Skip to main content

Cholesterol Deposition in Atherosclerotic Lesions

  • Chapter
Cholesterol

Part of the book series: Subcellular Biochemistry ((SCBI,volume 28))

Abstract

Cholesterol is a molecule of great biomedical significance. We cannot live without it, and often, we cannot live with it. Cholesterol accumulation in blood vessels leads to the development of atherosclerotic plaque-like lesions. Heart attacks and some types of strokes occur when these plaques rupture and blood clots form on their surfaces. In the United States, heart attacks and strokes kill more than 500,000 people each year (American Heart Association, 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdulla, Y. H., and Adams, C. W. M., 1978, The action of human high density lipoprotein on cholesterol crystals. Part 2. Biochemical observations, Atherosclerosis 31:473–480.

    Article  PubMed  CAS  Google Scholar 

  • Adams, C. W. M., and Abdulla, Y. H., 1978, The action of human high density lipoproteins on cholesterol crystals. Part 1. Light-microscopic observations, Atherosclerosis 31:465–471.

    Article  PubMed  CAS  Google Scholar 

  • Alavi, M., Dunnett, C. W., and Moore, S., 1983, Lipid composition of rabbit aortic wall following removal of endothelium by balloon catheter, Arteriosclerosis 3:413–419.

    Article  PubMed  CAS  Google Scholar 

  • Alavi, M. Z., Richardson, M., and Moore, S., 1989, The in vitro interactions between serum lipoproteins and proteoglycans of the neointima of rabbit aorta after a single balloon catheter injury, Am. J. Pathol. 134:287–294.

    PubMed  CAS  Google Scholar 

  • Allen, T. M., 1981, A study of phospholipid interactions between high-density lipoproteins and small unilamellar vesicles, Biochim. Biophys. Acta 640:385–397.

    Article  PubMed  CAS  Google Scholar 

  • American Heart Association, 1995, American Heart Association Heart and Stroke Facts: Statistical Supplement, Dallas, TX.

    Google Scholar 

  • Andreeva, E. R., Rekhter, M. D., Romanov, Y. A., Antonova, G. M., Antonov, A. S., Mironov, A. A., and Orekhov, A. N., 1992, Stellate cells of aortic intima, II: arborization of intimal cells in cells in culture, Tissue Cell 24:697–704.

    Article  PubMed  CAS  Google Scholar 

  • Anitschkow, N., and Chalatow, S., 1913, Uber experimentelle cholesterinsteatose und ihre bedeutung fur die entstehung einiger pathologischer prozesse, Zentralbl. Allg. Pathol. 24:1–9.

    Google Scholar 

  • Baker, D. P., Van Lenten, B. J., Fogelman, A. M., Edwards, P. A., Kean, C., and Berliner, J. A., 1984, LDL, scavenger, and β-VLDL receptors on aortic endothelial cells, Arteriosclerosis 4:248–255.

    Article  PubMed  CAS  Google Scholar 

  • Ball, R. Y., Carpenter, K. L. H., and Mitchinson, M. J., 1987, What is the significance of ceroid in human atherosclerosis? Arch. Pathol. Lab. Med. 111:1134–1140.

    PubMed  CAS  Google Scholar 

  • Bangham, A. D., 1963, Physical structure and behavior of lipids and lipid enzymes, Adv. Lipid Res. 1:65–104.

    PubMed  CAS  Google Scholar 

  • Basu, S. K., Ho, Y. K., Brown, M. S., Bilheimer, D. W., Anderson, R. G. W., and Goldstein, J. L., 1982, Biochemical and genetic studies of the apoprotein E secreted by mouse macrophages and human monocytes, J. Biol. Chem. 257:9788–9795.

    PubMed  CAS  Google Scholar 

  • Berenson, G. S., Radhakrishnamurthy, B., Srinivasa, S. R., Vijayagopal, P., and Dalferes, E. R., 1990, Nature and importance of proteoglycans in the atherosclerotic plaque, in: Pathobiology of the Human Atherosclerotic Plaque (S. Glagov, W. P. Newman, and S. A. Schaffer, eds.), pp. 189–208,Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Bernfeld, P., and Kelley, T. F., 1964, Proteolysis of human serum β-lipoprotein, J. Biol. Chem. 239:3341–3346.

    PubMed  CAS  Google Scholar 

  • Bocan, T. M. A., Schifani, T. A., and Guyton, J. R., 1986, infrastructure of the human aortic fibrolipid lesion. Formation of the atherosclerotic lipid-rich core, Am. J. Pathol 123:413–424.

    PubMed  CAS  Google Scholar 

  • Bötcher, C. J. F., and Woodford, F. P., 1962, Chemical changes in the arterial wall associated with atherosclerosis, Fed. Proc. 21:15–19.

    Google Scholar 

  • Brown, M. S., and Goldstein, J. L., 1983, Lipoprotein metabolism in the macrophage: Implications for cholesterol deposition in atherosclerosis, Annu. Rev. Biochem. 52:223–261.

    Article  PubMed  CAS  Google Scholar 

  • Buck, R. C., and Rossiter, R. J., 1951, Lipids of normal and atherosclerotic aortas, Arch. Pathol 51:224–237.

    CAS  Google Scholar 

  • Camejo, G., Hurt, E., and Romano, M., 1985, Properties of lipoprotein complexes isolated by affinity chromatography from human aorta, Biomed. Biochim. Acta 44:389–401.

    PubMed  CAS  Google Scholar 

  • Carpenter, K. L. H., Taylor, S. E., Van der Veen, C., Williamson, B. K., Ballantine, J. A., and Mitchin-son, M. J., 1995, Lipids and oxidized lipids in human atherosclerotic lesions at different stages of development, Biochim. Biophys. Acta 1256:141–150.

    Article  PubMed  Google Scholar 

  • Castelli, W. P., 1984, Epidemiology of coronary heart disease: The Framingham Study, Am. J. Med. 76:4–12.

    Article  PubMed  CAS  Google Scholar 

  • Chambless, L. E., Fuchs, F. D., Linn, S., Kritchevsky, S. B., Larosa, J. C., Segal, P., Rifkind, B. M., 1990, The associaiton of corneal arcus with coronary heart disease and cardiovascular disease mortality in the lipid research clinics mortality follow-up study, Am. J. Public Health 80:1200–1204.

    Article  PubMed  CAS  Google Scholar 

  • Chang, M. Y., Lees, A. M., and Lees, R. S., 1992, Time course of 125I-labeled LDL accumulation in the healing, balloon-deendothelialized rabbit aorta, Arterioscler. Thromb. 12:1088–1098.

    Article  PubMed  CAS  Google Scholar 

  • Chang, M. Y., Lees, A. M., and Lees, R. S., 1993, Low density lipoprotein modification and arterial wall accumulation in a rabbit model of atherosclerosis, Biochemistry 32:8518–8524.

    Article  PubMed  CAS  Google Scholar 

  • Chao, F.F., Blanchette-Mackie, E. J., Skarlatos, S. I., Gamble, W., Resau, J. H., Mergner, W. T., and Kruth, H. S., 1988, Unesterified cholesterol-rich lipid particles in atherosclerotic lesions of human and rabbit aortas, Am. J. Pathol 131:73–83.

    PubMed  CAS  Google Scholar 

  • Chao, F.-F., Blanchette-Mackie, E. J., Chen, Y.-J., Dickens, B. F., Berlin, E., Amende, L. M., Skarlatos, S. I., Gamble, W., Resau, J. H., Mergner, W. T., and Kruth, H. S., 1990, Characterization of two unique cholesterol-rich lipid particles isolated from human atherosclerotic lesions, Am. J. Pathol. 136:169–179.

    PubMed  CAS  Google Scholar 

  • Chao, F.-F, Rifai, N., Blanchette-Mackie, E. J., Resau, J. H., Amende, L. M., and Kruth, H. S., 1991, In vitro solubilization of aortic unesterified cholesterol-rich lipid particles by high density lipoproteins, Clin. Chem. 37:921 (abstract).

    Google Scholar 

  • Chao, F.-E, Blanchette-Mackie, E. J., Tertov, V. V., Skarlatos, S. I., Chen, Y.-J., and Kruth, H. S., 1992, Hydrolysis of cholesteryl ester in low density lipoprotein converts this lipoprotein to a liposome, J. Biol. Chem. 267:4992–4998.

    PubMed  CAS  Google Scholar 

  • Chao, F.-F., Blanchette-Mackie, E. J., Dickens, B. F., Gamble, W., and Kruth, H. S., 1994, Development of unesterified cholesterol-rich lipid particles in atherosclerotic lesions of WHHL and cholesterol-fed NZW rabbits, J. Lipid Res. 35:71–83.

    PubMed  CAS  Google Scholar 

  • Chapman, M. J., Goldstein, S., and Mills, G. L., 1978, Limited tryptic digestion of human serum low-density lipoprotein: isolation and characterization of the protein-deficient particle and of its apoprotein, Eur. J. Biochem. 87:475–488.

    Article  PubMed  CAS  Google Scholar 

  • Chisolm, G. M., Ma, G., Irwin, K. C., Martin, L. L., Gunderson, K. G., Linberg, L. F., Morel, D. W., and DiCorleto, P. E., 1994, 7β-hydroperoxycholest-5-en-3β-ol, a component of human atherosclerotic lesions, is the primary cytotoxin of oxidized human low density lipoprotein, Proc. Natl Acad. Sci. USA 91:11452–11456.

    Article  PubMed  CAS  Google Scholar 

  • Chulkova, T. M., and Tertov, V. V., 1993, Degradation of human apolipoprotein B-100 by apolipopro-tein (a), FEBS Lett. 336:327–329.

    Article  PubMed  CAS  Google Scholar 

  • Chung, B.-H., Im, J. H., and Bowdon, H. R., 1986, Lipolysis-induced degradation of apolipoproteins B and E of human very low density lipoprotein, J. Biol. Chem. 261:2960–2967.

    PubMed  CAS  Google Scholar 

  • Chung, B.-H., Tallis, G., Yalamoori, V., Anantharamaiah, G. M., and Segrest, J. P., 1994, Lipo-some-like particles isolated from human atherosclerotic plaques are structurally and composi-tionally similar to surface remnants of triglyceride-rich lipoproteins, Arterioscl. Thromb. 14: 622–635.

    Article  PubMed  CAS  Google Scholar 

  • Clevidence, B. A., Morton, R. E., West, G., Dusek, D. M., and Hoff, H. F., 1984, Cholesterol esterifi-cation in macrophages. Stimulation by lipoproteins containing apo B isolated from human aortas, Arteriosclerosis 4:196–207.

    Article  PubMed  CAS  Google Scholar 

  • Cornhill, J. F., Herderick, E. E., and Stary, H. C., 1990, Topography of human aortic sudanophilic lesions, Monogr. Atheroscler. 15:13–19.

    PubMed  CAS  Google Scholar 

  • Cotran, R. S., 1965, Endothelial phagocytosis: An electron-microscopic study, Exp. Mol. Pathol. 4:217–231.

    Article  Google Scholar 

  • Curtiss, L. K., Black, A. S., Takagi, Y., and Plow, E. F., 1987, New mechanism for foam cell generation in atherosclerotic lesions, J. Clin. Invest. 80:367–373.

    Article  PubMed  CAS  Google Scholar 

  • Daugherty, A., Zweifel, B. S., Sobel, B. E., and Schonfeld, G., 1988, Isolation of low density lipoprotein from atherosclerotic vascular tissue of Watanabe Heritable hyperlipidemic rabbits, Arteriosclerosis 8:768–777.

    Article  PubMed  CAS  Google Scholar 

  • Davies, M. J., Richardson, P. D., Woolf, N., Katz, D. R., and Mann, J., 1993, Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content, Br. Heart J. 69:377–381.

    Article  PubMed  CAS  Google Scholar 

  • Day, A. J., Alavi, M., and Moore, S., 1985, Influx of [3H, 14C]cholesterol-labelled lipoprotein into reenthelialised and de-endothelialised areas of ballooned aortas in normal-fed and cholesterol-fed rabbits, Atherosclerosis 55:339–351.

    Article  PubMed  CAS  Google Scholar 

  • Duff, G. L., McMillan, G. C., and Lautsch, E. V., 1954, The uptake of colloidal thorium dioxide by the arterial lesions of cholesterol atherosclerosis in the rabbit, Am. J. Pathol. 30:941–955.

    PubMed  CAS  Google Scholar 

  • Evensen, S. A., Galdal, K. S., and Nilsen, E., 1983, LDL-induced cytotoxicity and its inhibition by anti-oxidant treatment in cultured human endothelial cells and fibroblasts, Atherosclerosis 49:23–30.

    Article  PubMed  CAS  Google Scholar 

  • Fainaru, M., Mahley, R. W., Hamilton, R. L., and Innerarity, T. L., 1982, Structural and metabolic heterogeneity of β-very low density lipoproteins from cholesterol-fed dogs and from humans with Type III hyperlipoproteinemia, J. Lipid Res. 23:702–714.

    PubMed  CAS  Google Scholar 

  • Falcone, D. J., and Ferenc, M. J., 1988, Acetyl-LDL stimulates macrophage-dependent plasminogen activation and degradation of extracellular matrix, J. Cell Physiol. 135:387–396.

    Article  PubMed  CAS  Google Scholar 

  • Falcone, D. J., Hajjar, D. P., and Minick, C. R., 1980, Enhancement of cholesterol and cholesteryl ester accumulation in re-endothelialized aorta, Am. J. Pathol. 99:81–104.

    PubMed  CAS  Google Scholar 

  • Falcone, D. J., Mated, N., Shio, H., Minick, C. R., and Fowler, S. D., 1984, Lipoprotein-heparin-fi-bronectin-denatured collagen complexes enhance cholesteryl ester accumulation in macrophages, J. Cell Biol. 99:1266–1274.

    Article  PubMed  CAS  Google Scholar 

  • Falk, E., 1992, Why do plaques rupture? Circulation 86:III-30-III-42.

    Google Scholar 

  • Finkelstein, M. C., and Weissmann, G., 1979, Enzyme replacement via liposomes. Variations in lipid composition determine liposomal integrity in biological fluids, Biochim. Biophys. Acta 587:202–216.

    Article  PubMed  CAS  Google Scholar 

  • Fogelman, A. M., Shechter, I., Seager, J., Hokom, M., Child, J. S., and Edwards, P. A., 1980, Malon-dialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages, Proc. Natl. Acad. Sci. USA 77:2214–2218.

    Article  PubMed  CAS  Google Scholar 

  • Fong, L. G., Parthasarathy, S., Witztum, J. L., and Steinberg, D., 1987, Nonenzymatic oxidative cleavage of peptide bonds in apoprotein B-100, J. Lipid Res. 28:1466–1477.

    PubMed  CAS  Google Scholar 

  • Forte, T. M., and Nordhausen, R. W., 1986, Electron microscopy of negatively stained lipoproteins, Methods Enzymol. 128:442–457.

    Article  PubMed  CAS  Google Scholar 

  • French, J. E., Jennings, M. A., Poole, J. C. F., Robinson, D. S., and Florey, S. H., 1963, Intimal changes in the arteries of ageing swine, Proc. R. Soc. London [Biol] 158:24–42.

    Article  CAS  Google Scholar 

  • Fuster, V., Badimon, J. J., and Badimon, L., 1992, Clinical-pathological correlations of coronary disease progression and regression, Circulation 86:III 1–11.

    Google Scholar 

  • Galis, Z. S., Sukhova, G. K., Lark, M. W., and Libby, P., 1994, Increased expression of matrix metal-loproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques, J. Clin. Invest. 94:2493–2503.

    Article  PubMed  CAS  Google Scholar 

  • Galis, Z. S., Sukhova, G. K., Kranzhofer, R., Clark, S., and Libby, P., 1995, Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases, Proc. Natl Acad. Sci. USA 92:402–406.

    Article  PubMed  CAS  Google Scholar 

  • Garti, N., Karpuj, L., and Sarig, S., 1981, Correlation between crystal habit and the composition of sol-vated and nonsolvated cholesterol crystals, J. Lipid Res. 22:785–791.

    PubMed  CAS  Google Scholar 

  • Gaynor, P. G., Zhang, W.-Y, Salehizadeh, B., Hunsberger, S., Pettiford, B., and Kruth, H. S., 1996, Cholesterol accumulation in human cornea: Evidence that extracellular cholesteryl ester-rich lipid particles deposit independently of foam cells, J. Lipid Res. 37:1849–1861.

    PubMed  CAS  Google Scholar 

  • Geer, J. C., and Guidry, M. A., 1964, Cholesteryl ester composition and morphology of human normal intima and fatty streaks, Exp. Mol. Pathol. 3:485–499.

    Article  CAS  Google Scholar 

  • Gerrity, R. G., 1981, The role of the monocyte in atherogenesis. II. Migration of foam cells from atherosclerotic lesions, Am. J. Pathol. 103:191–200.

    PubMed  CAS  Google Scholar 

  • Gerrity, R. G., Richardson, M., Somer, J. B., Bell, F. P., and Schwartz, C. J., 1977, Endothelial cell morphology in areas of in vivo Evans Blue uptake in the aorta of young pigs. II. Ultrastructure of the intima in areas of differing permeability to proteins, Am. J. Pathol 89: 313–334.

    PubMed  CAS  Google Scholar 

  • Gianturco, S. H., and Bradley, W. A., 1988, Lipoprotein-mediated cellular mechanisms for atherogenesis in hypertriglyceridemia, Semin. Thromb. Hemost. 14:165–169.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, J. L., Ho, Y. K., Basu, S. K., and Brown, M. S., 1979, Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition, Proc. Natl. Acad. Sci. USA 76:333–337.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, V., Innerarity, T. L., and Mahley, R. W., 1983, Formation of cholesterol-and apoprotein E-enriched high density lipoproteins in vitro, J. Biol. Chem. 258:6202–6212.

    PubMed  CAS  Google Scholar 

  • Gotto, A. M., Jr., Pownall, H. J., and Havel, R. J., 1986, Introduction to the plasma membrane, Methods Enzymol 128:3–41.

    Article  PubMed  CAS  Google Scholar 

  • Greemland, M., and Savion, N., 1993, Sphingomyelin biosynthesis and efflux correlates with cholesterol metabolism and is higher in vascular endothelial cells than in smooth muscle cells, Eur. Heart J. 14:687–691.

    Article  PubMed  CAS  Google Scholar 

  • Guyton, J. R., and Klemp, K. F., 1988, Ultrastructural discrimination of lipid droplets and vesicles in atherosclerosis: Value of osmium-thiocarbohydrazide-osmium and tannic acid-paraphenylenedi-amine techniques, J. Histochem. Cytochem. 36:1319–1328.

    Article  PubMed  CAS  Google Scholar 

  • Guyton, J. R., and Klemp, K. F., 1989, The lipid-rich core region of human atherosclerotic fibrous plaques. Prevalence of small lipid droplets and vesicles by electron microscopy, Am. J. Pathol 134:705–717.

    PubMed  CAS  Google Scholar 

  • Guyton, J. R., and Klemp, K. F., 1992, Early extracellular and cellular lipid deposits in aorta of cholesterol-fed rabbits, Am. J. Pathol. 141:925–936.

    PubMed  CAS  Google Scholar 

  • Guyton, J. R., and Klemp, K. F., 1994, Development of the atherosclerotic core region. Chemical and ultrastructural analysis of microdissected atherosclerotic lesions from human aorta, Arterioscl Thromb. 14:1305–1314.

    Article  PubMed  CAS  Google Scholar 

  • Guyton, J. R., Black, B. L., and Seidel, C. L., 1990, Focal toxicity of oxysterols in vascular smooth muscle cell culture, Am. J. Pathol. 137:425–434.

    PubMed  CAS  Google Scholar 

  • Hajjar, D. P., Minick, C. R., and Fowler, S., 1983, Arterial neutral cholesteryl esterase. A hormone-sensitive enzyme distinct from lysosomal cholesteryl esterase, J. Biol. Chem. 258: 192–198.

    PubMed  CAS  Google Scholar 

  • Haley, N. J., Shio, H., and Fowler, S., 1977, Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. I. Resolution of aortic cell populations by metrizamide density gradient cen-trifugation, Lab. Invest. 37:278–296.

    Google Scholar 

  • Hartung, H.-P., Kladetzky, R. G., and Hennerici, M., 1985, Chemically modified low density lipoproteins as inducers of enzyme release from macrophages, FEBS Lett. 186:211–214.

    Article  PubMed  CAS  Google Scholar 

  • Hata, Y., Hower, J., and Insull, W., Jr., 1974, Cholesteryl ester-rich inclusions from human aortic fatty streak and fibrous plaque lesions of atherosclerosis. I. Crystalline properties, size and internal structure, Am. J. Pathol. 75:423–454.

    PubMed  CAS  Google Scholar 

  • Havel, R. J., 1994, Postprandial hyperlipidemia and remnant lipoproteins, Curr. Opin. Lipidol. 5:102–109.

    Article  PubMed  CAS  Google Scholar 

  • Heideman, C. L., and Hoff, H. F., 1982, Lipoproteins containing apolipoprotein A-I extracted from human aortas, Biochim. Biophys. Acta 711:431–444.

    Article  PubMed  CAS  Google Scholar 

  • Heinecke, J. W., Suits, A. G., Aviram, M., and Chait, A., 1991, Phagocytosis of lipase-aggregated low density lipoprotein promotes macrophage foam cell formation. Sequential morphological and biochemical events, Arterioscl. Thromb. 11:1643–1651.

    Article  PubMed  CAS  Google Scholar 

  • Henriksen, T., Mahoney, E. M., and Steinberg, D., 1981, Enhanced macrophages degradation of low density lipoprotein previously incubated with cultured endothelial cells: Recognition by receptors for acetylated low density lipoproteins, Proc. Natl. Acad. Sci. USA 78:6499–6503.

    Article  PubMed  CAS  Google Scholar 

  • Henriksen, T., Mahoney, E. M., and Steinberg, D., 1983, Enhanced macrophage degradation of biologically modified low density lipoprotein, Arteriosclerosis 3:149–159.

    Article  PubMed  CAS  Google Scholar 

  • Hessler, J. R., Morel, D. W., Lewis, L. J., and Chisolm, G. M., 1983, Lipoprotein oxidation and lipoprotein-induced cytotoxicity, Arteriosclerosis 3:215–222.

    Article  PubMed  CAS  Google Scholar 

  • Ho, Y.-K., Brown, M. S., and Goldstein, J. L., 1980, Hydrolysis and excretion of cytoplasmic cholesteryl esters by macrophages: stimulation by high density lipoprotein and other agents, J. Lipid Res. 21:391–398.

    PubMed  CAS  Google Scholar 

  • Hoff, H. F., 1972, Human intracranial atherosclerosis. A histochemical and ultrastructural study of gross fatty streak lesions, Am. J. Pathol. 69:421–437.

    PubMed  CAS  Google Scholar 

  • Hoff, H. F., and Clevidence, B. A., 1987, Uptake by mouse peritoneal macrophages of large cholesteryl ester-rich particles isolated from human atherosclerotic lesions, Exp. Mol. Pathol. 46:331–344.

    Article  PubMed  CAS  Google Scholar 

  • Hoff, H. F., and Cole, T. B., 1991, Macrophage uptake of low-density lipoprotein modified by 4-hydroxynonenal. An ultrastructural study, Lab. Invest. 64:254–265.

    PubMed  CAS  Google Scholar 

  • Hoff, H. F., and Gaubatz, J. W., 1977, Ultrastructural localization of apolipoprotein B in human aortic and coronary atherosclerotic plaques, Exp. Mol. Pathol. 26:214–227.

    Article  PubMed  CAS  Google Scholar 

  • Hoff, H. F., and Gaubautz, J. W., 1979, Residual apo B in aortic plaques extracted with hydrolytic enzymes, Artery 6:89–107.

    CAS  Google Scholar 

  • Hoff, H. F., and Gaubatz, J. W., 1982, Isolation, purification, and characterization of a lipoprotein containing apo B from the human aorta, Atherosclerosis 42:273–297

    Article  PubMed  CAS  Google Scholar 

  • Hoff, H. F., and Morton, R. E., 1985, Lipoproteins containing apoB extracted from human aortas. Structure and function, Ann. N.Y.Acad. Sci. 454:183–194.

    Article  PubMed  CAS  Google Scholar 

  • Hoff, H. F., and O’Neil, J., 1991, Lesion-derived low density lipoprotein and oxidized low density lipoprotein share a lability for aggregation, leading to enhanced macrophage degradation, Arterioscl. Thromb. 11:1209–1222.

    Article  PubMed  CAS  Google Scholar 

  • Hoff, H. F., Jackson, R. L., Mao, S. J. T., and Gotto, A. M., Jr., 1974, Localization of low-density lipoproteins in atherosclerotic lesions from human normolipemics employing a purified fluorescent-labelled antibody, Biochim. Biophys. Acta 351:407–415.

    Article  PubMed  CAS  Google Scholar 

  • Hoff, H. F., Heideman, C. L., Gotto, A. M., Jr., and Gaubatz, J. W., 1977, Apolipoprotein B retention in the grossly normal and atherosclerotic human aorta, Circ. Res. 41:684–690.

    Article  PubMed  CAS  Google Scholar 

  • Hoff, H. F., Heideman, C. L., Gaubatz, J. W., Scott, D. W., and Gotto, A. M., Jr., 1978a, Detergent extraction of tightly-bound apoB from extracts of normal aortic intima and plaques, Exp. Mol. Pathol. 28:290–300.

    Article  PubMed  CAS  Google Scholar 

  • Hoff, H. F., Heideman, C. L., Gaubatz, J. W., Scott, D. W., Titus, J. L., and Gotto, A. M., Jr., 1978b, Correlation of apolipoprotein B retention with the structure of atherosclerotic plaques from human aortas, Lab. Invest. 38:560–567.

    PubMed  CAS  Google Scholar 

  • Hoff, H. F., Bradley, W. A., Heideman, C. L., Gaubatz, J. W., Karagas, M. D., and Gotto, A. M., Jr., 1979a, Characterization of low density lipoprotein-like particle in the human aorta from grossly normal and atherosclerotic regions, Biochim. Biophys. Acta 573:361–374.

    Article  PubMed  CAS  Google Scholar 

  • Hoff, H. F., Karagas, M., Heideman, C. L., Gaubatz, J. W., and Gotto, A. M., Jr., 1979b, Correlation in the human aorta of apoB fractions with tissue cholesterol and collagen content, Atherosclerosis 32:259–268.

    Article  PubMed  CAS  Google Scholar 

  • Hoff, H. F, Gerrity, R. G., Naito, H. K., and Dusek, D. M., 1983, Methods in laboratory investigation. Quantitation of apolipoproteins B in aortas of hypercholesterolemic swine, Lab. Invest. 48:492–504.

    PubMed  CAS  Google Scholar 

  • Hoff, H. F., Dusek, D. M., and Lynn, M. P., 1986, Methods in laboratory investigation. Spatial distribution and accumulation of low density lipoproteins in the abdominal aorta of swine: determination by a novel electrotransfer procedure, Lab. Invest. 55:377–386.

    PubMed  CAS  Google Scholar 

  • Hoff, H. F., O’Neil, J., Chisolm, G. M. III, Cole, T. B., Quehenberger, O., Esterbauer, H., and Jurgens, G., 1989, Modification of low density lipoprotein with 4-hydroxynonenal induces uptake by macrophages, Arteriosclerosis 9:538–549.

    Article  PubMed  CAS  Google Scholar 

  • Hoff, H. F, O’Neil, J., and Cole, T. B., 1991, Macrophage degradation of LDL extracted from human aortic plaques: Effect of isolation conditions, Exp. Mol. Pathol. 54:72–86.

    Article  PubMed  CAS  Google Scholar 

  • Hoff, H. F., Whitaker, T. E., and O’Neil, J., 1992, Oxidation of low density lipoprotein leads to particle aggregation and altered macrophage recognition, J. Biol. Chem. 267:602–609.

    PubMed  CAS  Google Scholar 

  • Hollander, W., Paddock, J., and Colombo, M., 1979, Lipoproteins in human atherosclerotic vessels. I. Biochemical properties of arterial low density lipoproteins, very low density lipoproteins, and high density lipoproteins, Exp. Mol. Pathol. 30:144–171.

    Article  PubMed  CAS  Google Scholar 

  • Horlick, L., 1954, Serum lipoprotein stability in atherosclerosis, Circulation 10:30–42.

    Article  PubMed  CAS  Google Scholar 

  • Hurt, E., Bondjers, G., and Camejo, G., 1990, Interaction of LDL with human arterial proteoglycans stimulates its uptake by human monocyte-derived macrophages, J. Lipid Res. 31:443–454.

    PubMed  CAS  Google Scholar 

  • Insull, W., Jr., and Bartsch, G. E., 1966, Cholesterol, triglyceride, and phospholipid content of intima, media, and atherosclerotic fatty streak in human thoracic aorta, J. Clin. Invest. 45:513–523.

    Article  PubMed  CAS  Google Scholar 

  • Ismail, N. A. E., Alavi, M. Z., and Moore, S., 1994, Isolation of lipoprotein-proteoglycan complexes from balloon catheter deendothelialized aortas and the uptake of these complexes by blood monocyte-derived macrophages, Pathology 26:145–153.

    Article  PubMed  CAS  Google Scholar 

  • Jonas, A., Hesterberg, L. K., and Drengler, S. M., 1978, Incorporation of excess cholesterol by high density serum lipoproteins, Biochim. Biophys. Acta 528:47–57.

    Article  PubMed  CAS  Google Scholar 

  • Joris, I., Zand, T., Nunnari, J. J., Krolikowski, F. J., and Majno, G., 1983, Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats, Am. J. Pathol. 113:341–358.

    PubMed  CAS  Google Scholar 

  • Kannel, W. B., and Wilson, P. W., 1992, Efficacy of lipid profiles in prediction of coronary disease, Am. Heart J. 124:768–774.

    Article  PubMed  CAS  Google Scholar 

  • Kannel, W. B., Castelli, W. P., and Gordon, T., 1979, Cholesterol in the prediction of atherosclerotic disease, Ann. Intern. Med. 90:85–91.

    PubMed  CAS  Google Scholar 

  • Kao, V. C. Y.,and Wissler, R. W., 1965, A study of the immunohistochemical localization of serum lipoproteins and other plasma proteins in human atherosclerotic lesions, Exp. Mol. Pathol. 4:465–479.

    Article  PubMed  CAS  Google Scholar 

  • Katz, S. S., and Small, D. M., 1980, Isolation and partial characterization of the lipid phases of human atherosclerotic plaques, J. Biol. Chem. 255:9753–9759.

    PubMed  CAS  Google Scholar 

  • Katz, S. S., Shipley, G. G., and Small, D. M., 1976, Physical chemistry of the lipids of human atherosclerotic lesions. Demonstration of a lesion intermediate between fatty streaks and advanced plaques, J. Clin. Invest. 58:200–211.

    Article  PubMed  CAS  Google Scholar 

  • Kawabe, Y., Cynshi, O., Takashima, Y., Suzuki, T., Ohba, Y., and Kod’ama, T., 1994, Oxidation-induced aggregation on rabbit low-density lipoprotein by Azo initiator, Arch. Biochem. Biophys. 310:489–496.

    Article  PubMed  CAS  Google Scholar 

  • Khoo, J. C., Miller, E., McLoughlin, P., and Steinberg, D., 1988, Enhanced macrophage uptake of low density lipoprotein after self-aggregation, Arteriosclerosis 8:348–358.

    Article  PubMed  CAS  Google Scholar 

  • Khoo, J. C., Miller, E., Pio, F., Steinberg, D., and Witztum, J. L., 1992, Monoclonal antibodies against LDL further enhance macrophage uptake of LDL aggregates, Arterioscl. Thromb. 12:1258–1266.

    Article  PubMed  CAS  Google Scholar 

  • Kirby, C., Clarke, J., and Gregoriadis, G., 1980, Cholesterol content of small unilamellar liposomes controls phospholipid loss to high density lipoproteins in the presence of serum, FEBS Lett. 111:324–328.

    Article  PubMed  CAS  Google Scholar 

  • Kokkonen, J. O., and Kovanen, P. T., 1985, Low density lipoprotein degradation by rat mast cells. Demonstration of extracellular proteolysis caused by mast cell granules, J. Biol. Chem. 260:14756–14763.

    PubMed  CAS  Google Scholar 

  • Kokkonen, J. O., Vartiainen, M., and Kovanen, P. T., 1986, Low density lipoprotein degradation by secretory granules of rat mast cells. Sequential degradation of apolipoprotein B by granule chymase and carboxypeptidase A, J. Biol. Chem. 261:16067–16072.

    PubMed  CAS  Google Scholar 

  • Koren, E., Koscec, M., McConathy, W. J., and Fugate, R. D., 1991, Possible role of macrophages in regression of atherosclerosis, Prog. Lipid Res. 30:237–243.

    Article  PubMed  CAS  Google Scholar 

  • Koo, C., Innerarity, T. L., and Mahley, R. W., 1985, Obligatory role of cholesterol and apolipoprotein E in the formation of large cholesterol-enriched and receptor-active high density lipoproteins, J. Biol. Chem. 260:11934–11943.

    PubMed  CAS  Google Scholar 

  • Kovanen, P. T., and Kokkonen, J. O., 1991, Modification of low density lipoproteins by secretory granules of rat serosal mast cells, J. Biol. Chem. 266:4430–4436.

    PubMed  CAS  Google Scholar 

  • Kruth, H. S., 1983, Filipin-positive, oil red O-negative particles in atherosclerotic lesions induced by cholesterol feeding, Lab. Invest. 50:87–93.

    Google Scholar 

  • Kruth, H. S., 1984a, Histochemical detection of esterified cholesterol within human atherosclerotic lesions using the fluorescent probe filipin, Atherosclerosis 51:281–292.

    Article  PubMed  CAS  Google Scholar 

  • Kruth, H. S., 1984b, Localization of unesterified cholesterol in human atherosclerotic lesions. Demonstration of filipin-positive, oil red O-negative particles, Am. J. Pathol 114:201–208.

    PubMed  CAS  Google Scholar 

  • Kruth, H. S., 1985a, Subendothelial accumulation of unesterified cholesterol. An early event in atherosclerotic lesion development, Atherosclerosis 57:337–341.

    Article  PubMed  CAS  Google Scholar 

  • Kruth, H. S., 1985b, Platelet-mediated cholesterol accumulation in cultured aortic smooth muscle cells, Science 227:1243–1245.

    Article  PubMed  CAS  Google Scholar 

  • Kruth, H. S., and Fry, H. S., 1984, Histochemical detection and differentiation of free and esterified cholesterol in swine atherosclerosis using filipin, Exp. Mol Pathol 40:288–294.

    Article  PubMed  CAS  Google Scholar 

  • Kruth, H. S., and Shekhonin, B., 1995, Evidence for loss of apo B from LDL in human atherosclerotic lesions: extracellular cholesteryl ester lipid particles lacking apo B, Atherosclerosis 105:227–234.

    Article  Google Scholar 

  • Kruth, H. S., Skarlatos, S. I., Gaynor, P. M., and Gamble, W., 1994, Production of cholesterol-enriched nascent high density lipoproteins by human monocyte-derived macrophages is a mechanism that contributes to macrophage cholesterol efflux, J. Biol. Chem. 269:24511–24518.

    PubMed  CAS  Google Scholar 

  • Kruth, H. S., Skarlatos, S. I., Lilly, K., Chang, J., and Ifrim, I., 1995, Sequestration of acetylated LDL and cholesterol crystals by human monocyte-derived macrophages, J. Cell Biol. 129:133–145.

    Article  PubMed  CAS  Google Scholar 

  • Kunnert, B., and Krug, H., 1971, Composition of cholesterol esters in fatty streaks atherosclerotic plaques of the human aorta. Chromatographic investigations, Atherosclerosis 13:93–101.

    Article  PubMed  CAS  Google Scholar 

  • Lang, P. D., and Insull, W., Jr., 1970, Lipid droplets in atherosclerotic fatty streaks of human aorta, 1970, J. Clin. Invest. 49:1479–1488.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D. M., and Singh, S., 1988, Degradation of apolipoprotein B-100 in human chylomicrons, Biochim. Biophys. Acta 960:148–156.

    Article  PubMed  CAS  Google Scholar 

  • Lesnik, P., Rouis, M., Skarlatos, S., Kruth, H. S., and Chapman, M. J., 1992, Uptake of exogenous free cholesterol induces upregulation of tissue factor expression in human monocyte-derived macrophages, Proc. Natl. Acad. Sci. USA 89:10370–10374.

    Article  PubMed  CAS  Google Scholar 

  • Linden, T., Wiklund, O., Fager, G., Olofsson, S.-O., and Bondjers, G., 1986, A new microimmuno assay for apolipoprotein B in arterial tissue. Studies on peroperative human biopsies, Atherosclerosis 62:227–237.

    Article  PubMed  CAS  Google Scholar 

  • Lindgren, F. T., 1975, Preparative ultracentrifugal laboratory procedure and suggestions for lipoprotein analysis, in: Analysis of Lipid and Lipoproteins (E. G. Perkin, ed.), pp. 205–224, American Oil Chemical Society, New York.

    Google Scholar 

  • Lopes-Virella, M. F., Griffith, R. L., Shunk, K. A., and Virella, G. T., 1991, Enhanced uptake and impaired intracellular metabolism of low density lipoprotein complexed with anti-low density lipoprotein antibodies, Arterioscl. Thromb. 11:1356–1367.

    Article  PubMed  CAS  Google Scholar 

  • Lundberg, B., 1985, Chemical composition and physical state of lipid deposits in atherosclerosis, Atherosclerosis 56:93–110.

    Article  PubMed  CAS  Google Scholar 

  • Lupu, F., Danaricu, I., and Simionescu, N., 1987, Development of intracellular lipid deposits in the lipid-laden cells of atherosclerotic lesions. A cytochemical and ultrastructural study, Atherosclerosis 61:121–142.

    Google Scholar 

  • Mahley, R. W., Innerarity, T. L., Weisgraber, K. H., and Oh, S. Y., 1979, Altered metabolism (in vivo and in vitro) of plasma lipoproteins after selective modification of lysine residues of the apoproteins, J. Clin. Invest. 64:743–750.

    Article  PubMed  CAS  Google Scholar 

  • Mahley, R. W., Weisgraber, K. H., Innerarity, T. L., and Rail, S. C., Jr., 1991, Genetic defects in lipoprotein metabolism. Elevation of atherogenic lipoproteins caused by impaired catabolism, Genetic Defects 265:78–83.

    CAS  Google Scholar 

  • Mamo, J. C. L., and Wheeler, J. R., 1994, Chylomicrons or their remnants penetrate rabbit thoracic aorta as efficiently as do smaller macromolecules, including low-density lipoprotein, high-density lipoprotein, and albumin, Coronary Artery Dis. 5:695–705.

    Article  CAS  Google Scholar 

  • Margolis, S., and Langdon, R. G., 1966, Studies on human serum β1-lipoprotein. III. Enzymatic modifications, J. Biol. Chem. 241:485–493.

    PubMed  CAS  Google Scholar 

  • Mawhinney, T. P., Augustyn, J. M., and Fritz, K. E., 1978, Glycosaminoglycan-lipoprotein complexes from aortas of hypercholesterolemic rabbits. Part l—Isolation and characterization, Atherosclerosis 31:155–167.

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn, M. E., and Loscalzo, J., 1988, Role of platelets in cholesteryl ester formation by U-937 cells, J. Clin. Invest. 81:62–68.

    Article  PubMed  CAS  Google Scholar 

  • McCandless, E. L., and Zilversmit, D. B., 1956, The effect of cholesterol on the turnover of lecithin, cephalin and sphingomyelin in the rabbit, Arch. Biochem. Biophys. 62:402–410.

    Article  PubMed  CAS  Google Scholar 

  • McGill, H. C., Geer, J. C., and Holman, R. L., 1957, Sites of vascular vulnerability in dogs demonstrated by Evans Blue, Arch. Pathol 64:303–311.

    CAS  Google Scholar 

  • Miyamoto, S., Akiyama, S., and Yamada, K. M., 1995, Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function, Science 267:883–885.

    Article  PubMed  CAS  Google Scholar 

  • Mora, R., Lupu, F., and Simionescu, N., 1987, Prelesional events in atherogenesis. Colocalization of apolipoprotein B, unesterified cholesterol and extracellular phospholipid liposomes in the aorta of hyperlipidemic rabbit, Atherosclerosis 67:143–154.

    Article  PubMed  CAS  Google Scholar 

  • Mora, R., Simionescu, M., and Simionescu, N., 1990, Purification and partial characterization of extracellular liposomes isolated from the hyperlipidemic rabbit aorta, J. Lipid Res. 31:1793–1807.

    PubMed  CAS  Google Scholar 

  • Morel, D. W., Hessler, J. R., and Chisolm, G. M., 1983, Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid, J. Lipid Res. 24:1070–1076.

    PubMed  CAS  Google Scholar 

  • Morganelli, P. M., Rogers, R. A., Kitzmiller, T. J., and Bergeron, A., 1995, Enhanced metabolism of LDL aggregates mediated by specific human monocyte IgG Fc receptors, J. Lipid Res. 36:714–724.

    PubMed  CAS  Google Scholar 

  • Morton, R. E., West, G. A., and Hoff, H. F., 1986, A low density lipoprotein-sized particle isolated from human atherosclerotic lesions is internalized by macrophages via a non-scavenger-receptor mechanism, J. Lipid Res. 27:1124–1134.

    PubMed  CAS  Google Scholar 

  • Moss, N. S., and Benditt, E. P., 1970, The ultrastructural of spontaneous and experimentally induced arterial lesions. III. The cholesterol-induced lesions and the effect of a cholesterol and oil diet on the preexisting spontaneous plaque in the chicken aorta, Lab. Invest. 23:521–535.

    PubMed  CAS  Google Scholar 

  • Mukhin, D. N., Chao, F.-F, and Kruth, H. S., 1995, Glycosphingolipid accumulation in the aortic wall is another feature of human atherosclerosis, Arterioscler. Thromb. Vase. Biol. 15:1607–1615.

    Article  CAS  Google Scholar 

  • Myers, J. N., Tabas, I., Jones, N. L., and Maxfield, F. R., 1993, β-very low density lipoprotein is sequestered in surface-connected tubules in mouse peritoneal macrophages, J. Cell Biol. 123:1389–1402.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, H., and Ohtsubo, K.-I., 1992, Ultrastructure appearance of atherosclerosis in human and experimentally-induced animal models, Electron Microsc. Rev. 5:129–170.

    Article  PubMed  CAS  Google Scholar 

  • Nakashima, Y., Matsushima, T., Takahara, K., Kuroiwa, A., and Nakamura, M., 1985, The analysis of lipids and glycosaminoglycans of low-density lipoprotein-glycosaminoglycans complexes isolated from normal, fatty streaks, and fibrous plaques of human aortic intima, Inter. Angiol. 4:487–493.

    CAS  Google Scholar 

  • Naseem, S. M., and Heald, F. P., 1987, Cytotoxicity of cholesterol oxides and their effects on cholesterol metabolism in cultured human aortic smooth muscle cells, Biochem. Int. 14:71–84.

    PubMed  CAS  Google Scholar 

  • Niehaus, C. E., Nicoll, A., Wootton, R., Williams, B., Lewis, J., Goltart, D. J., and Lewis, B., 1977, Influence of lipid concentrations and age on transfer of plasma lipoprotein into human arterial intima, Lancet 2:469–471.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, L. B., Nordestgaard, B. G., Stender, S., and Kjeldsen, K., 1992, Aortic permeability to LDL as a predictor of aortic cholesterol accumulation in cholesterol-fed rabbits, Arterioscl. Thromb. 12:1402–1409.

    Article  PubMed  CAS  Google Scholar 

  • Nievelstein, P. F. E. M., Fogelman, A. M., Mottino, G., and Frank, J. S., 1991, Lipid accumulation in rabbit aortic intima 2 hours after bolus infusion of low density lipoprotein. A deep-etch and im-munolocalization study of ultrarapidly frozen tissue, Arterioscl. Thromb. 11:1795–1805.

    Article  PubMed  CAS  Google Scholar 

  • Nistor, A., Bulla, A., Filip, D. A., and Radu, A., 1987, The hyperlipidemic hamster as a model of experimental atherosclerosis, Atherosclerosis 68:159–173.

    Article  PubMed  CAS  Google Scholar 

  • Nordestgaard, B. G., and Zilversmit, D. B., 1988, Large lipoproteins are excluded from the arterial wall in diabetic cholesterol-fed rabbits, J. Lipid Res. 29:1491–1500.

    PubMed  CAS  Google Scholar 

  • Nordestgaard, B. G., and Zilversmit, D. B., 1989, Comparison of arterial intimal clearances of LDL from diabetic and nondiabetic cholesterol-fed rabbits: differences in intimal clearance explained by size differences, Arteriosclerosis 9:176–183.

    Article  PubMed  CAS  Google Scholar 

  • Nordestgaard, B. G., Hjelms, E., Stender, S., and Kjeldsen, K., 1990, Different efflux pathways for high and low density lipoproteins from porcine aortic intima, Arteriosclerosis 10:477–485.

    Article  PubMed  CAS  Google Scholar 

  • Nordestgaard, B. G., Tybjaerg-Hansen, A., and Lewis, B., 1992, Influx of in vivo of low density, intermediate density, and very low density lipoproteins into aortic intimas of genetically hyperlipidemic rabbits: roles of plasma concentration, extent of aortic lesions, and lipoprotein particle size as determinants, Arterioscler. Thromb. 12:6–18.

    Article  PubMed  CAS  Google Scholar 

  • Okwu, A. K., Xu, X. X., Shiratori, Y., and Tabas, I., 1994, Regulation of the threshold for lipoprotein-induced acyl-CoAxholesterol O-acetyltransferase stimulation in macrophages by cellular sphingomyelin content, J. Lipid Res. 35:644–655.

    PubMed  CAS  Google Scholar 

  • Olsson, G., Wiklund, O., and Bondjers, G., 1995, Effects of injury on apo B kinetics and concentration in rabbit aorta, Arterioscl. Thromb. Vasc. Biol. 15:930–936.

    Article  PubMed  CAS  Google Scholar 

  • Orekhov, A. N., Tertov, V. V., Mukhin, D. N., Koteliansky, V. E., Glukhova, M. A., Khashimov, K. A., and Smirnov, V. N., 1987, Association of low-density lipoprotein with particulate connective tissue matrix components enhances cholesterol accumulation in cultured subendothelial cells of human aorta, Biochim. Biophys. Acta 928:251–258.

    Article  PubMed  CAS  Google Scholar 

  • Orekhov, A. N., Tertov, V. V., Mukhin, D. N., Koteliansky, V. E., Glukhova, M. A., Frid, M. G., Sukhova, G. K., Khashimov, K. A., and Smirnov, V. N., 1989, Insolubilization of low density lipoprotein induces cholesterol accumulation in cultured subendothelial cells of human aorta, Atherosclerosis 79:59–70.

    Article  PubMed  CAS  Google Scholar 

  • Orekhov, A. N., Tertov, V. V., and Mukhin, D. N., 1991a, Desialylated low density lipoprotein-naturally occurring modified lipoprotein with atherogenic potency, Atherosclerosis 86:153–161.

    Article  PubMed  CAS  Google Scholar 

  • Orekhov, A. N., Tertov, V. V., Kabakov, A. E., Adamova, I. Y., Pokrovsky, S. N., and Smirnov, V. N., 1991b, Autoantibodies against modified low density lipoprotein. Nonlipid factor of blood plasma that stimulates foam cell formation, Arterioscl. Thromb. 11:316–326.

    Article  PubMed  CAS  Google Scholar 

  • Orekhov, A. N., Tertov, V. V., Sobenin, I. A., Smimov, V. N., Via, D. P., Guevara, J., Gotto, A. M. Jr., and Morrisett, J. D., 1992, Sialic acid content of human low density lipoproteins affects their interaction with cell receptors and intracellular lipid accumulation, J. Lipid Res. 33:805–817.

    PubMed  CAS  Google Scholar 

  • Paananen, K., and Kovanen, P. T., 1994, Proteolysis and fusion of low density lipoprotein particles independently strengthen their binding to exocytosed mast cell granules, J. Biol. Chem. 269:2023–2031.

    PubMed  CAS  Google Scholar 

  • Paananen, K., Saarinen, J., Annila, A., and Kovanen, P. T., 1995, Proteolysis and fusion of low density lipoprotein particles strengthen their binding to human aortic proteoglycans, J. Biol. Chem. 270:12257–12262.

    Article  PubMed  CAS  Google Scholar 

  • Patsch, W., Patsch, J. R., and Gotto, A. M., Jr., 1989, The hyperlipoproteinemias, Hepatic Diseases 73:859–893.

    CAS  Google Scholar 

  • Peng, S.-K., Tham, P., Taylor, C. B., and Mikkelson, B., 1979, Cytotoxicity of oxidation derivatives of cholesterol on cultured aortic smooth muscle cells and their effect on cholesterol biosynthesis, Am. J. Clin. Nutr. 32:1033–1042.

    PubMed  CAS  Google Scholar 

  • Pepin, J. M., O’Neil, J. A., and Hoff, H. F., 1991, Quantification of apo[a] and apoB in human atherosclerotic lesions, J. Lipid Res. 32:317–327.

    PubMed  CAS  Google Scholar 

  • Pieters, M. N., Schouten, D., and Van Berkel, T. J. C., 1994, In vitro and in vivo evidence for the role of HDL in reverse cholesterol transport, Biochim. Biophys. Acta 1225:125–134.

    Article  PubMed  CAS  Google Scholar 

  • Piha, M., Lindstedt, L., and Kovanen, P. T., 1995, Fusion of proteolyzed low-density lipoprotein in the fluid phase: A novel mechanism generating atherogenic lipoprotein particles, Biochemistry 34:10120–10129.

    Article  PubMed  CAS  Google Scholar 

  • Rapp, J. H., Connor, W. E., Lin, D. S., Inahara, T., and Porter, J. M., 1983, Lipids of human atherosclerotic plaques and xanthomas: clues to the mechanism of plaque progression, J. Lipid Res. 24:1329–1335.

    PubMed  CAS  Google Scholar 

  • Rapp, J. H., Lespine, A., Hamilton, R. L., Colyvas, N., Chaumeton, A. H., Tweedie-Hardman, J., Kotite, L., Kunitake, S. T., Havel, R. J., and Kane, J. P., 1994, Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque, Arterioscl. Thromb. 14:1767–1774.

    Article  PubMed  CAS  Google Scholar 

  • Renshaw, P. F., Janoff, A. S., and Miller, K. W., 1983, On the nature of dilute aqueous cholesterol suspensions, J. Lipid Res. 24:47–51.

    PubMed  CAS  Google Scholar 

  • Ridgway, N. D., 1995, 25-Hydroxycholesterol stimulates sphingomyelin synthesis in Chinese hamster ovary cells, J. Lipid Res. 36:1345–1358.

    PubMed  CAS  Google Scholar 

  • Robenek, H., and Schmitz, G., 1988, Ca++ antagonists and ACAT inhibitors promote cholesterol efflux from macrophages by different mechanisms. II. Characterization of intracellular morphologic changes, Arteriosclerosis 8:57–67.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, A. B., Lees, A. M., Lees, R. S., Strauss, H. W., Fallon, J. T., Taveras, J., and Kopiwoda, S., 1983, Selective accumulation of low density lipoproteins in damaged arterial wall, J. Lipid Res. 24:1160–1167.

    PubMed  CAS  Google Scholar 

  • Robinson, K. A., and Apkarian, R. P., 1991, Ultrastructure of coronary arterial endothelium in atherosclerotic swine suggests lipid retro-endocytosis, Scanning Microsc. 5:533–539.

    PubMed  CAS  Google Scholar 

  • Rotheneder, M., and Kostner, G. M., 1986, Cholesterol esterification in mouse peritoneal macrophages in the presence of pathological human plasma lipoproteins, Biol. Chem. Hoppe Seyler 367:1219–1222.

    Article  PubMed  CAS  Google Scholar 

  • Rouis, M., Nigon, F., Lafuma, C., Hornebeck, W., and Chapman, M. J., 1990, Expression of elastase activity by human monocyte-macrophages is modulated by cellular cholesterol content, inflammatory mediators, and phorbol myristate acetate, Arteriosclerosis 10:246–255.

    Article  PubMed  CAS  Google Scholar 

  • Rouser, G., and Solomon, R. D., 1968, Changes in phospholipid composition of human aorta with age, Lipids 4:232–234.

    Article  Google Scholar 

  • Ryan, U. S., Maxwell, G., Olazabal, B., Hart, M., and Mayfield, L., 1986, Endothelial cell phagocytosis and activation, Fed. Proc. 45:101–108.

    PubMed  CAS  Google Scholar 

  • Sandberg, H., Bode, A. P., Dombrose, F. A., Hoechli, M., and Lentz, B. R., 1985, Expression of coagulant activity in human platelets: Release of membranous vesicles providing platelet factor 1 and platelet factor 3, Thromb. Res. 39:63–79.

    Article  PubMed  CAS  Google Scholar 

  • Sata, T., Havel, R. J., and Jones, A. L., 1972, Characterization of subfractions of triglyceride-rich lipoproteins separated by gel chromatography from blood plasma of normolipemic and hyper-lipemic humans, J. Lipid Res. 13:757–768.

    PubMed  CAS  Google Scholar 

  • Schechter, I., Fogelman, A. M., Haberland, M. E., Seager, J., Hokom, M., and Edwards, P. A., 1981, The metabolism of native and malondialdehyde-altered low density lipoproteins by human monocyte-macrophages, J. Lipid Res. 22:63–71.

    Google Scholar 

  • Scherphof, G., Morselt, H., Regts, J., and Wilschut, J. C., 1979, The involvement of the lipid phase transition in the plasma-induced dissolution of multilamellar phosphatidylcholine vesicles, Biochim. Biophys. Acta 556:196–207.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz, G., Robenek, H., Beuck, M., Krause, R., Schurek, A., and Niemann, R., 1988, Ca++ antagonists and ACAT inhibitors promote cholesterol efflux from macrophages by different mechanisms. I. Characterization of cellular lipid metabolism, Arteriosclerosis 8:46–56.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz, G., Beuck, M., Fischer, H., Nowicka, G., and Robenek, H., 1990, Regulation of phospholipid biosynthesis during cholesterol influx and high density lipoprotein-mediated cholesterol efflux in macrophages, J. Lipid Res. 31:1741–1752.

    PubMed  CAS  Google Scholar 

  • Schuff-Werner, P., Claus, G., Armstrong, V. W., Kostering, H., and Seidel, D., 1989, Enhanced proco-agulatory activity (PCA) of human monocytes/macrophages after in vitro stimulation with chemically modified LDL, Atherosclerosis 78:109–112.

    Article  PubMed  CAS  Google Scholar 

  • Schwenke, D. C., and Carew, T. E., 1989a, Initiation of atherosclerotic lesions in cholesterol-fed rabbits. I. Focal increases in arterial LDL concentration precede development of fatty streak lesions, Atherosclerosis 9:895–907.

    CAS  Google Scholar 

  • Schwenke, D. C., and Carew, T. E., 1989b, Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL vs. selective increases in LDL permeability in susceptible sites of arteries, Arteriosclerosis 9:908–918.

    Article  PubMed  CAS  Google Scholar 

  • Scott, R. F., Daoud, A. S., and Florentin, R. A., 1976, Animal models in atherosclerosis, in: Atherosclerosis in Primates (J. Strong, ed.), pp. 120–145, S. Karger, New York.

    Google Scholar 

  • Seth, S. K., and Newman, H. A. I., 1975, Sphingomyelin and other phospholipid metabolism in the rabbit atheromatous and normal aorta, Circ. Res. 36:294–299.

    Article  PubMed  CAS  Google Scholar 

  • Shaikh, M., Martini, S., Quiney, J. R., Baskerville, P., LaVille, A. E., Browse, N. L., Duffield, R., Turner, P. R., and Lewis, B., 1988, Modified plasma-derived lipoproteins in human atherosclerotic plaques, Atherosclerosis 69:165–172.

    Article  PubMed  CAS  Google Scholar 

  • Shimamoto, T., 1975, Hyperreactive arterial endothelial cells in atherogenesis and cyclic AMP phosphodiesterase inhibitor in prevention and treatment of atherosclerotic disorders, Jpn. Heart J. 16:76–97.

    Article  PubMed  CAS  Google Scholar 

  • Shimamoto, T., Hidaka, H., Moriya, K., Kobayashi, M., Takahashi, T., and Numano, F., 1976, Hyperreactive arterial endothelial cells: A clue for the treatment of atherosclerosis, Ann. N. Y. Acad. Sci. 275:266–285.

    Article  PubMed  CAS  Google Scholar 

  • Shio, H., Fowler, S., Bhuvaneswaran, C., and Morris, M. D., 1982, Lysosome lipid storage disorder in NCTR-BALB/c mice. II. Morphologic and cytochemical studies, Am. J. Pathol. 108:150–159.

    PubMed  CAS  Google Scholar 

  • Simionescu, N., 1988, Prelesional changes of arterial endothelium in hyperlipoproteinemic atherogenesis, in: Endothelial Cell Biology in Health and Disease (N. Simionescu and M. Simionescu, eds.), pp. 385–429, Springer Science+Business Media New York.

    Chapter  Google Scholar 

  • Simionescu, N., Vasile, E., Lupu, F., Popescu, G., Simionescu, M., 1986, Prelesional events in atherogenesis. Accumulation of extracellular cholesterol-rich liposomes in the arterial intima and cardiac valves of the hyperlipidemic rabbit, Am. J. Pathol. 123:109–125.

    PubMed  CAS  Google Scholar 

  • Simionescu, N., Sima, A., Dobrian, A., Tirziz, D., and Simionescu, M., 1993, Pathobiochemical changes of the arterial wall at the inception of atherosclerosis, Curr. Top. Pathol. 87:1–45.

    Article  PubMed  CAS  Google Scholar 

  • Skarlatos, S. I., Amende, L. M., Chao, F.-F., Blanchette-Mackie, E. J., Gamble, W., and Kruth, H. S., 1988, Biochemical characterization of isolated cholesterol-phospholipid particles continuously released from rat and human platelets after activation, Lab. Invest. 59:344–352.

    PubMed  CAS  Google Scholar 

  • Skarlatos, S. I., Dichek, H. L., Fojo, S. S., Brewer, H. B., and Kruth, H. S., 1993a, Absence of triglyceride accumulation in lipoprotein lipase-deficient human monocyte-macrophages incubated with human very low density lipoprotein, J. Clin. Endocrinol. Metab. 76:793–796.

    Article  PubMed  CAS  Google Scholar 

  • Skarlatos, S. I., Rouis, M., Chapman, M. J., and Kruth, H. S., 1993b, Heterogeneity of cellular cho-lesteryl ester accumulation by human monocyte-derived macrophages, Atherosclerosis 99:229–240.

    Article  PubMed  CAS  Google Scholar 

  • Slater, R. S., and Smith, E. B., 1972, The microdissection of large atherosclerotic plaques to give morphologically and topographically defined fractions for analysis. Part 2. Studies on “Nile Blue” cells, Atherosclerosis 15:57–69.

    Article  CAS  Google Scholar 

  • Small, D. M., 1988, Progression and regression of atherosclerotic lesions. Insights from lipid physical biochemistry, Arteriosclerosis 8:103–129.

    Article  PubMed  CAS  Google Scholar 

  • Small, D. M., and Shipley, G. G., 1974, Physical-chemical basis of lipid deposition in atherosclerosis. The physical state of the lipids helps to explain lipid deposition and lesion reversal in atherosclerosis, Science 185:222–229.

    Article  PubMed  CAS  Google Scholar 

  • Smith, E. B., 1974, The relationship between plasma and tissue lipids in human atherosclerosis, Adv. Lipid Res. 12: 1–49.

    PubMed  CAS  Google Scholar 

  • Smith, E. B., 1981, Relationship between lipids and atherosclerosis, in: Haemostasis and Thrombosis (A. L. Bloom, and D. P. Thomas, eds.), pp. 554–574, Churchill Livingstone, New York.

    Google Scholar 

  • Smith, E. B., 1990, Transport, interactions and retention of plasma proteins in the intima: the barrier function of the internal elastic lamina, Eur. Heart J. 11:72–81.

    PubMed  CAS  Google Scholar 

  • Smith, E. B., and Ashall, C., 1983, Low-density lipoprotein concentration in interstitial fluid from human atherosclerotic lesions. Relation to theories of endothelial damage and lipoprotein binding, Biochim. Biophys. Acta 754:249–257.

    Article  PubMed  CAS  Google Scholar 

  • Smith, E. B., and Cochran, S., 1990, Factors influencing the accumulation in fibrous plaques of lipid derived from low density lipoprotein. II. Preferential immobilization of lipoprotein (a) Lp(a), Atherosclerosis 84:173–181.

    Article  PubMed  CAS  Google Scholar 

  • Smith, E. B., and Slater, R., 1970, The chemical and immunological assay of low density lipoproteins extracted from human aortic intima, Atherosclerosis 11:417–438.

    Article  PubMed  CAS  Google Scholar 

  • Smith, E. B., and Slater, R. S., 1972, The microdissection of large atherosclerotic plaques to give morphologically and topographically defined fractions for analysis. Part I. The lipids in the isolated fractions, Atherosclerosis 15:37–56.

    Article  PubMed  CAS  Google Scholar 

  • Smith, E. B., and Slater, R., 1973, Relationship between plasma lipids and arterial tissue lipids, Nutr. Metabol 15:17–26.

    Article  CAS  Google Scholar 

  • Smith, E. B., and Staples, E. M., 1980, Distribution of plasma proteins across the human aortic wall. Barrier functions of endothelium and internal elastic lamina, Atherosclerosis 37:579–590.

    Article  PubMed  CAS  Google Scholar 

  • Smith, E. B., Evans, P. H., and Downham, M. D., 1967, Lipid in the aortic intima. The correlation of morphological and chemical characteristics, J. Atheroscl. Res. 7:171–186.

    Article  CAS  Google Scholar 

  • Smith, E. B., Slater, R. S., and Chu, P. K., 1968, The lipids in raised fatty and fibrous lesions in human aorta. Acomparison of the changes at different stages of development, J. Atheroscl. Res. 8:399–419.

    Article  CAS  Google Scholar 

  • Smith, E. B., Massie, I. B., and Alexander, K. M., 1976, The release of an immobilized lipoprotein fraction from atherosclerotic lesions by incubation with plasmin, Atherosclerosis 25:71–84.

    Article  PubMed  CAS  Google Scholar 

  • Smith, L. L., and Johnson, B. H., 1989, Biological activities of oxysterols, Free Radic. Biol. Med. 7:285–332.

    Article  PubMed  CAS  Google Scholar 

  • Spring, P. M., and Hoff, H. F., 1989, LDL accumulation in the grossly normal human iliac bifurcation and common iliac arteries, Exp. Mol. Pathol. 51:179–185.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan, S. R., Dolan, P., Radhakrishnamurthy, B., Pargaonkar, P. S., and Berenson, G. S., 1975, Lipoprotein-acid mucopolysaccharide complexes of human atherosclerotic lesions, Biochim. Biophys. Acta 388:58–70.

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan, S. R., Vijayagopal, P., Dalferes, E. R. Jr., Abbate, B., Radhakrishnamurthy, B., and Beren-son, G. S., 1986, Low density lipoprotein retention by aortic tissue. Contribution of extracellular matrix, Atherosclerosis 62:201–208.

    Article  PubMed  CAS  Google Scholar 

  • Stary, H. C., and Malinow, M. R., 1982, Ultrastructure of experimental coronary artery atherosclerosis in cynomolgus macaques. A comparison with the lesions of other primates, Atherosclerosis 43:151–175.

    Article  PubMed  CAS  Google Scholar 

  • Stehbens, W. E., and Ludatscher, R. M., 1983, The susceptibility of renal arterial forks in rabbits to dietary-induced lipid deposition, Pathology 15:475–485.

    Article  PubMed  CAS  Google Scholar 

  • Stein, O., and Stein, Y., 1980, Bovine aortic endothelial cells display macrophage-like properties towards acetylated [125I]-labelled low density lipoprotein, Biochim. Biophys. Acta 620: 631–635.

    Article  PubMed  CAS  Google Scholar 

  • Steinbrecher, U. P., and Lougheed, M., 1992, Scavenger receptor-independent stimulation of cholesterol esterification in macrophages by low density lipoprotein extracted from human aortic intima, Arterioscl. Thromb. 12:608–625.

    Article  PubMed  CAS  Google Scholar 

  • Stemerman, M. B., Morrel, E. M., Burke, K. R., Colton, C. K., Smith, K. A., and Lees, R. S., 1986, Local variation in arterial wall permeability to low density lipoprotein in normal rabbit aorta, Arteriosclerosis 6:64–69.

    Article  PubMed  CAS  Google Scholar 

  • Stender, S., and Hjelms, E., 1984, In vivo influx of free and esterified plasma cholesterol into human aortic tissue without atherosclerotic lesions, J. Clin. Invest. 74:1871–1881.

    Article  PubMed  CAS  Google Scholar 

  • Stender, S., and Hjelms, E., 1988, In vivo transfer of cholesterol ester from high and low density plasma lipoproteins into human aortic tissue, Arteriosclerosis 8:252–262.

    Article  PubMed  CAS  Google Scholar 

  • Stender, S., and Zilversmit, D. B., 1981, Transfer of plasma lipoprotein components and of plasma proteins into aortas of cholesterol-fed rabbits: molecular size as a determinant of plasma lipoprotein influx, Arteriosclerosis 1:38–49.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, G. T., 1961, Mesomorphic forms of lipid in the structure of normal and atheromatous tissues, J. Path. Bact. 81:385–393.

    Article  CAS  Google Scholar 

  • Suits, A. G., Chait, A., Aviram, M., and Heinecke, J. W., 1989, Phagocytosis of aggregated lipoprotein by macrophages: low density lipoprotein receptor-dependent foam-cell formation, Proc. Natl. Acad. Sci. USA 86:2713–2717.

    Article  PubMed  CAS  Google Scholar 

  • Tabas, I., Myers, J. N., Innerarity, T. L., Xu, X.-X., Arnold, K., Boyles, J., and Maxfield, F. R., 1991, The influence of particle size and multiple apoprotein E-receptor interactions on the endocytic targeting of VLDL in mouse peritoneal macrophages, J. Cell Biol. 115: 1547–1560.

    Article  PubMed  CAS  Google Scholar 

  • Tall, A. R., 1980, Studies on the transfer of phosphatidylcholine from unilamellar vesicles into plasma high density lipoproteins in the rat, J. Lipid Res. 21:354–363.

    PubMed  CAS  Google Scholar 

  • Tangirala, R. K., Jerome, W. G., Jones, N. L., Small, D. M., Johnson, W. J., Glick, J. M., Mahlberg, F. H., and Rothblat, G. H., 1994, Formation of cholesterol monohydrate crystals in macrophage-derived foam cells, J. Lipid Res. 35:93–104.

    PubMed  CAS  Google Scholar 

  • Tertov, V. V., Sobenin, I. A., Gabbasov, Z. A., Popov, E. G., and Orekhov, A. N., 1989, Lipoprotein aggregation as an essential condition of intracellular lipid accumulation caused by modified low density lipoprotein, Biochem. Biophys. Res. Commun. 163:489–494.

    Article  PubMed  CAS  Google Scholar 

  • Tertov, V. V., Orekhov, A. N., Kacharava, A. G., Sobenin, I. A., Perova, N. V., and Smirnov, V. N., 1990, Low density lipoprotein-containing circulating immune complexes and coronary atherosclerosis, Exp. Mol. Pathol. 52:300–308.

    Article  PubMed  CAS  Google Scholar 

  • Tertov, V. V., Orekhov, A. N., Sobenin, I. A., Gabbasov, Z. A., and others, 1992, Three types of naturally occurring modified lipoproteins induce intracellular lipid accumulation due to lipoprotein aggregation, Circ. Res. 71:218–228.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, T. E., and Tillack, T. W., 1985, Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Annu. Rev. Biophys. Biophys. Chem. 14:361–386.

    Article  PubMed  CAS  Google Scholar 

  • Tirziu, D., Dobrian, A., Tasca, C., Simionescu, M., and Simionescu, N., 1995, Intimal thickening of human aorta contain modified reassembled lipoproteins, Atherosclerosis 112:101–114.

    Article  PubMed  CAS  Google Scholar 

  • Toda, T., Leszczynski, D., McGibbon, W. H., and Kummerow, F. A., 1980, Coronary arterial lesions in sexually mature non-layers, layers, and roosters, Virchows Arch. A. 388:123–135.

    CAS  Google Scholar 

  • Trillo, A. A., and Prichard, R. W., 1979, Early endothelial changes in experimental primate atherosclerosis, Lab. Invest. 41:294–302.

    PubMed  CAS  Google Scholar 

  • Tucker, C. F., Catsulis, C., Strong, J. P., and Eggen, D. A., 1971, Regression of early cholesterol-induced aortic lesions in rhesus monkeys, Am. J. Pathol. 65:493–514.

    PubMed  CAS  Google Scholar 

  • Vanier, M. T., 1983, Biochemical studies in Niemann-pick disease. I. Major sphingolipids of liver and spleen, Biochim. Biophys. Acta 750:178–184.

    Article  PubMed  CAS  Google Scholar 

  • Vijayagopal, P., Srinivasan, S. R., Radhakrishnamurthy, B., and Berenson, G. S., 1992, Lipoprotein-proteoglycan complexes from atherosclerotic lesions promote cholesteryl ester accumulation in human monocytes/macrophages, Arterioscl. Thromb. 12:237–249.

    Article  PubMed  CAS  Google Scholar 

  • Vijayagopal, P., Srinivasan, S. R., Radhakrishnamurthy, B., and Berenson, G. S., 1993, Human monocyte-derived macrophages bind low-density-lipoprotein-proteoglycan complexes by a receptor different from the low-density-lipoprotein receptor, Biochem. J. 289:837–844.

    PubMed  CAS  Google Scholar 

  • Walton, K. W., and Morris, C. J., 1977, Studies on the passage of plasma proteins across arterial endothelium in relation to atherogenesis, Prog. Biochem. Pharmacol. 14:138–152.

    Google Scholar 

  • Walton, K. W., and Williamson, N., 1968, Histological and immunofluorescent studies on the evolution of the human atheromatous plaque, J. Atheroscl. Res. 8:599–624.

    Article  CAS  Google Scholar 

  • Watson, K. E., Bostrom, K., Ravindranath, R., Lam, T., Norton, B., and Demer, L. L., 1994, TGF-1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify, J. Clin. Invest. 93: 2106–2113.

    Article  PubMed  CAS  Google Scholar 

  • Weinbaum, S., and Chien, S., 1993, Lipid transport aspects of atherogenesis, J. Biomech. Eng. 115: 602–610.

    Article  PubMed  CAS  Google Scholar 

  • Werb, Z., and Cohn, Z. A., 1972, Cholesterol metabolism in the macrophage. 3. Ingestion and intracellular fate of cholesterol and cholesterol esters, J. Exp. Med. 135:21–44.

    Article  PubMed  CAS  Google Scholar 

  • Wiklund, O., Bjornheden, T., Olofsson, S.-O., and Bondjers, G., 1987, Influx and cellular degradation of low density lipoproteins in rabbit aorta determined in an in vitro perfusion system, Arteriosclerosis 7:565–571.

    Article  PubMed  CAS  Google Scholar 

  • Williams, K. J., and Tabas, I., 1995, The response-to-retention hypothesis of early atherogenesis, Arterioscl. Thromb. Vasc. Biol. 15:551–561.

    Article  PubMed  CAS  Google Scholar 

  • Windaus, A., 1910, Über den gehalt normaler und atheromatöser aorten an Cholesterin und Cholesterin und cholesterinestern, Hoppe-Seyl. Z. 67:174–176.

    Article  Google Scholar 

  • Wissler, R. W., 1994, New insights into the pathogenesis of atherosclerosis as revealed by PDAY, Atherosclerosis 108:S3–S20.

    Article  PubMed  Google Scholar 

  • Xu, X.-X., and Tabas, I., 1991, Sphingomyelin enhances low density lipoprotein uptake and ability to induce cholesteryl ester accumulation in macrophages, J. Biol. Chem. 266:24849–24858.

    PubMed  CAS  Google Scholar 

  • Yamada, T., Press, M., Vesselinovitch, D., and Wissler, R. W., 1988, Quantitative ultrastructural analysis of coronary atherosclerotic involvement in two macaque species, Exp. Mol. Pathol. 48:1–23.

    Article  PubMed  CAS  Google Scholar 

  • Ylä-Herttuala, S., Jaakkola, O., Ehnholm, C., Tikkanen, M. J., Solakivi, T., Sarkioja, T., and Nikkari, T., 1988, Characterization of two lipoproteins containing apolipoproteins B and E from lesion-free human aortic intima, J. Lipid Res. 29:563–572.

    PubMed  Google Scholar 

  • Ylä-Herttuala, S., Palinski, W., Rosenfeld, M. E., Parthasarathy, S., Carew, T. E., Butler, S., Witztum, J. L., and Steinberg, D., 1989, Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man, J. Clin. Invest. 84:1086–1095.

    Article  PubMed  Google Scholar 

  • Ylä-Herttuala, S., Palinski, W., Rosenfeld, M. E., Steinberg, D., and Witztum, J. L., 1990, Lipoproteins in normal and atherosclerotic aorta, Eur. Heart J. ll:Suppl. E, 88–99.

    Google Scholar 

  • Zilversmit, D. B., 1979, Atherogenesis: a postprandial phenomenon, Circulation 60:473–485.

    Article  PubMed  CAS  Google Scholar 

  • Zolfaghari, R., Harrison, E. H., Han, J. H., Rutter, W. J., and Fisher, E. A., 1992, Tissue and species differences in bile salt-dependent neutral cholesteryl ester hydrolase activity and gene expression, Arterioscler. Thromb. 12:295–301.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kruth, H.S. (1997). Cholesterol Deposition in Atherosclerotic Lesions. In: Bittman, R. (eds) Cholesterol. Subcellular Biochemistry, vol 28. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5901-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5901-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7707-8

  • Online ISBN: 978-1-4615-5901-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics