking by trans-platinum (II) diaminedichloride in mammalian cells. Biochim. Biophys Acta 562: 32 (1979).

    Article  Google Scholar 

  53. T. Friedmann and D.M. Brown. Base-specific reactions useful for DNA sequencing. Nucleic Acid Res. 5: 615 (1978).

    Article  Google Scholar 

  54. T.J. Dougherty, K.R. Weishaupt and D.G. Boyle: Photosensitizers. In: “Cancer Principles and Practices of Oncology”. V. de Vita, S. Helman and S. Rosenberg eds. J.B. Lippincott & Co, Philadelphia, 1982, pp.1836–1844.

    Google Scholar 

  55. D. Kessel, Hematoporphyrin and HpD: photophysics, photochemistry and phototherapy, Photochem. Photobiol. 39:851 (1984).

    Article  Google Scholar 

  56. G. L. Zalar, M. Poh-Fitzpatrick, D. L. Krohn, R. Jacobs and L. C. Harber, Induction of drug photosensitization in man after parenteral exposure to hematoporphyrin, Arch. Dermatol. 113: 1392 (1977).

    Article  Google Scholar 

  57. M. M. Mathews-Roth, Photosensitization by porphyrins and prevention of photosensitization by carotenoids, J. Natl. Cancer Inst. 69:279 (1982).

    Google Scholar 

  58. K. R. Weishaupt, C. J. Gomer and T. J. Dougherty, Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor, Cancer Res. 36:2326 (1976).

    Google Scholar 

  59. B. A. Lindig and M. A. J. Rodgers, Rate parameters for the quenching of singlet oxygen by water-soluble and lipid-soluble substrates in aqueous and micellar systems, Photochem. Photobiol. 33:627 (1981).

    Article  Google Scholar 

  60. E. C. McCormick, D. J. Cromwell and J. B. Brown, Studies on the distribution of tocopherol in human serum lipoproteins, J. Lipid Res. 1:221 (1960).

    Google Scholar 

  61. R. D. Cunningham and J.W. Henderson, Experimental evaluation of hematoporphyrin in the detection and management of intraocular tumors, Am. J. Ophthalmol., 61:36 (1966).

    Google Scholar 

  62. J. D. Spikes, Porphyrins and related compounds as photodynamic sensitizers, Ann. NY Acad. Science, 244:496 (1975).

    Article  Google Scholar 

  63. G. L. Zalar, M. Poh-Fitzpatrick, D.L. Krohn, R. Jacobs, and L. C. Harber, Induction of drug photosensitization in man after parenteral exposure to hematoporphyrin, Arch. Dermatol., 113:1392 (1977).

    Article  Google Scholar 

  64. R. G. Freeman and D. Troll, Hematoporphyrin photosensitization of rabbit eye to visible light, Arch. Ophthal., 78:766 (1967).

    Article  Google Scholar 

  65. C. J. Gourer, C. S. Bernard, D. R. Doiron, J. V. Jester, R. W. Lingua, C. Mark, W. F. Benedict and A. L. Murphree, Preclinical evaluation of hematoporphyrin derivative for the treatment of intraocular tumors: A preliminary report, Adv. Exp. Med. Biol., 25: 160 (1983).

    Google Scholar 

  66. Y. Ohnishi, Y. Yamana, T. Ishibashi, M. Minei and S. Nakamura, Effect of argon laser photoradiation on the monkey retina treated with hematoporphyrin derivative. Nippon Ganka Gakkai Zasshi 122:1448 (1983).

    Google Scholar 

  67. J. Roberts, The photodynamic effect of chlorpromazine, promazine, and hematoporphyrin on lens protein, Invest. Ophthalmol. and Vis. Science, 25:746 (1984).

    Google Scholar 

  68. M. Takana, R. Russel, S. Smith, S. Uga, T. Kuwabara and J. H. Kinoshita, Membrane alterations during cataract development. Invest. Ophthalmol. Vis. Science., 19:619 (1980).

    Google Scholar 

  69. J. Horowitz and M.M. Wong, Peptide mapping by limited proteolysis in sodium docecyl sulphide of the main intrinsic polypeptides isolated from human and bovine lens plasma membranes, Biochim. Biophys. Acta, 622:134 (1980).

    Article  Google Scholar 

  70. A. F. P. M. and van Steveninck, J. Photodynamic effects of protoporphyrin on chloesterol and unsaturated fatty acids in erythrocyte membranes in protoporphyria and in normal red blood cells, Clin. Chin. Acta, 68, 115 (1976).

    Article  Google Scholar 

  71. T. J. Dougherty, K. R. Weishaupt and D. G. Boyle, Photoradiation therapy of malignant tumors, in: “Principles and Practice of Oncology”, V. T. Devita, S. Hellman and S. A. Rosenberg, eds., J. B. Lippincott Co., Philadelphia (1982).

    Google Scholar 

  72. K. R. Weishaupt, C. J. Gomer and T. J. Dougherty, Identification of singlet oxygen as the cytotoxic agent in photo-inactivation of a murine tumor, Cancer Res. 36:2326 (1976).

    Google Scholar 

  73. J. Denekamp, Does physiological hypoxia matter in cancer therapy? in: “The Biological Basis of Radiotherapy”, Steel, Adams and Peckham, eds., Elsevier Science Publishers B. V., New York (1983).

    Google Scholar 

  74. P. Vaupel, Hypoxia in neoplastic tissue, Microvasc. Res. 13:399 (1977).

    Article  Google Scholar 

  75. S. Rockwell, Hypoxic cells as targets for Cancer Chemotherapy, in: “Development of Target-Oriented Anticancer Drugs”, Y.-C. Cheng, ed., Raven Press, New York (1983).

    Google Scholar 

  76. R. S. Bush, R. D. T. Jenkin, W. E. C. Alt, F. A. Beale, H. Bean, A. J. Dembo and J. F. Pringle, Definitive evidence for hypoxic cells influencing cure in cancer therapy, Br. J. Cancer 111:302 (1978).

    Google Scholar 

  77. W. Mueller-Klieser, P. Vaupel and R. Manz, Tumor oxygenation under normobaric and hyperbaric conditions, Br. J. Radiol. 56: 559 (1983).

    Article  Google Scholar 

  78. J. D. Chapman, Hypoxic sensitizers - Implications for Radiation Therapy, New Engl. J. Med. 301: 1429 (1979).

    Article  Google Scholar 

  79. A. Teicher and C. M. Rose, Perfluorochemical emulsions can increase tumor radiosensitivity, Science 223: 934 (1984).

    Article  Google Scholar 

  80. P. W. Vaupel, J. Otte and R. Manz, Oxygenation of malignant tumors after localized microwave Hyperthermia, Radiat. Environ. Biophys. 20: 289 (1982).

    Article  Google Scholar 

  81. J. Overgaard, Effect of hyperthermia on the hypoxic fraction in an experimental mammary carcinoma in vivo, Br. J. Radiol. 54: 245 (1981).

    Article  Google Scholar 

  82. S. M. Waldow and T. J. Dougherty, Interaction of Hyperthermia and Photoradiation Therapy, Radiat. Res. 97: 380 (1984).

    Article  Google Scholar 

  83. W. T. Moss, W. N. Brand and H. Baltifora, “Radiation Oncology: Rationale, Technique, Results” The C. V. Mosby Comp., St. Louis (1974).

    Google Scholar 

  84. T. J. Dougherty, J. E. Kaufman, A. Goldfarb, et al.: Photo-radiation therapy for the treatment of malignant tumors. Cancer Res. 38:2628 (1978).

    Google Scholar 

  85. T. J. Dougherty, G. Lawrence, J. E. Kaufman, et al.: Photo-radiation in the treatment of recurrent breast carcinoma. J. Natl. Cancer Inst. 62:231 (1979).

    Google Scholar 

  86. X. W. Ha, X. M. Sun, J. G. Xie, et al.: Clinical use of hematoporphyrin derivative in malignant tumors. Chin. Med. J. 96:754 (1983).

    Google Scholar 

  87. A.E. Kopelman, A.E. Brown, and G.B. Odell: The “bronze” baby syndrome:A complication of phototherapy, J. Pediatr. 81: 446 (1972).

    Article  Google Scholar 

  88. R.K. Sharma, C. Ente, P.J. Collip, V.T. Maddaiah, and I. Rezvani: A complication of phototherapy in the newborn: The “bronze baby”, Clin. Pediatr. 12:231 (1973).

    Google Scholar 

  89. C.F. Clark, S. Torii, Y. Hamamoto, and H. Kaito: The “bronze baby” syndrome: Postmortem data, J. Pediatr. 88:461 (1976).

    Article  Google Scholar 

  90. R. Weitz: Das Bronze-Baby. Eine Komplikation der Phototherapie, Pädiat. Prax. 16:173 (1975).

    Google Scholar 

  91. E.H. Radermacher, A. Noirfalise, H. Hornchen R. D. Maier, and K.H. Bigalke: Das Bronze-Baby Syndrom. Eine Komplikation der Phototherapie, Klin. Pädiatr. 189:1379 (1977).

    Google Scholar 

  92. K.L. Tan and E. Jacob: The bronze baby syndrome, Acta Paediatr. Scand. 71:409 (1982).

    Article  Google Scholar 

  93. S. Onishi, S. Itoh, K. Isobe, H. Togari, H. Kitoh, and Y. Nishimurh: Mechanism of development of bronze baby syndrome in neonates treated with phototherapy, Pediatrics 69:273 (1982).

    Google Scholar 

  94. G. Jori, E. Reddi, and F.F. Rubaltelli: Bronze baby syndrome: Evidence for increased serum porphyrin concentration, Lancet 1:1072 (1982)

    Article  Google Scholar 

  95. F.F. Rubaltelli, G. Jori, and E. Reddi: Bronze baby syndrome: a new porphyrin-related disorder, Pediatr. Res. 17:327 (1983).

    Article  Google Scholar 

  96. G. Jori, E. Reddi, E. Rossi, and F.F. Rubaltelli: Porphyrin metabolism in the “bronze” baby syndrome, in “Intensive Care in the Newborn”, L. Stern, H. Bard, and B. Friis-Hansen, eds., Masson Publishing USA inc., New York (1983).

    Google Scholar 

  97. F.F. Rubaltelli, G. Jori, E. Rossi, and G. Garbo: Bronze baby syndrome: new insights on bilirubin-photosensitization of copper-porphyrins, in “Neonatal Jaundice. New trends in photo-therapy”, F.F. Rubaltelli and G. Jori eds., Plenum Press, New York (1983).

    Google Scholar 

  98. J.D. Spikes: Porphyrins and related compounds as photodynamic sensitizers, Am. N.Y. Acad. Sci. 244:496 (1975).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Jori, G. et al. (1985). Molecular and Cellular Mechanisms in Photomedicine: Porphyrins in Cancer Treatment. In: Bensasson, R.V., Jori, G., Land, E.J., Truscott, T.G. (eds) Primary Photo-Processes in Biology and Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1224-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1224-6_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1226-0

  • Online ISBN: 978-1-4684-1224-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics