Skip to main content

Microfibrillar Structure, Radical Formation, and Fracture of Highly Drawn Crystalline Polymers

  • Chapter
Structure and Properties of Polymer Films

Part of the book series: Polymer Science and Technology ((POLS,volume 1))

Summary

The highly drawn crystalline polymer with the almost perfectly oriented fibrous structure differs from the unoriented more or less spherulitic material not only in the orientation of crystal lattice and crystal lamellae but also in the basic structural elements: stacks of parallel lamellae in the latter and well-aligned microfibrils in the former case. This difference explains very well not only the anisotropy of mechanical properties but also the superior elastic modulus and strength of fibrous material. The extremely long and thin macrofibril consists of folded chain crystal blocks connected axially with a great many tie molecules. At the ends of microfibrils the axial molecular connection in the fiber is interrupted. Under tensile load such point vacancies yield microcracks — — about 1015 per cm3 — — thus concentrating the stress on adjacent microfibrils. Depending on the ratio of microfibril strength and autoadhesive forces between adjacent microfibrils the coalescence and growth of microcracks occurs by axial (longitudinal) cracks along the boundary between the microfibrils or by radial (transverse) cracks through adjacent microfibrils. In the former case, very few and in the latter case a great many tie molecules are ruptured producing radicals detectable by ESR. Polyethylene and polypropylene with weak Van der Waals forces between adjacent microfibrils yield few and nylon 6 and 66 with stronger hydrogen bridges a great many radicals in excellent suppport of the microfibrillar model of fibrous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Raumann and D. W. Saunders, Proc. Phys. Soc. 77, 1028 (1961); 78, 1271 (1962).

    Article  CAS  Google Scholar 

  2. V. B. Gupta and I. M. Ward, J. Macromol. Sci. B2, 89 (1968).

    Article  Google Scholar 

  3. R. J. Samuels, J. Polymer Sci. A-2, 6, 1101, 2021 (1968); 7 1197 (1969); J. Maeromol. Sci. B4, 701 (1970).

    Google Scholar 

  4. G. Meinel and A. Peterlin, J. Polymer Sci. B5, 613 (1967).

    Article  Google Scholar 

  5. W. Glenz, N. Morosoff, and A. Peterlin, J. Polymer Sci. B9, 211 (1971).

    Article  Google Scholar 

  6. A. Peterlin and F. J. Baltá-Calleja, Kolloid-Z. & Z. Polymere 242, 1092 (1971).

    Google Scholar 

  7. A. Peterlin, J. Polymer Sci. C9, 61 (1965); C15, 427 (1967); C18, 123 (1967).

    Google Scholar 

  8. A. Peterlin, Kolloid-Z. & Z. Polymere 216/217, 129 (1967); Man-Made Fibers, Ed. by H. F. Mark, S. M. Atlas, and E. Cernia, Interscience-J. Wiley & Sons, New York, 1967, Chapter 8, pp. 283–320; Polymer Eng. Sci. 9, 172 (1969).

    Article  CAS  Google Scholar 

  9. A. Peterlin, J. Material Sci. 6, 490 (1971).

    Article  CAS  Google Scholar 

  10. P. H. Geil, J. Polymer Sci. A-2, 3835 (1968); Polymer Single Crystals, J. Wiley & Sons, New York 1963.

    Google Scholar 

  11. A. Peterlin, P. Ingram, and H. Kiho, Makromol. Chem. 86, 294 (1965).

    Article  CAS  Google Scholar 

  12. K. Sakaoku and A. Peterlin, Makromol. Chem. 108, 234 (1967).

    Article  Google Scholar 

  13. P. Ingram, Makromol. Chem. 108, 281 (1967).

    Article  CAS  Google Scholar 

  14. K. Sakaoku and A. Peterlin, Makromol. Chem. 108, 234 (1967).

    Article  Google Scholar 

  15. A. Peterlin and K. Sakaoku, Clean Surfaces, Ed. by G. Goldfinger, Mu Dekker, Inc. New York 1970, p. 1.

    Google Scholar 

  16. A. Peterlin and K. Sakaoku, Kolloid-Z. & Z. Polymere 212, 51 (1966); J. Appl. Phys. 38, 4152 (1967).

    Article  CAS  Google Scholar 

  17. K. Sakaoku and A. Peterlin, J. Macromol. Sci. B1, 103 (1967).

    Article  Google Scholar 

  18. K. Sakaoku and A. Peterlin, J. Polymer Sci. A-2, 9 895 (1970).

    Google Scholar 

  19. F. Baltá-Calleja and A. Peterlin, J. Polymer Sci. A-2, 7 1275 (1969); J. Material Sci. 4, 722 (1969); J. Appl. Phys. 40, 4238 (1969); J. Macromol. Sci. B4, 519 (1970).

    Google Scholar 

  20. A. Siegmann and P. H. Geil, J. Macromol. Sci. B4, 557 (1970).

    Article  Google Scholar 

  21. K. Sakaoku and A. Peterlin, Makromol. Chem (in press).

    Google Scholar 

  22. See for instance the September issue of J. Macromol. Sci. B4 (1970) and the June issue of J. Material Sci. 6, (1971), devoted to the plastic deformation of polymer solids and the structure and properties of oriented polymer solids.

    Google Scholar 

  23. W. C. Sheehan and T. B. Cole, J. Appl. Polymer Sci. 8, 2359 (1964).

    Article  CAS  Google Scholar 

  24. G. Meinel and A. Peterlin, J. Polymer Sci. A-2, 6, 587 (1968).

    Google Scholar 

  25. J. M. Andrews and I. M. Ward, J. Material Sci. 5, 411 (1970).

    Article  CAS  Google Scholar 

  26. S. E. Bressler, S. N. Zhurkov, E. N. Kasbekov, E. M. Saminsky, and E. E. Tomashevski, Zh. tekhn. fiziki 29, 358 (1959).

    Google Scholar 

  27. P. Y. Butyagin, A. A. Berlin, A. E. Kalmanson, and L. A. Blyumenfeld, Vysokomol. Soed. 1, 865 (1959).

    CAS  Google Scholar 

  28. K. L. DeVries and D. K. Backman, J. Polymer Sci. A-l, 7, 2125 (1969).

    Google Scholar 

  29. J. Pazonyi, F. Tudos, and M. Dimitrov, Angew. Makromol. Chem. 10, 75 (1970).

    Article  CAS  Google Scholar 

  30. S. N. Zhurkov and E. E. Tomashevski, Yield and Fracture, Ed. by A. C. Strickland, Inst. Phys. & Phys. Soc. Conf. Ser. 1, Oxford 1968, p. 200.

    Google Scholar 

  31. See for instance the review article H. H. Kausch-Blecken von Schmeling, J. Macromol. Sci. C4, 243 (1970).

    Google Scholar 

  32. G. S. P. Verma and A. Peterlin, J. Macromol. Sci. B4, 589 (1970).

    Article  Google Scholar 

  33. J. Becht and H. Fischer, Kolloid-Z. & Z. Polymere 240, 766 (1970).

    Article  CAS  Google Scholar 

  34. S. N. Zhurkov, V. I. Vettegren, V. E. Korsukov, and I. I. Novak, Fracture 1969, Ed. by P. Pratt, Chapman and Hall, London 1969, p. 545.

    Google Scholar 

  35. A. Peterlin, Inst. J. Fract. Mech. 7, 496 (1971).

    Google Scholar 

  36. S. N. Zhurkov, V. S. Kuksenko, and A. I. Slutsker, Fracture, Ed. by P. Pratt, Chapman and Hall, London, 1969, p. 531.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Peterlin, A. (1973). Microfibrillar Structure, Radical Formation, and Fracture of Highly Drawn Crystalline Polymers. In: Lenz, R.W., Stein, R.S. (eds) Structure and Properties of Polymer Films. Polymer Science and Technology, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8951-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8951-8_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8953-2

  • Online ISBN: 978-1-4615-8951-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics