Skip to main content

Abstract

Shock stresses in solids typically range from tens of kilobars to megabars. Such stress levels are produced in a solid for durations of the order of several microseconds when an explosive is detonated in contact with it, when a projectile traveling at high velocity impacts on it, or when energy is deposited in it at very high power levels. Most solids deform irreversibly or fracture at stresses typically of the order of a few kilobars; thus, the generation and propagation of shock waves are intrinsically violent and destructive processes, and this accounts for their traditional importance in military and mining technology.

Work supported by the U. S. Atomic Energy Commission. This tutorial is derived from an earlier paper, O. E. Jones, in Engineering Solids Under Pressure, H. L. D. Pugh, Ed. (institution of Mechanical Engineers, London 1971) p. 75.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Hermann, in Wave Propagation in Solids, J. Miklowitz, Ed. (The American Society of Mechanical Engineers, N.Y. 1969), p. 129.

    Google Scholar 

  2. J. J. Burke and V. Weiss, Eds., Shock Waves and the Mechanical Properties of Solids (Syracuse U. Press, Syracuse, N.Y., 1971).

    Google Scholar 

  3. P. G. Shewmon and V. F. Zackay, Eds., Response of Metals to High Velocity Deformation (interscience Publishers, N. Y., 1961).

    Google Scholar 

  4. J. S. Rinehart and J. Pearson, Explosive Working of Metals (The Macmillan Co., N. Y. 1963).

    Google Scholar 

  5. A. H. Jones, C. J. Maiden, and W. M. Isbell, in Mechanical Behavior of Materials Under Pressure, H. L. D. Pugh, Ed. (Elsevier Publ. Co. Limited, Essex, England, 1970), p. 680.

    Google Scholar 

  6. G. E. Duvall and G. R. Fowles, in High Pressure Physics and Chemistry, R. S. Bradley, Ed. (Academic Press, N. Y., 1963), Vol. 2, p. 271.

    Google Scholar 

  7. F. S. Marshall, in Response of Metals to High Velocity Deformation, P. G. Shewmon and V. F. Zackay, Eds. (Interscience Publ., N. Y., 1961), p. 266.

    Google Scholar 

  8. O. E. Jones, F. W. Neilson and W. B. Benedick, J. Appl. Phys. 33, 3224 (1962).

    Article  Google Scholar 

  9. J. W. Taylor and M. H. Rice, J. Appl. Phys. 34, 364 (1963).

    Article  Google Scholar 

  10. R. W. Rohde, Acta Met. 17, 353 (1969).

    Article  CAS  Google Scholar 

  11. B. M. Butcher and D. E. Munson, in Dislocation Dynamics, A. R. Rosenfield, G. T. Hahn, A. L. Bernent, Jr., and R. I. Jaffee, Eds. (McGraw-Hill Book Co., N. Y. 1968), p. 591.

    Google Scholar 

  12. P. P. Gillis, K. G. Höge, and R. J. Wasley, J. Appl. Phys. 42, 2145 (1971).

    Article  CAS  Google Scholar 

  13. J. W. Taylor, J. Appl. Phys. 36, 3146 (1965).

    Article  Google Scholar 

  14. L. M. Barker, B. M. Butcher, and C. H. Karnes, J. Appl. Phys. 37, 1989 (1966).

    Article  CAS  Google Scholar 

  15. J. N. Johnson and W. Band, J. Appl. Phys. 38, 1578 (1967).

    Article  CAS  Google Scholar 

  16. M. L. Wilkins, in Behavior of Dense Media Under High Dynamic Pressures (Gordon and Breach, N. Y., 1968), p. 267.

    Google Scholar 

  17. J. M. Kelly and P. P. Gillis, J. Appl. Phys. 38, 4044 (1967).

    Article  CAS  Google Scholar 

  18. O. E. Jones and J. R. Holland, Acta Met. 16, 1037 (1968).

    Article  Google Scholar 

  19. J. N. Johnson, J. Appl, Phys. 40, 2287 (1969).

    Article  Google Scholar 

  20. J. N. Johnson and L. M. Barker, J. Appl. Phys. 40, 4321 (1969).

    Article  CAS  Google Scholar 

  21. J. J. Gilman, Appl. Mech. Rev. 21, 767 (1968).

    Google Scholar 

  22. O. E. Jones and J. D. Mote, J. Appl. Phys. 40, 4920 (1969).

    Article  CAS  Google Scholar 

  23. T. E. Michaels, PhD. Thesis, Washington State University, 1972.

    Google Scholar 

  24. W. J. Murri and G. D. Anderson, J. Appl. Phys. 41, 3521 (1970).

    Article  CAS  Google Scholar 

  25. J. R. Asay, G. R. Fowles, G. E. Duvall, M. H. Miles, and R. F. Tinder, J. Appl. Phys. 43, 2132 (1972).

    Article  CAS  Google Scholar 

  26. L. E. Pope and A. L. Stevens, Bull. Amer. Phys. Soc. 107, 1083 (1972). Also, see this Proceedings.

    Google Scholar 

  27. J. N. Johnson, O. E. Jones, and T. E. Michaels, J. Appl. Phys. 41, 2330 (1970).

    Article  CAS  Google Scholar 

  28. W. Herrmann, D. L. Hicks, and E. G. Young, in Shock Waves and the Mechanical Properties of Solids, J. J. Burke and V. Weiss, Eds. (Syracuse Univ. Press, Syracuse, N. Y., 1971), p. 23.

    Google Scholar 

  29. J. N. Johnson, J. Appl. Physics 42, 5522 (1971).

    Article  CAS  Google Scholar 

  30. J. N. Johnson, J. Appl. Physics 43, 2074 (1972).

    Article  CAS  Google Scholar 

  31. A. S. Appleton and J. S. Waddington, Acta Met. 12, 956 (1964).

    Article  CAS  Google Scholar 

  32. A. R. Champion and R. W. Rohde, J. Appl. Phys. 41, 2213 (1970).

    Article  Google Scholar 

  33. J. N. Johnson and R. W. Rohde, J. Appl. Phys. 42, 4l71 (1971).

    Google Scholar 

  34. A. L. Stevens and O. E. Jones, J. Appl. Mech. 39, 321 (1972).

    Article  Google Scholar 

  35. S. E. Benzley, L. D. Bertholf, and G. E. Clark, Sandia Laboratories Development Report No. SC-DR-69-516, Albuquerque, New Mexico, 1969.

    Google Scholar 

  36. The converse configuration of a thin flyer disk impacting a thick target disk produces tension in the target disk, and is used in spallation studies of dynamic fracture.

    Google Scholar 

  37. W. F. Hartman, J. Appl. Phys. 35, 2090 (1964).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Plenum Press, New York

About this chapter

Cite this chapter

Jones, O.E. (1973). Shock Wave Mechanics. In: Rohde, R.W., Butcher, B.M., Holland, J.R., Karnes, C.H. (eds) Metallurgical Effects at High Strain Rates. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8696-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8696-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8698-2

  • Online ISBN: 978-1-4615-8696-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics