Skip to main content

DNA-Protein Cross-Links: New Insights into their Formation and Repair in Irradiated Mammalian Cells

  • Chapter
Mechanisms of DNA Damage and Repair

Part of the book series: Basic Life Sciences ((BLSC,volume 189))

Abstract

The production of strong binding between DNA and protein by radiations and chemicals has been known for many years. DNA-protein cross-links (DPCs) were first recognized as a distinct lesion in ultraviolet light (UV)-irradiated bacteria by Smith1 and by Alexander and Moroson.2 The importance of DPCs for cellular lethality was clearly demonstrated in E. coli.3 Smith has reviewed various aspects of this work on several occasions.4–6

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. C. Smith, Dose dependent decrease in extractability of DNA from bacteria following irradiation with ultraviolet light or with visible light plus dye, Biochem. Biophys. Res. Commun. 8: 157 (1962).

    Article  CAS  Google Scholar 

  2. P. Alexander and H. L. Moroson, Cross-linking of deoxyribonucleic acid to protein following ultra-violet irradiation of different cells, Nature 194: 882 (1962).

    Article  CAS  Google Scholar 

  3. K. C. Smith, B. Hodgkins, and M. E. O’Leary, The biological importance of ultraviolet light induced DNA-protein crosslinks in Escherichia coli 15 TAU, Biochim. Biophys. Acta 114: 1 (1966).

    CAS  Google Scholar 

  4. K. C. Smith, The biological importance of U.V.-induced DNA-protein cross-linking in vivo and its probable chemical mechanism, Photochem. Photobiol. 7: 651 (1968).

    Article  CAS  Google Scholar 

  5. K. C. Smith, The radiation-induced addition of proteins and other molecules to nucleic acids, in: “Photochemistry and Photobiology of Nucleic Acids, Vol. II,” S. Y. Wang, ed., p. 187, Academic Press, New York (1976).

    Google Scholar 

  6. K. C. Smith, Radiation-induced cross-linking of DNA and protein in bacteria, in: “Aging, Carcinogenesis, and Radiation Biology,” K. C. Smith, ed., p. 67, Plenum, New York (1976).

    Google Scholar 

  7. O. Yamamoto, Ionizing radiation-induced DNA-protein cross-linking, in: “Aging, Carcinogenesis, and Radiation Biology,” K. C. Smith, ed., p. 165, Plenum, New York (1976).

    Google Scholar 

  8. G. F. Strniste and S. C. Rall, Induction of stable protein-deoxyribonucleic acid adducts in Chinese hamster cell chromatin by ultraviolet light, Biochemistry 15: 1712 (1976).

    Article  CAS  Google Scholar 

  9. A. E. Cress and G. T. Bowden, Covalent DNA-protein crosslinking occurs after hyperthermia and radiation, Radiat. Res. 95: 610 (1983).

    Article  CAS  Google Scholar 

  10. S. M. Chiu, N. M. Sokany, L. R. Friedman, and N. L. Oleinick, Differential processing of ultraviolet or ionizing radiation-induced DNA-protein cross-links in Chinese hamster cells, Int. J. Radiat. Biol. 46: 681 (1984).

    Article  CAS  Google Scholar 

  11. K. W. Kohn, R. A. G. Ewig, L. C. Erickson, and L. A. Zwelling, Measurement of strand breaks and cross-links by alkaline elution, in: “DNA Repair: A Laboratory Manual of Research Procedures, Vol. 1, part B,” E. C. Friedberg and P. C. Hanawalt, eds., p. 379, Marcel Dekker, Inc., New York (1981).

    Google Scholar 

  12. A. J. Fornace, Jr., and J. B. Little, DNA crosslinking induced by X-rays and chemical agents, Biochim. Biophys. Acta 477: 343 (1977).

    CAS  Google Scholar 

  13. L. K. Mee and S. J. Adelstein, Radiolysis of chromatin extracted from cultured mammalian cells: Formation of DNA-protein cross links, Int. J. Radiat. Biol. 36: 359 (1979).

    Article  CAS  Google Scholar 

  14. R. E. Meyn and W. T. Jenkins, Modification of radiation-induced DNA lesions by oxygen, Radiat. Res. Abstracts p. 83 (1984).

    Google Scholar 

  15. L. K. Mee and S. J. Adelstein, DNA-protein crosslinks in gammairradiated chromatin, presented at Intl. Conference on Mechanisms of DNA Damage and Repair, Gaithersberg, MD, June (1985).

    Google Scholar 

  16. J. G. Peak, M. J. Peak, R. S. Sikorski and C. A. Jones, Induction of DNA-protein crosslinks in human cells by. ultraviolet and visible radiations: Action spectrum, Photochem. Photobiol. 41: 295 (1985).

    Article  CAS  Google Scholar 

  17. L. K. Mee and S. J. Adelstein, Predominance of core histones in formation of DNA-protein crosslinks in y-irradiated chromatin, Proc. Natl. Acad. Sci. USA 78: 2194 (1981).

    Article  CAS  Google Scholar 

  18. R. Olinski, R. C. Briggs, L. S. Hnilica, J. Stein, and G. Stein, Gamma-radiation-induced crosslinking of cell-specific chromosomal nonhistone protein-DNA complexes in HeLa chromatin, Radiat. Res. 86: 102 (1981).

    Article  CAS  Google Scholar 

  19. Z. M. Banjar, L. S. Hnilica, R. C. Briggs, J. Stein, and G. Stein, Crosslinking of chromosomal proteins to DNA in HeLa cells by UV, gamma radiation and some antitumor drugs, Biochem. Biophys. Res. Commun. 114: 767 (1983).

    Article  CAS  Google Scholar 

  20. S. M. Chiu, L. R. Friedman, N. M. Sokany, and N. L. Oleinick, A role for the nuclear matrix in repair of radiation-induced DNA-protein cross-links, Radiat. Res. (1985, submitted).

    Google Scholar 

  21. A. Cress, Nuclear matrix proteins are covalently linked to DNA after ionizing radiation, Radiat. Res. Abstracts, p. 94 (1985).

    Google Scholar 

  22. S. V. Razin, V. V. Chernokhvostov, A. V. Roodyn, I. B. Zbarsky, and G. P. Georgiev, Proteins tightly bound to DNA in the regions of DNA attachment to the skeletal structures of interphase nuclei and metaphase chromosomes, Cell 27: 65 (1981).

    Article  CAS  Google Scholar 

  23. V. Corces, A. Pellicer, R. Axel, and M. Meselson, Integration, transcription, and control of a Drosophila heat shock gene in mouse cells, Proc. Natl. Acad. Sci. USA 78: 7038 (1981).

    Article  CAS  Google Scholar 

  24. S. I. Robinson, B. D. Nelkin, and B. Vogelstein, The ovalbumin gene is associated with the nuclear matrix of chicken oviduct cells, Cell 28: 99 (1982).

    Article  CAS  Google Scholar 

  25. R. Berezney and D. S. Coffey, Nuclear protein matrix: association with newly synthesized DNA, Science 189: 291 (1975).

    Article  CAS  Google Scholar 

  26. J. I. Williams and E. C. Friedberg, Deoxyribonucleic acid excision repair in chromatin after ultraviolet irradiation of human fibroblasts in culture, Biochemistry 18: 3965 (1979).

    Article  CAS  Google Scholar 

  27. H. J. Niggli and P. A. Cerutti, Nucleosomal distribution of thymine photodimers following far-and near ultraviolet irradiation, Biochem. Biophys. Res. Commun. 105: 1215 (1982).

    Article  CAS  Google Scholar 

  28. S. M. Chiu, N. L. Oleinick, L. R. Friedman, and P. J. Stambrook, Hypersensitivity of DNA in transcriptionally active chromatin to ionizing radiation, Biochim. Biophys. Acta 699: 15 (1982).

    CAS  Google Scholar 

  29. N. L. Oleinick, S. M. Chiu, and L. R. Friedman, Gamma-radiation as a probe of chromatin structure: damage to and repair of active chromatin in the metaphase chromosome, Radiat. Res. 98: 629 (1984).

    Article  CAS  Google Scholar 

  30. S. M. Chiu, L. R. Friedman, L. Y. Xue, and N. L. Oleinick, DNA-protein cross-links in metaphase chromatin, Radiat. Res. Abstracts p. 75. (1985).

    Google Scholar 

  31. I. T. Weber and T. A. Steitz, Model of specific complex between catabolite gene activator protein and B-DNA suggested by electrostatic complementarity, Proc. Natl. Acad. Sci. USA 81: 3973 (1984).

    Article  CAS  Google Scholar 

  32. J. Mirkovitch, M.-E. Mirault, and U. K. Laemmli, Organization of the higher-order chromatin loop? Specific DNA attachment sites on nuclear scaffold, Cell 39: 223 (1984).

    Article  CAS  Google Scholar 

  33. H. Probst and R. Herzog, DNA regions associated with the nuclear matrix of Ehrlich ascites cells expose single-stranded sites after deproteinization, Eur. J. Biochem. 146: 167 (1985)

    Article  CAS  Google Scholar 

  34. V. A. Bohr, C. A. Smith, D. S. Okumoto, and P. C. Hanawalt, DNA repair in an active gene: Removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall, Cell 40: 359 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Oleinick, N.L., Chiu, Sm., Friedman, L.R., Xue, Ly., Ramakrishnan, N. (1986). DNA-Protein Cross-Links: New Insights into their Formation and Repair in Irradiated Mammalian Cells. In: Simic, M.G., Grossman, L., Upton, A.C., Bergtold, D.S. (eds) Mechanisms of DNA Damage and Repair. Basic Life Sciences, vol 189. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-9462-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-9462-8_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-9464-2

  • Online ISBN: 978-1-4615-9462-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics