Skip to main content

Synthesis of Prostaglandins and Leukotrienes Effects of Ethanol

  • Chapter
Recent Developments in Alcoholism

Abstract

Prostaglandins, thromboxane, and leukotrienes are metabolites of arachidonic acid that have a variety of physiological effects at low concentrations. Effects include smooth muscle contraction, platelet aggregation, platelet disaggregation, bronchoconstriction, increased capillary permeability, cardiac dysfunction, and polymorphonuclear leukocyte accumulation. Although their formation does not appear to be essential for life, these eicosanoid activities are wide ranging and have important roles in normal physiology as well as pathophysiology. At the center of eicosanoid biosynthesis lies the plasma cell membrane which serves as the arachidonic acid reservoir. It has been widely appreciated that ethanol exerts effects on the lipid bilayer, and it is not surprising that a growing body of evidence supports the concept that important interactions between ethanol and eicosanoid biosynthesis can occur. Furthermore, at various steps leading to ultimate prostaglandin, thromboxane and leukotriene production, reactive intermediates such as radicals are involved whose lifetime in the biological milieu can be profoundly modulated by ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horrobin DF: A biochemical basis for alcoholism and alcohol-induced damage including the fetal alcohol syndrome and cirrhosis: Interference with essential fatty acid and prostaglandin metabolism. Med Hypothesis 5:929–942, 1980.

    Article  Google Scholar 

  2. Anggard E: Ethanol, essential fatty acids and prostaglandins. Pharmacol Biochem Behav 18(Suppl 1)1401–407, 1983.

    Article  Google Scholar 

  3. Kurzrok R, Lieb CC: Biochemical studies of human semen. II. The action of semen on the human uterus. Proc Soc Exp Biol Med 26:268–272, 1930.

    Google Scholar 

  4. Goldblatt MW: Properties of human seminal fluid. J Physiol (London) 84:298–218, 1935.

    Google Scholar 

  5. Euler US von: Zur kenntnis der pharmakologischem Wirkungen von Nativsekreten und extrakten mannlicher accessorischer geschlechtsdrusen. Naunyn-Schmied Arch Exp Pathol Pharmacol 175:78–84, 1934.

    Article  Google Scholar 

  6. Euler US von: On the specific vasodilating and plain muscle stimulating substance from accessory genital glands in man and certain animals (prostaglandins and vesiglandin). J Physiol (London) 88:213–234, 1936.

    Google Scholar 

  7. Bergstrom S, Sjovall J: The isolation of prostaglandin. Acta Chem Scand 11:1086–1087, 1957.

    Article  Google Scholar 

  8. Bergstrom S: Prostaglandins: Members of a new hormonal system. Science 157:382, 1967.

    Article  PubMed  CAS  Google Scholar 

  9. Bergstrom S, Samuelsson B: The prostaglandins. Endeavour 27:109–113, 1968.

    PubMed  CAS  Google Scholar 

  10. Bergstrom S, Carlson LA, Weeks JR: The prostaglandins: A family of biologically active lipids. Pharmacol Rev 29:1–48, 1968.

    Google Scholar 

  11. Hamberg M, Samuelsson B: Detection and isolation of an endoperoxide intermediate in prostaglandin biosynthesis. Proc Natl Acad Sci USA 70:899–903, 1973.

    Article  PubMed  CAS  Google Scholar 

  12. Pace-Asciak C, Wolfe LS: A novel prostaglandin derivative formed from arachidonic acid by rat stomach homogenates. Biochemistry 10:3657–3661, 1971.

    Article  PubMed  CAS  Google Scholar 

  13. Johnson RA, Morton DR, Kinner JH, et al: The chemical structure of prostaglandin X (prostacyclin). Prostaglandins 12:915–928, 1976.

    Article  PubMed  CAS  Google Scholar 

  14. Gryglewski R: Prostacyclin—Experimental and clinical appraoch. Adv Prostaglandin Thromboxane Leukotriene Res 11:457–461, 1983.

    CAS  Google Scholar 

  15. Hamberg M, Svensson J, Samuelsson B: Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci USA 72:2994–2998, 1975.

    Article  PubMed  CAS  Google Scholar 

  16. Piper PJ, Vane JR: Release of additional factors in anaphylaxis and its antagonism by antiinflammatory drugs. Nature (London) 223:29–35, 1969.

    Article  CAS  Google Scholar 

  17. Harkavy J: Spasm-producing substance in the sputum of patients with bronchial asthma. Arch Intern Med 45:641–646, 1930.

    Article  CAS  Google Scholar 

  18. Feldberg W, Kellaway CH: Liberation of histamine and formation of lysolecithin-like substances by cobra venom. J Physiol (London) 94:187–226, 1938.

    CAS  Google Scholar 

  19. Kellaway CH, Trethewie ER: The liberation of slow-reacting smooth-muscle stimulating substances in anaphylaxis. Q J Exp Physiol 30:121–145, 1940.

    CAS  Google Scholar 

  20. Brocklehurst WE: Slow reacting substance and related compounds. Prog Allergy 6:539–558, 1962.

    PubMed  CAS  Google Scholar 

  21. Strandberg K, Uvnas B: Purification and properties of the slow reacting substance formed in the cat paw perfused with compound 48/80. Acta Physiol Scand 82:358–374, 1971.

    Article  PubMed  CAS  Google Scholar 

  22. Orange RP, Murphy RC, Karnovsky ML, et al: The physiochemical characteristics and purification of SRS-A. J Immunol 110:760–770, 1973.

    PubMed  CAS  Google Scholar 

  23. Orange RP, Murphy RC, Austen KF: Inactivation of slow reacting substance of anaphylaxis (SRS-A) by arylsulphatases. J Immunol 113:316–321, 1974.

    PubMed  CAS  Google Scholar 

  24. Jakschik BA, Falkenhein S, Parker CW: Precursor role of arachidonic acid in release of slow reacting substance from rat basophilic leukemia cells. Proc Natl Acad Sci USA 74:4577–4581, 1977.

    Article  PubMed  CAS  Google Scholar 

  25. Jakschik BA, Kulczycki A Jr, MacDonald HH, et al: Release of slow reacting substance (SRS) from rat basophilic leukemia (RBL-1) cells. J Immunol 119:618–622, 1977.

    PubMed  CAS  Google Scholar 

  26. Bach MK, Brashler JR, Gormon RR: On the structure of SRS-A: Evidence of biosynthesis from arachidonic acid. Prostaglandins 14:21–28, 1977.

    Article  PubMed  CAS  Google Scholar 

  27. Murphy R, Hammarstrom S, Samuelsson B: Leukotriene C: A slow reacting substance from murine mastocytoma cells. Proc Natl Acad Sci USA 76:4275–4279, 1979.

    Article  PubMed  CAS  Google Scholar 

  28. Hammarstrom S, Murphy RC, Samuelsson B, et al: Structure of leukotriene C: Identification of the amino acid part. Biochem Biophys Res Commun 91:1266–1272, 1979.

    Article  PubMed  CAS  Google Scholar 

  29. Morris HR, Taylor GW, Piper PJ, et al: Structure of slow reacting substance of anaphylaxis from guinea pig lung. Nature (London) 285:104–106, 1980.

    Article  CAS  Google Scholar 

  30. Bach MK, Brashler RJ, Hammarstrom S, et al: Identification of a component of rat mononuclear cell SRS as leukotriene D. Biochem Biophys Res Commun 93:1121–1126, 1980.

    Article  PubMed  CAS  Google Scholar 

  31. Lewis RA, Austen KF, Drazen JM, et al: Slow reacting substances of anaphylaxis: Identification of leukotriene C4 and D from human and rat sources. Proc Natl Acad Sci USA 77:3710–3714, 1980.

    Article  PubMed  CAS  Google Scholar 

  32. Lewis RA, Drazen JM, Austen KF, et al: Identification of the C(6)-S-conjugate of leukotriene A with cysteine as a naturally occuring slow reacting substance of anaphylaxis (SRS-A). Importance of the 11-cis-geometry for biological activity. Biochem Biophys Res Commun 96:271–277, 1980.

    Article  PubMed  CAS  Google Scholar 

  33. Borgeat P, Samuelsson B: Transformation of arachidonic acid by rabbit polymorphonuclear leukocytes. Formation of a novel dihydroxyeicosatetraenoic acid. J Biol Chem 254:2643–2646, 1979.

    PubMed  CAS  Google Scholar 

  34. Borgeat P, Samuelsson B: Arachidonic acid metabolism in polymorphonuclear leukocytes: Unstable intermediate in formation of dihydroxy acids. Proc Natl Acad Sci USA 76:3213–3217, 1979.

    Article  PubMed  CAS  Google Scholar 

  35. Borgeat P, Samuelsson B: Metabolism of arachidonic acid in polymorphonuclear leukocytes. Structural analysis of novel hydroxylated compounds. J Biol Chem 24:7865–7869, 1979.

    Google Scholar 

  36. Ford-Hutchinson AW, Bray MA, Doig MW, et al: Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature (London) 286:264–265, 1980.

    Article  CAS  Google Scholar 

  37. Ford-Hutchinson AW, Bray MA, Cunningham FM, et al: Isomers of leukotriene B4 possess different biological potencies. Prostaglandins 21:143–152, 1981.

    Article  PubMed  CAS  Google Scholar 

  38. Wilson DB, Prescott SM, Majerus PW: Discovery of an arachidonyl coenzyme A synthetase in human platelets. J Biol Chem 257:3510–3515, 1982.

    PubMed  CAS  Google Scholar 

  39. Littleton JM, John GR, Grieve SJ: Alterations in phospholipid composition in ethanol tolerance and dependence. Alcohol Clin Exp Res 3:50–56, 1979.

    Article  PubMed  CAS  Google Scholar 

  40. Nervi AM, Perluff RO, Trenner RR, et al: Effect of ethanol administration on fatty acid desaturation. Lipids 15:263–268, 1980.

    Article  PubMed  CAS  Google Scholar 

  41. Irvine RF: How is the level of free arachidonic acid controlled in mammalian cells? Biochem J 204:3–16, 1982.

    PubMed  CAS  Google Scholar 

  42. Van den Bosch H: Intracellular phospholipases A. Biochim Biophys Acta 604:191–246, 1980.

    Article  PubMed  Google Scholar 

  43. Hsueh W, Isakson PC, Neddleman P: Hormone selective lipase activation in the isolated rabbit heart. Prostaglandins 13:1073–1091, 1977.

    Article  PubMed  CAS  Google Scholar 

  44. Broekman MJ, Ward J, Marcus AJ: Phospholipid metabolism in stimulated human platelets. J Clin Invest 66:275–283, 1980.

    Article  PubMed  CAS  Google Scholar 

  45. Bills TK, Smith JB, Silver MJ: Selective release of arachidonic acid from phospholipids of human platelets in response to thrombin. J Clin Invest 60:1–6, 1977.

    Article  PubMed  CAS  Google Scholar 

  46. Victoria EJ, van Golde LMG, Hostetier KY, et al: Some studies on the metabolism of phospholipids in plasma membranes from rat liver. Biochim Biophys Acta 239:443–457, 1971.

    CAS  Google Scholar 

  47. Bell RL, Kennedy DA, Stanford N, et al: Diglyceride lipase: A pathway for arachidonate release from human platelets. Proc Natl Acad Sci USA 76:3238–3241, 1979.

    Article  PubMed  CAS  Google Scholar 

  48. Cabot MC, Gatt S: Hydrolysis of neutral glycerides by lipases of rat brain microsomes. Biochim Biophys Acta 431:105–115, 1976.

    PubMed  CAS  Google Scholar 

  49. Billah MM, Lapetina EG, Cuatrecasas PJ: Phospholipase A2 activity specific for phosphatidc acid. A possible mechanism for the production of arachidonic acid in platelets. J Biol Chem 256:5399–5403, 1981.

    PubMed  CAS  Google Scholar 

  50. Swendsen CL, Ellis JM, Chilton FH, et al: 1-0-alkyl-2-acyl-sn-glycero-3 phosphocholine: A novel source of arachidonic acid in neutrophils stimulated by the calcium ionophore A23187. Biochem Biophys Res Commun 113:72–79, 1983.

    Article  PubMed  CAS  Google Scholar 

  51. Vargaftig BB, Benveniste J: Platelet-activating factor today. Trends Pharmacol Sci 4:341–343, 1983.

    Article  CAS  Google Scholar 

  52. Chiappe de Cingolani GE, van den Bosch H, van Deenen LLM: Phospholipase A and lysophospholipase activities in isolated fat cells: Effect of cyclic 3′,5′-AMP. Biochim Biophys Acta 260:387–392, 1972.

    Google Scholar 

  53. Minkes M, Stanford N, Chi MM, et al: Cyclic adenosine 3′,5′-monophosphate inhibits the availability of arachidonate to prostaglandin synthetase in human platelet suspensions. J Clin Invest 59:449–454, 1977.

    Article  PubMed  CAS  Google Scholar 

  54. Blackwell GJ, Carnuccio R, DiRosa M, et al: Suppression of arachidonate oxidation by glucocorticoid-induced antiphospholipase peptides. Adv Prostaglandin Thromboxane Leukotriene Res 11:65–72, 1983.

    CAS  Google Scholar 

  55. Hirata F: Lipomodulin: A possible mediator of the action of glucocorticoids. Adv Prostaglandin Thromboxane Leukotriene Res 11:73–78, 1983.

    CAS  Google Scholar 

  56. Vogt W: Role of phospholipase A2 in prostaglandin formation. Adv Prostaglandin Thromboxane Leukotriene Res 3:89–95, 1978.

    CAS  Google Scholar 

  57. Hirata R, Axelrod J: Phospholipid methylation and biological signal transmision. Science 209:1082–1090, 1980.

    Article  PubMed  CAS  Google Scholar 

  58. Fenn GC, Lynch MA, Nhamburo PT, et al: Comparison of effects of ethanol on platelet function and synaptic transmission. Pharmacol Biochem Behav 18(Suppl 1):37–43, 1983.

    Article  PubMed  CAS  Google Scholar 

  59. Ross DH, Medina MA, Cardenas HL: Morphine and ethanol, selective depletion of regional brain calcium. Science 186:63–68, 1974.

    Article  PubMed  CAS  Google Scholar 

  60. Farmer RW, Fabre LF: Some endocrine aspects of alcoholism. Adv Exp Med Biol 56:277–289, 1975.

    PubMed  CAS  Google Scholar 

  61. Chin JH, Goldstein DB: Membrane disordering action of ethanol. Variation with membrane cholesterol content and depths of the spinlabel-probe. Mol Pharmacol 19:425–431, 1981.

    PubMed  CAS  Google Scholar 

  62. John GR, Littleton JM, Nhamburo PT: Ethanol-induced alterations in phospholipid methylation in rat brain synaptosomal membranes. Br J Pharmacol 74:874P, 1981.

    Google Scholar 

  63. Samuelsson B: Biosynthesis of prostaglandins. Fed Proc 31:1442–1450, 1972.

    PubMed  CAS  Google Scholar 

  64. Samuelsson B, Goldyne M, Granstrom E, et al: Prostaglandins and thromboxanes. Annu Rev Biochem 47:997–1029, 1978.

    Article  PubMed  CAS  Google Scholar 

  65. Lands WEM: The biosynthesis and metabolism of prostaglandins. Annu Rev Physiol 41:633–652, 1979.

    Article  PubMed  CAS  Google Scholar 

  66. Yoshimoto A, Ito H, Tomita K: Cofactor requirements of the enzyme synthesizing prostaglandin in bovine seminal vesicles. J Biochem 68:487–499, 1970.

    PubMed  CAS  Google Scholar 

  67. Lands WEM: Biological consequences of fatty acid oxygenase reaction mechanisms. Prostaglandins Leukotiienes Med 13:35–46, 1984.

    Article  CAS  Google Scholar 

  68. Siegel MI, McConnell RT, Abrahams SL, et al: Regulation of arachidonate metabolism via lipoxygenase and cyclo-oxygenase by 12-HPETE, the product of human platelet lipoxygenase. Biochem Biophys Res Commun 89:1273–1280, 1979.

    Article  PubMed  CAS  Google Scholar 

  69. Roth GJ, Majerus PW: The mechanism of the effect of aspirin on human platelets I. Ace-tylation of a particulate fraction protein. J Clin Invest 57:624–632, 1975.

    Article  Google Scholar 

  70. Shen TY, Winter DA: Chemical and biological studies on indomethacin, sulindac and their analogs. Adv Drug Res 12:90–245, 1977.

    PubMed  CAS  Google Scholar 

  71. Govelli SA, Ahmed K: Indomethacin and inhibition of protein kinase reactions Nature (London) 287:171–172, 1980.

    Article  Google Scholar 

  72. Panganamala RV, Sharma HM, Heikkila RE, et al: Role of hydroxyl radical scavengers dimethyl sulfoxide, alcohols and methional in the inhibition of prostaglandin biosynthesis. Prostaglandins 11:599–607, 1976.

    Article  PubMed  CAS  Google Scholar 

  73. Shaw S, Jayatilleke E, Ross WS, et al: Ethanol-induced lipid peroxidation: Potentiation by long term alcohol feeding and attenuation by methionine. J Lab Clin Med 98:417–424, 1981.

    PubMed  CAS  Google Scholar 

  74. Pace-Asciak C: Isolation, structure and biosynthesis of 6-keto prostaglandin Flα in the rat stomach. J Am Chem Soc 98:1248–2349, 1976.

    Article  Google Scholar 

  75. Les S-C, Levine L: Prostaglandin metabolism. II. Identification of two 15-hydroxyprostag-landin dehydrogenase types. J Biol Chem 250:548–552, 1975.

    Google Scholar 

  76. Anggard E, Larsson C, Samuelsson B: The distribution of 15-hydroxyprostaglandin dehydrogenase and prostaglandin-13-reductase in tissues of the swine. Acta Physiol Scand 81:396–404, 1970.

    Article  Google Scholar 

  77. Roberts LJ, Sweetman BJ, Oates JA: Metabolism of thromboxane B2 in man. Identification of twenty urinary metabolites. J Biol Chem 256:8384–8393, 1981.

    PubMed  CAS  Google Scholar 

  78. Kelly RW, Taylor PL, Hearn JP: 19-Hydroxyprostaglandin E1 as a major component of the semen of primates. Nature (London) 260:544–545, 1976.

    Article  CAS  Google Scholar 

  79. Pennington SN, Taylor WA: Kinetic changes in rat renal 15-hydroxy-prostaglandin dehydrogenase induced by chronic ethanol exposure. Prostaglandins 25:291–297, 1983.

    Article  PubMed  CAS  Google Scholar 

  80. Nugteren DH: Arachidonate lipoxygenase in blood platelets. Biochim Biophys Acta 380:299–307, 1975.

    PubMed  CAS  Google Scholar 

  81. Porter NA, Weber BA, Weenen H, et al: Autooxidation of polyunsaturated lipids. Factors controlling the stereochemistry of product hydroperoxides. J Am Chem Soc 102:5597–5601, 1980.

    Article  CAS  Google Scholar 

  82. Porter NA, Wolf RA, Pagels WR, et al: A test for the intermediacy of 11-hydroperoxyeicosa-5,8,12,14-tetraenoic acid (11-HPETE) in prostaglandin biosynthesis. Biochem Biophys Res Commun 92:349–355, 1980.

    Article  PubMed  CAS  Google Scholar 

  83. Hamberg M, Samuelsson B: Prostaglandin endoperoxides. Novel transformations of arach-idonic acid in human platelets. Proc Natl Acad Sci USA 71:3400–3404, 1974.

    Article  PubMed  CAS  Google Scholar 

  84. Stenson WF, Parker CW, Sullivan TJ: Augmentation of IgE-mediated release of histamine by 5-hydroxyeicosatetraenoic acid and 12-hydroxyeicosatetraenoic acid. Biochem Biophys Res Commun 96:1045–1052, 1980.

    Article  PubMed  CAS  Google Scholar 

  85. Narumiya S, Salmon JA, Cottee FH, et al: Arachidonic acid 15-lipoxygenase from rabbit peritoneal polymorphonuclear leukocytes. J Biol Chem 256:9583–9592, 1981.

    PubMed  CAS  Google Scholar 

  86. Hammarstrom S: Leukotrienes. Annu Rev Physiol 52:355–378, 1983.

    CAS  Google Scholar 

  87. Lewis RA, Lee CW, Levine L, et al: Biology of the C-6-sulfidopeptide leukotrienes. Adv Prostaglandin Thromboxane Leukotriene Res 11:15–26, 1983.

    CAS  Google Scholar 

  88. Samuelsson B, Hammarstrom S: Leukotrienes: A novel group of biologically active compounds. Vet Horm 39:1–30, 1982.

    CAS  Google Scholar 

  89. Lewis RA, Austen KF: Mediation of local homeostasis and inflammation by leukotrienes and other mast cell-dependent compounds. Nature (London) 293:103–108, 1981.

    Article  CAS  Google Scholar 

  90. Corey EJ: Chemical studies on slow reacting substances/leukotrienes. Experimentia 38:1259–1381, 1982.

    Article  CAS  Google Scholar 

  91. Jakschik BA, Kuo LG: Characterization of leukotriene A4 and B4 biosynthesis. Prostaglandins 25:767–781, 1983.

    Article  PubMed  CAS  Google Scholar 

  92. Radmark O, Marlmsten C, Samuelsson B, et al: Leukotriene A: Isolation from human polymorphonuclear leukocytes. J Biol Chem 255:11828–11831, 1980.

    PubMed  CAS  Google Scholar 

  93. Goldman DW, Goetzl EJ: Specific binding of leukotriene B4 to receptors on human polymorphonuclear leukocytes. J Immunol 129:1600–1610, 1982.

    PubMed  CAS  Google Scholar 

  94. Borgeat P, Fruteau de Lados B, Picard S, et al: Studies on the mechanism of formation of the 5S, 12S-dihydroxy-6,8,10,14(E,Z,E,Z)-icosatetraenoic acid in leukocytes. Prostaglandins 23:713–727, 1982.

    Article  PubMed  CAS  Google Scholar 

  95. Samuelsson B: Leukotrienes: A new class of mediators of immediate hypersensitivity reaction and inflammation. Adv Prostaglandin Thromboxane Leukotriene Res 11:1–14, 1983.

    CAS  Google Scholar 

  96. Jakoby WB: The gluthathione S-transferases: A group of multifunctional detoxification proteins. Adv Enzymol 46:383–414, 1978.

    PubMed  CAS  Google Scholar 

  97. Morris HR, Taylor GW, Jones CM, et al: Slow reacting substances (leukotrienes): Enzymes involved in their biosynthesis. Proc Natl Acad Sci USA 79:4838–4842, 1982.

    Article  PubMed  CAS  Google Scholar 

  98. Bach MK, Brashler JR, Fitzpatrick FA, et al: In vivo and in vitro actions of a new selective inhibitor of leukotriene C and D synthesis. Adv Prostaglandin Thromboxane Leukotriene Res 11:39–44, 1983.

    CAS  Google Scholar 

  99. Sirois P, Brousseau Y: Leukotriene transformation by guinea pig lungs. Prostglandin Leukotriene Med 10:133–143, 1983.

    Article  CAS  Google Scholar 

  100. Meister A: On the enzymology of amino acid transport. Science 180:33–39, 1973.

    Article  PubMed  CAS  Google Scholar 

  101. Ohnishi H, Kosugume H, Ketamura Y, et al: Structure of slow reacting substance of anaphylaxis. Prostaglandins 20:655–666, 1980.

    Article  PubMed  CAS  Google Scholar 

  102. Sok DE, Pai JK, Atrache V, et al: Enzymatic inactivation of SRS-CYS-GLY (Leukotriene D). Biochem Biophys Res Commun 101:222–229, 1981.

    Article  PubMed  CAS  Google Scholar 

  103. Maas R, Brash A, Oates J: A second pathway of leukotriene biosynthesis in porcine leukocytes. Proc Natl Acad Sci USA 78:523–5527, 1981.

    Article  Google Scholar 

  104. Jubiz W, Radmark O, Lindgren JA, et al: Novel leukotrienes. I. Products formed by initial oxygenation of arachidonic acid at C-15. Biochem Biophys Res Commun 99:976–986, 1981.

    Article  PubMed  CAS  Google Scholar 

  105. Siegel MI, McConnell RT, Porter NA, et al: Arachidonate metabolism via lipoxygenase and 12L-hydroperoxy-5,8,10,14-icosatetraenoic acid peroxidase sensitive to anti-inflammatory drugs. Proc Natl Acad Sci USA 77:308–312, 1980.

    Article  PubMed  CAS  Google Scholar 

  106. Stenson WF, Parker CF: Monohydroxyeicosatetraenoic acids (HETEs) induce degranulation of human neutrophils. J Immunol 124:2100–2103, 1980.

    PubMed  CAS  Google Scholar 

  107. Applegren LE, Hammarstrom S: Distribution and metabolism of leukotriene C3 in the mouse. J Biol Chem 257:531–535, 1982.

    Google Scholar 

  108. Murphy RC, Anderson FA: Unpublished results, 1982.

    Google Scholar 

  109. Lee CW, Lewis RA, Corey EJ, et al: Oxidative inactivation of leukotriene C4 by stimulated human polymorphonuclear leukocytes. Proc Natl Acad Sci USA 79:4166–470, 1982.

    Article  PubMed  CAS  Google Scholar 

  110. Hansson G, Lindgren JA, Dahler SE, et al: Identification and biological activity of novel w-oxidized metabolites of leukotriene B4 from human leukocytes. FEBS Lett 130:107–112, 1981.

    Article  PubMed  CAS  Google Scholar 

  111. Henderson WR, Jorg A, Klebanoff SJ: Eosinophil peroxidase-mediated inactivation of leukotrienes B4, C4 and D4. J Immunol 128:2609–2613, 1982.

    PubMed  CAS  Google Scholar 

  112. Henderson WR, Klebanoff SJ: Leukotriene B4, C4, D4 and E4 inactivation by hydroxyl radicals. Biochem Biophys Res Commun 110:226–272, 1983.

    Article  Google Scholar 

  113. Dixon WE: The action of alcohol on the circulation. J Physiol (London) 35:347–366, 1907.

    Google Scholar 

  114. Gong H, Tashkin DP, Calvarese BM: Alcohol-induced bronchospasm in an asthmatic patient. Pharmacologic evaluation of the mechanism. Chest 80:167–173, 1981.

    Article  PubMed  Google Scholar 

  115. Gong H, Tashkin DD: Is ethanol a bronchoconstrictor? Chest 81:773–774, 1982.

    Google Scholar 

  116. Geppert EF, Boushey HA: An investigation of the mechanism of ethanol-induced bron-choconstriction. Am Rev Respir Dis 118:135–139, 1978.

    PubMed  CAS  Google Scholar 

  117. Doekel RC, Weir EK, Looga R, et al: Potentiation of hypoxic pulmonary vasoconstriction by ethyl alcohol in dogs. J Appl Physiol 44:76–80, 1978.

    PubMed  CAS  Google Scholar 

  118. Voelkel NF, Murphy RC, Reeves JT: Non-anaphylactic leukotriene production in isolated perfused rat lung. Fed Proc 41:4233A, 1982.

    Google Scholar 

  119. Mitsuda H, Yasumoto K, Yamamoto A: Inhibition of lipoxygenase by saturated monohydric alcohols through hydrophobic bondings. Arch Biochem Biophys 118:664–669, 1967.

    Article  PubMed  CAS  Google Scholar 

  120. Slappendel S, Aasa R, Falk KE, et al: 1H-NMR spectroscopic study on the binding of alcohols to soybean lipoxygenase-1. Biochim Biophys Acta 708:266–271, 1982.

    Article  CAS  Google Scholar 

  121. Pennington SN, Smith CP: The effect of ethanol on thromboxane synthesis by blood platelets. Prostaglandins Med 2:43–50, 1979.

    Article  PubMed  CAS  Google Scholar 

  122. Westcott JY, Murphy RC: The interaction of ethanol and exogenous arachidonic acid in the formation of leukotrienes and prostaglandin D2 in mastocytoma cells. Prostaglandins 26:223–240, 1983.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Murphy, R.C., Westcott, J.Y. (1985). Synthesis of Prostaglandins and Leukotrienes Effects of Ethanol. In: Galanter, M. (eds) Recent Developments in Alcoholism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7715-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7715-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7717-1

  • Online ISBN: 978-1-4615-7715-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics