Skip to main content

Acetaldehyde and Its Condensation Products as Markers in Alcoholism

  • Chapter
Recent Developments in Alcoholism

Abstract

Several studies show that recently abstaining alcoholics generate higher circulating levels of acetaldehyde than nonalcoholics following ethanol administration. It is conceivable that levels of stable adducts (tetrahydroisoquinolines and tetrahydro-β-carbolines) derived from acetaldehyde condensations with biogenic amines also might be increased in alcoholics consuming ethanol, thus serving in body fluids as chemical markers that are more persistent than acetaldehyde itself. Limited human and rat studies indicate that urinary excretion of an oxidized tryptamine condensation product (harmane) and of an acetaldehyde/serotonin condensation product is elevated by chronic ethanol. Salsolinol, the derivative of acetaldehyde and dopamine, does not appear to be a meaningful urinary marker, but levels of the related pyruvic acid/dopamine product may be increased by ethanol. Blood assays of condensation products have been limited in number and equivocal. Condensation product measurements are complicated not only by artifacts (formation during analyses), but by other inherent problems. Products of interest often are constituents of diets and alcoholic beverages. For this and perhaps endogenous metabolic reasons, traces of condensation products are normally excreted by nondrinking individuals. Furthermore, the assays require high sensitivity and specificity and are not easily adapted to routine use. Thus, although several condensation products have initial appeal as clinical or pathological indicators in chronic alcoholism, thorough and statistically sound studies are needed before conclusions can be reached concerning any particular biogenic amine-derived product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Truitt EB: Blood acetaldehyde levels after alcohol consumption by alcoholic and non-alcoholic subjects, in Roach MK, McIsaac W, Creaven PJ (eds): Biological Aspects of Alcoholism. Austin, Texas, University of Texas Press, 1971, pp 212–232.

    Google Scholar 

  2. Korsten MA, Matsuzaki S, Feinman L, et al High blood acetaldehyde levels after ethanol administration. N Engl J Med 292:386–389, 1975.

    Article  PubMed  CAS  Google Scholar 

  3. Lindros KO, Stowell A, Pikkarainen PH, et al Elevated blood acetaldehyde in alcoholics with accelerated ethanol elimination. Pharmacol Biochem Behav 13:119–124, 1980.

    Article  PubMed  Google Scholar 

  4. Eriksson CJP, Peachey JE: Lack of a difference in blood acetaldehyde of alcoholics and controls after ethanol ingestion. Pharmacol Biochem Behav 13:101–105, 1980.

    Article  PubMed  CAS  Google Scholar 

  5. Pikkarainen PH, Gordon ER, Lebsack ME, et al Determinants of plasma free acetaldehyde levels during the oxidation of ethanol. Effects of chronic ethanol feeding. Biochem Pharmacol 30:799–802, 1981.

    Article  PubMed  CAS  Google Scholar 

  6. Schuckit MA, Rayes V: Ethanol ingestion: Differences in blood acetaldehyde concentrations in relatives of alcoholics and controls. Science 203:54–55, 1979.

    Article  PubMed  CAS  Google Scholar 

  7. Schuckit MA, Duby J: Alcohol-related flushing and the risk for alcoholism in sons of alcoholics.J Clin Psychiatry 43:415–418, 1982.

    PubMed  CAS  Google Scholar 

  8. Eriksson CJP: Problems and pitfalls in acetaldehyde determinations. Alcoholism: Clin Exp Res 4:22–29, 1980.

    Article  CAS  Google Scholar 

  9. Thomas M, Lim CK, Peters TJ: Assaying acetaldehyde in biological fluids. Lancet 2:530–531, 1981.

    Article  PubMed  CAS  Google Scholar 

  10. Eriksson CJP: Human blood acetaldehyde concentration during ethanol oxidation (update 1982). Pharmacol Biochem Behav 18(Suppl 1):141–150, 1983.

    Article  PubMed  CAS  Google Scholar 

  11. Lindros KO: Acetaldehyde—Its metabolism and role in the actions of ethanol. Res Adv Alc Drug Prob 4:111–145, 1978.

    Article  CAS  Google Scholar 

  12. Stevens VJ, Vlassara H, Abati A, et al Nonenzymatic glycosylation of hemoglobin.J Biol Chem 252:2998–3002, 1977.

    PubMed  CAS  Google Scholar 

  13. Stevens VJ, Fantl WJ, Newman CB, et al Acetaldehyde adducts with hemoglobin.J Clin Invest 67:361–368, 1981.

    Article  PubMed  CAS  Google Scholar 

  14. Donohue TM, Tuma DT, Sorrell MF: Acetaldehyde adducts with proteins: Binding of 14C-acetaldehyde to serum albumin. Arch Biochem Biophys 220:239–245, 1983.

    Article  PubMed  CAS  Google Scholar 

  15. Homaidan FR, Kricka LJ, Clark PMS, et al Acetaldehyde-hemoglobin adducts: An unreliable marker of alcohol abuse. Clin Chem 30:480–482, 1984.

    PubMed  CAS  Google Scholar 

  16. Israel Y, Hurwitz E, Niemela O, et al Monoclonal and polyclonal antibodies against acet-aldehyde-containing epitopes in acetaldehyde-protein adducts. Proc Natl Acad Sci USA 83:7923–7927, 1986.

    Article  PubMed  CAS  Google Scholar 

  17. Mclsaac WM: Formation of l-methyl-6-methoxy-l,2,3,4-tetrahydro-2-carboline under physiological conditions. Biochim Biophys Acta 52:607–611, 1961.

    Article  Google Scholar 

  18. Cohen G, Collins MA: Alkaloids from catecholamines in adrenal tissue: Possible role in alcoholism. Science 167:1749–1751, 1970.

    Article  PubMed  CAS  Google Scholar 

  19. Yamanaka Y, Walsh MJ, Davis VE: Salsolinol, an alkaloid derivative of dopamine formed in vitro during alcohol metabolism. Nature 227:1143–1144, 1970.

    Article  PubMed  CAS  Google Scholar 

  20. King GC, Goodwin BL, Sandler M: Isosalsolinol formation: A secondary reaction in the Pictet-Spengler condensation.J Pharm Pharmacol 26:476–478, 1974.

    Article  PubMed  CAS  Google Scholar 

  21. Dietrich RA, Erwin VE: Biogenic amine-aldehyde condensation products: Tetrahydroiso-quinolines and tryptolines (beta-carbolines). Annu Rev Pharmacol Toxicol 20:55–80, 1980.

    Article  Google Scholar 

  22. Collins MA: Mammalian alkaloids, in Brossi A (ed): The Alkaloids, Vol 21. New York, Academic Press, 1983, p 321.

    Google Scholar 

  23. Collins MA, Nijm WP, Borge G, et al Dopamine-related tetrahydroisoquinolines: Increased urinary excretion by alcoholics following alcohol consumption. Science 206:1184–1186, 1979.

    Article  PubMed  CAS  Google Scholar 

  24. Collins MA: Alkaloid condensation products as biochemical indicators in alcoholism, in Chang N, Chao H (eds): Early Identification of Alcohol Abuse. Washington, DC, NIAAA monograph 17, 1985, p 255.

    Google Scholar 

  25. Riggin RM, Kissinger PT: Determination of tetrahydroisoquinoline alkaloids in biological materials with high performance liquid chromatography. Anal Chem 49:530–533, 1977.

    Article  PubMed  CAS  Google Scholar 

  26. Thomas H, Stammel W, Brossi A: Separation of dopamine and dopamine-related tetrahydroisoquinolines by reversed-phase liquid chromatography, reversed-phased ion-pair chromatography, and ion-exchange chromatography.J Chromatogr Sci 21:481–486, 1983.

    CAS  Google Scholar 

  27. Myers RD, Garrison JL, Critcher EC: Determination by high performance liquid chromatography of stability of tetrahydro-beta-carbolines at different ambient temperatures.J Liq Chromatogr 6:2043–2053, 1983.

    Article  CAS  Google Scholar 

  28. Bosin TR, Jarvis CA: Derivatization in aqueous solution, isolation and separation of tetrahydro-beta-carbolines and their precursors by liquid chromatography.J Chromatogr 341:287–293, 1985.

    Article  PubMed  CAS  Google Scholar 

  29. DeJong J, Schouten JP, Muusze RG, et al: Analysis of beta-carbolines by reversed phase ion-pair partition chromatography with fluorometric detection.J Chromatogr 319:23–33, 1985.

    Article  CAS  Google Scholar 

  30. Bigdeli MG, Collins MA: Tissue catecholamines and potential tetrahydroisoquinoline alkaloid metabolites: A gas chromatographic assay method with electron capture detection. Biochem Med 12:55–65, 1975.

    Article  PubMed  CAS  Google Scholar 

  31. Hamilton MG, Blum K, Hirst M: Identification of an isoquinoline alkaloid after chronic exposure to ethanol. Alcoholism: Clin Exp Res 2:133–137, 1978.

    Article  CAS  Google Scholar 

  32. O’Neill PJ, Rahwan RG: Modified electron-capture GLC assay for salsolinol in brain tissue.J Pharm Sci 66:893–896, 1977.

    Article  PubMed  Google Scholar 

  33. Sjoquist B, Magnuson E: Analysis of salsolinol and salsoline in biological samples using deuterium-labelled internal standards and gas chromatography-mass spectrometry.J Chromatogr 183:17–24, 1980.

    Article  PubMed  CAS  Google Scholar 

  34. Shoemaker DW, Bidder TG, Boettger HG, et al Combined gas chromatography and mass spectrometry of aromatic beta-carbolines.J Chromatogr 174:159–164, 1979.

    Article  CAS  Google Scholar 

  35. Barker SA, Harrison RE, Brown GB, et al Gas chromatographic/mass spectrometric evidence for the identification of 1,2,3,4-tetrahydro-beta-carboline as an in vivo constituent of rat brain. Biochem Biophys Res Commun 87:146–154, 1979.

    Article  PubMed  CAS  Google Scholar 

  36. Shoemaker DW, Bidder TG, Boettger HG, et al Combined gas chromatography and mass spectrometry of aromatic β-carbolines.J Chromatogr 174:159–164, 1979.

    Article  CAS  Google Scholar 

  37. Faull KF, Holman RB, Elliott GR, et al Tryptolines: Artifact or reality? A new method of analysis using GC/MS, in Bloom F, Barchas J, Sandler M, et al (eds): Beta-Carbolines and Tetrahydroisoquinolines. New York, Liss, 1982, p 135.

    Google Scholar 

  38. Johnson JV, Yost RA, Faull KF: Tandem mass spectrometry for the trace determination of tryptolines in crude brain extracts. Anal Chem 56:1655–1661, 1984.

    Article  PubMed  CAS  Google Scholar 

  39. Nesterick CA, Rahwan RG: Detection of endogenous salsolinol in neonatal rat tissue by a radioenzymatic-thin layer chromatographic assay.J Chromatogr 164:205–216, 1979.

    Article  PubMed  CAS  Google Scholar 

  40. Dean RA, Henry DP, Bowsher RR, et al A sensitive radioenzymatic assay for the simultaneous determination of salsolinol and dopamine. Life Sci 27:403–409, 1980.

    Article  PubMed  CAS  Google Scholar 

  41. Riggin RM, McCarthy MJ, Kissinger PT: Identification of salsolinol as a major dopamine metabolite in the banana.J Agr Food Chem 24:189–191, 1976.

    Article  CAS  Google Scholar 

  42. Riggin RM, Kissinger PT: Identification of salsolinol as a phenolic component in powdered cocoa and cocoa-based products.J Agr Food Chem 24:900–902, 1976.

    Article  CAS  Google Scholar 

  43. Wakabayashi K, Ochiai M, Saito H, et al Presence of 1-methyl-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid, a precursor of a mutagenic nitroso compound, in soy sauce. Proc Natl Acad Sci USA 80:2912–2915, 1983.

    Article  PubMed  CAS  Google Scholar 

  44. Matsubara K, Fukui Y: Determination of salsolinol by gas chromatography-mass spectrometry and influence of foods on urinary salsolinol excretion. Jpn J Alcohol Drug Depend 20:51–59, 1985.

    Google Scholar 

  45. Duncan MW, Smythe GA, Nicholson MV: Comparison of high-performance liquid chromatography with electrochemical detection and gas chromatography-mass fragmentography for the assay of salsolinol, dopamine and dopamine metabolites in food and beverage samples.J Chromatogr 336:199–209, 1984.

    Article  PubMed  CAS  Google Scholar 

  46. Beck O, Holmstedt B: Analysis of 1-methyl-tetrahydro-beta-carboline in alcoholic beverages. Food Cosmet Toxicol 19:173–177, 1981.

    Article  PubMed  CAS  Google Scholar 

  47. Duncan MW, Smythe GA: Salsolinol and dopamine in alcoholic beverages. Lancet 1:904–905, 1982.

    Article  PubMed  CAS  Google Scholar 

  48. Bosin TR, Krogh SE, Zabik JE: Neurochemical and ethanol consumption effects of THBC compounds identified and quantitated in alcoholic beverages. Alcoholism: Clin Exp Res 10:A31, 1986.

    Google Scholar 

  49. Giles HG, Meggiorini S: Artifactual production and recovery of acetaldehyde from ethanol in urine. Can J Physiol Pharmacol 61:717–721, 1983.

    Article  PubMed  CAS  Google Scholar 

  50. Collins MA, Cheng BY: Oxidative decarboxylation of salsolinol-1-carboxylate, a unique condensation product of dopamine, to form a 3,4-dihydroisoquinoline in mammalian tissues. Abstr Soc Neurosci 12:133, 1986.

    Google Scholar 

  51. Harrison REW: Stress Elevation of Brain and Adrenal Levels of Non-polar Tryptophan Metabolites. Doctoral dissertation, Birmingham, University of Alabama, 1982.

    Google Scholar 

  52. Cloninger Cr, Sigvardsson S, Reich T, et al: Inheritance of risk to develop alcoholism, in Braude MC, Chao HM (eds): Genetic and Biological Markers in Drug Abuse and Alcoholism. Washington, DC, NIDA research monograph 66, 1986, p 86.

    Google Scholar 

  53. Sjoquist B, Borg S, Kvande H: Catecholamine derived compounds in urine and cerebrospinal fluid from alcoholics during and after long-standing intoxication. Subst Alcohol Action/Misuse 2:63–72, 1981.

    CAS  Google Scholar 

  54. Clow A, Topham A, Saunders JB, et al: The role of salsolinol in alcohol intake and withdrawal, in Collins MA (ed): Aldehyde Adducts in Alcoholism. New York, Liss, 1985, p 101.

    Google Scholar 

  55. . Dordain G, Dostert P, Strolin Benedetti M, et al: Tetrahydroisoquinoline derivatives and parkinsonism, in Tipton K, Dostert P, Strolin-Benetti M (eds): Monoamine Oxidase and Disease. London, Academic Press, 1984, p 417.

    Google Scholar 

  56. Beck O, Bosin TR, Lundman A, et al: Identification and measurement of 6-hydroxy-1-methyl-1,2,3,4-tetrahydro-beta-carboline by gas chromatography-mass spectrometry. Biochem Pharmacol 31:2517–2521, 1982.

    Article  PubMed  CAS  Google Scholar 

  57. Allen J, Beck O, Borg S, et al: Analysis of l-methyl-l,2,3,4-tetrahydro-beta-carboline in human urine and cerebrospinal fluid by gas chromatography-mass spectrometry. Eur J Mass Spect Biochem Med Environm Res 1:171–177, 1980.

    CAS  Google Scholar 

  58. Ho BT, Taylor D, Walker KE, et al: Metabolism of 6-methoxytetrahydro-beta-carboline in rats. Xenobiotica 2:349–362, 1972.

    Article  PubMed  CAS  Google Scholar 

  59. Greiner B, Rommelspacher H: Urinary metabolites of tetrahydronorharmane in the rat, in Bloom F, Barchas J, Sander M, et al (eds): Beta-carbolines and Tetrahydroisoquinolines. New York, Liss, 1982, p 201.

    Google Scholar 

  60. Rommelspacher H, Damm H, Straus S, et al: Ethanol induces an increase of harman in the brain and urine of rats. Arch Pharmacol 327:107–113, 1984.

    Article  CAS  Google Scholar 

  61. Sandler M, Bonham Carter S, Hunter KR, et al: Tetrahydroisoquinoline alkaloids: In vivo metabolites of L-dopa in man. Nature 241:439–444, 1973.

    Article  PubMed  CAS  Google Scholar 

  62. Rommelspacher H, Damm H, Schmidt L, et al: Increased excretion of harman by alcoholics depends on events of their life history and the state of the liver. Psychopharmacology 87:64–68, 1985.

    Article  PubMed  CAS  Google Scholar 

  63. Sjoquist B, Borg S, Kvande H: Salsolinol and methylated salsolinol in urine and cerebrospinal fluid from alcoholics during and after long-standing intoxication. Subst Alcohol Action/Misuse 2:73–77, 1981.

    CAS  Google Scholar 

  64. Sjoquist B, Johnson HA, Borg S: The influence of acute ethanol on the catecholamine system in man as reflected in cerebrospinal fluid and urine. A new condensation product, 1-carboxysalsolinol. Drug Alcohol Depend 16:241–249, 1985.

    Article  PubMed  CAS  Google Scholar 

  65. Ung-Chhun N, Cheng BY, Pronger DA, et al: Alkaloid adducts in human brain: Coexsistence of 1-carboxylated and noncarboxylated isoquinolines and beta-carbolines in alcoholics and nonalcoholics, in Collins MA (ed): Aldehyde Adducts in Alcoholism. New York, Liss, 1985, p 125.

    Google Scholar 

  66. Sjoquist B: On the origin of salsolinol and 1-carboxysalsolinol, in Collins MA (ed): Aldehyde Adducts in Alcoholism. New York, Liss, 1985, p 115.

    Google Scholar 

  67. Collins MA, Cheng BY, Origitano T: Tissue formation and enzyme inhibitory effects of dopamine-derived 3,4-dihydroisoquinolines (DIQs): Possible roles in chronic alcoholism. Ann NY Acad Sci, 1987 (in press).

    Google Scholar 

  68. Gynther J, Lapinjoki SP, Airaksinen M, et al: Decarboxylation of 1,2,3,4-tetrahydro-beta-carboline-1-carboxylic acids in brain homogenate and catalysis by pyridoxyl-5′-phosphate. Biochem Pharmacol 35:2671–2675, 1986.

    Article  PubMed  CAS  Google Scholar 

  69. Hirst M, Evans DR, Gowdey CW, et al The influences of ethanol and other factors on the excretion of urinary salsolinol in social drinkers. Pharmacol Biochem Behav 22:993–1000, 1985.

    Article  PubMed  CAS  Google Scholar 

  70. Matsubara K, Akane A, Maseda C, et al: Salsolinol in the urine of nonalcoholic volunteers after long-term moderate drinking. Alcohol Drug Res 6:281–288, 1986.

    CAS  Google Scholar 

  71. Adachi J, Mizoi Y, Fukunaga T, et al Effect of acetaldehyde on urinary salsolinol in healthy man after ethanol intake. Alcohol 3:215–220, 1986.

    Article  PubMed  CAS  Google Scholar 

  72. Rommelspacher H, Strauss S, Lindemann J: Excretion of tetrahydroharmane and harmane into the urine of man and rat after a load with ethanol. FEBS Lett 109:209–212, 1980.

    Article  PubMed  CAS  Google Scholar 

  73. Beck O, Faull KM: Concentrations of the enantiomers of 5-hydroxymethtryptoline in mammalian urine: Implications for in vivo biosynthesis. Biochem Pharmacol 35:2636–2639, 1986.

    Article  PubMed  CAS  Google Scholar 

  74. Beck O, Repke DB, Faull KF: 6-Hydroxymethtryptoline is naturally occurring in mammalian urine: Identification by combined chiral capillary gas chromatography and high resolution mass spectrometry. Biomed and Environ Mass Spect 13:469–472, 1986.

    Article  CAS  Google Scholar 

  75. St. Clair RL, Ansari GAS, Abell CW: Determination of tetrahydroisoquinolines by reversed-phase liquid chromatography with gradient elution and amperometric detection. Anal Chem 54:186–189, 1982.

    Article  Google Scholar 

  76. Hirst M, Adams MA, Okamoto S, et al: Tetrahydroisoquinolines after ethanol consumption, in Blood F, Barchas J, Sandler M, et al (eds): Beta-carbolines and Tetrahydroisoquinolines. New York, Liss, 1982, p 81.

    Google Scholar 

  77. . Collins MA, Hannigan JJ, Origitano T, et al On the occurrence, assay and metabolism of simple tetrahydroisoquinolines in mammalian tissues, in Bloom F, Barchas J, Sandler M, et al (eds): Beta-carbolines and Tetrahydroisoquinolines. New York, Liss, 1982, p 155.

    Google Scholar 

  78. Sjoquist B, Ljungquist C: Identification and quantification of 1-carboxysalsolinol and salsolinol in biological samples by gas chromatography-mass spectrometry.J Chromatogr 343:1–8, 1985.

    Article  PubMed  CAS  Google Scholar 

  79. Dajani RM, Saheb SE: A further insight into the metabolism of certain beta-carbolines. Ann NY Acad Sci 215:120–122 (1973).

    Article  PubMed  CAS  Google Scholar 

  80. Beck O, Lundman A: Occurrence of 6-hydroxy-1-methyl-1,2,3,4-tetrahydro-beta-carboline in tissues and body fluids of rat. Biochem Pharmacol 32:1507–1510, 1983.

    Article  PubMed  CAS  Google Scholar 

  81. Johnson JV, Yost RA, Beck O, et ah The use of tandem mass spectrometry for the identification and quantitation of tryptolines (tetrahydro-beta-carbolines) in tissue extracts, in Collins MA (ed): Aldehyde Adducts in Alcoholism. New York, Liss, 1985, p 161.

    Google Scholar 

  82. Susilo R, Rommelspacher H: On the mode of formation of beta-carbolines, in Collins MA (ed): Aldehyde Adducts in Alcoholism. New York, Liss, 1985, p 137.

    Google Scholar 

  83. Greiner B, Rommelspacher H: Two metabolic pathways of tetrahydroharmane (tetrahydro-beta-carboline) in rats. Arch Pharmacol 325:349–353, 1984.

    Article  CAS  Google Scholar 

  84. Beck O, Faull KM, Repke DB: Rapid hydroxylation of methtryptoline (1-methyltetrahydro-beta-carboline) in rat: Identification of metabolites by chiral gas chromatography-mass spectrometry. Arch Pharmacol 333:307–312, 1986.

    Article  CAS  Google Scholar 

  85. Collins MA, Dahl K, Nijm W, et al: Evidence for homologous families of dopamine and serotonin condensation products in CSF from monkeys. Abstr Soc Neurosci 8:277, 1982.

    Google Scholar 

  86. Pronger D, Altshuler H, Collins MA: Capillary GC/mass spectrometric confirmation of families of biogenic amine-related alkaloids in monkey cerebrospinal fluid. Alcoholism: Clin Exp Res 8:114, 1984.

    Google Scholar 

  87. Duncan MW: Chemistry and Physiology of Mammalian Alkaloids. Sidney, Australia, doctoral dissertation, University of New South Wales, 1986.

    Google Scholar 

  88. Schouten MJ, Bruinvels J: High performance liquid chromatography of tetrahydro-beta-carbolines extracted from plasma and platelets. Anal Biochem 147:401–409, 1985.

    Article  PubMed  CAS  Google Scholar 

  89. Bidder TG, Shoemaker DW, Boettger HG, et ah Harman in human platelets. Life Sci 25:157–164, 1979.

    Article  PubMed  CAS  Google Scholar 

  90. Peura P, Kari I, Airaksinen MM: Identification by selective ion monitoring of 1-methyl-1,2,3,4-tetrahydro-beta-carboline in human platelets and plasma after ethanol intake. Biomed Mass Spectrom 7:553–555, 1980.

    Article  PubMed  CAS  Google Scholar 

  91. Kari I, Peura P, Airaksinen MM: Mass fragmentographic determination of tetrahydro-beta-carboline in human blood platelets and plasma. Med Biol 57:412–415, 1979.

    PubMed  CAS  Google Scholar 

  92. Honecker H, Coper H, Fahndrich C, et al: Identification of tetrahydronorharmane (tetrahydro-beta-carboline) in human blood platelets.J Clin Chem Clin Biochem 18:133–136, 1980.

    PubMed  CAS  Google Scholar 

  93. Adachi J, Mizoi Y, Fukunaga T, et al Individual difference in urinary excretion of salsolinol in alcoholic patients. Alc 3:371–376, 1986.

    Article  CAS  Google Scholar 

  94. Abramovitch RA, Spencer ID: The Carbolines. Adv Heterocycl Chem 3:79–207, 1964.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Collins, M.A. (1988). Acetaldehyde and Its Condensation Products as Markers in Alcoholism. In: Galanter, M., et al. Recent Developments in Alcoholism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7718-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7718-8_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7720-1

  • Online ISBN: 978-1-4615-7718-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics