Skip to main content

Prelesional Changes of Arterial Endothelium in Hyperlipoproteinemic Atherogenesis

  • Chapter
Endothelial Cell Biology in Health and Disease

Abstract

A crucial issue in atherosclerosis research has been to identify the earliest lesion and thus to determine the factors and mechanisms which initiate the disease process. The most widely recognized early alteration is the appearance of fatty streaks the hallmark of which is the accumulation of intracellular and extracellular cholesterol. Very little is known about the subtle cellular and molecular changes of the vessel wall that predispose and precede the inception of an atherosclerotic plaque.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akimova, E. J., and Melgunov, V. I., 1984, Apolipoprotein B: Removal of lipids by sodium cholate and reassociation of a lipid-free apoprotein with dipalmitoyl phosphatidylcholine, Biochem. Int. 9:463–473.

    PubMed  CAS  Google Scholar 

  2. Badimon, J. J., Kottke, B. A., Chen, T. C., Chan, L., and Mao, S. J. T., 1986, Quantification and immunolocalization of apoprotein E in experimental atherosclerosis, Atherosclerosis 61:57–66

    Article  PubMed  CAS  Google Scholar 

  3. Baker, D. P., Van Lenten, B. J., Fogelman, A. M., Edwards, P. A., Kean, C., and Berliner, J. A., 1984, LDL, scavenger and (3-VLDL receptors on aortic endothelial cells, Arteriosclerosis 4:248–255.

    Article  PubMed  CAS  Google Scholar 

  4. Basu, S. K., Ho, Y. K., Brown, M. S., Bilheimer, D. W., Anderson, R. G. W., and Goldstein, J. L., 1982, Biochemical and genetic studies of the apoprotein E secreted by mouse macrophages and human monocytes, J. Biol. Chem. 257:9788–9795.

    PubMed  CAS  Google Scholar 

  5. Berberian, P. A., Jenison, M. W., and Roddick, V., 1985, Arterial prostaglandins and lysosomal function during atherogenesis. II. Isolated cells of diet-induced atherosclerotic aortas of rabbits, Exp. Mol. Pathol. 43:36–55.

    Article  PubMed  CAS  Google Scholar 

  6. Berliner, J. A., Territo, M., and Fogelman, A. M., 1984, Monocyte chemotactic factor produced by large vessel endothelial cells, Arteriosclerosis 4:524a.

    Google Scholar 

  7. Bocan, T. M. A., and Guyton, J. R., 1985, Human aortic fibrolipid lesions: Progenitor lesions for fibrous plaque, exhibiting early formation of the cholesterol-rich core, Am. J. Pathol. 120:193–206

    PubMed  CAS  Google Scholar 

  8. Bocan, T. M. A., Brown, S. A., Krohn, N. J., and Guyton, J. R., 1986, Human aortic fibrolipid lesions: Immunocytochemical localization of apolipoprotein A and B, Arteriosclerosis 6:557a.

    Google Scholar 

  9. Bocan, T. M. A., Schifani, T. A., and Guyton, J. R., 1986, Ultrastructure of the human aortic fibrolipid lesion: Formation of the atherosclerotic lipid-rich core, Am. J. Pathol. 123:413–424.

    PubMed  CAS  Google Scholar 

  10. Borsum, T., Henriksen, T., and Reisvaag, A., 1985, Oxidized low density lipoprotein can reduce the pinocytic activity in cultured human endothelial cells as measured by cellular uptake of [14C] sucrose, Atherosclerosis 58:81–96.

    Article  PubMed  CAS  Google Scholar 

  11. Camejo, G., Hurt, E., and Romano, M., 1985,Properties of lipoprotein complexes isolated by affinity chromatography from human aorta, Biomed. Biochim. Acta 44:389–401.

    PubMed  CAS  Google Scholar 

  12. Carew, T. E., Pittman, R. C., Marchaud, E. R., and Steinberg, D., 1984, Measurement in vivo of irreversible degradation of low density lipoprotein in the rabbit aorta, Arteriosclerosis 4:214–224.

    Article  PubMed  CAS  Google Scholar 

  13. Clevidence, B. A., Morton, R. E., West, G., Dusek, D. M., and Hoff, H., 1984, Cholesterol esterification in macrophages: Stimulation by lipoproteins containing apo B isolated from human aortas, Arteriosclerosis 4:196–207.

    Article  PubMed  CAS  Google Scholar 

  14. Coetzee, G. A., Stein, O., and Stein, Y., 1979, Uptake and degradation of low density lipoproteins (LDL) by confluent, contact-inhibited bovine and human endothelial cells exposed to physiological concentration of LDL, Atherosclerosis 33:425–431.

    Article  PubMed  CAS  Google Scholar 

  15. Daugherty, A., Lange, L. G., Sobel, B. E., and Schonfeld, G., 1985, Aortic accumulation and plasma clearance of (3-VLDL and HDL: Effects of diet-induced hypercholesterolemia in rabbits, J. Lipid Res. 26:955–963.

    PubMed  CAS  Google Scholar 

  16. DeLamatre, Y., Wolfhauer, G., Phillips, M. C., and Rothblat, G. H., 1986, Role of apolipoproteins in cellular cholesterol efflux, Biochim. Biophys. Acta 875:419–428.

    PubMed  CAS  Google Scholar 

  17. Deliconstantinos, G., Tsopanakis, C., Karayiannakos, P., and Skalkeas, G., 1986, Evidence for the existence of non-esterified cholesterol carried by albumin in rat serum, Atherosclerosis 61:67–75.

    Article  PubMed  CAS  Google Scholar 

  18. Desai, K. S., Gotlieb, A. I., and Steiner, G., 1985, Very low density lipoprotein binding to cultured aortic endothelium, Can. J. Physiol. Pharmacol. 63:809–815.

    Article  PubMed  CAS  Google Scholar 

  19. Driscoll, D. M., and Getz, G. S., 1984, Extrahepatic synthesis of apolipoprotein E, J. Lipid Res. 25:1368–1375.

    PubMed  CAS  Google Scholar 

  20. Elshourbagy, N. A., Liao, W. S., Mahley, R. W., and Taylor, J. M., 1985, Apolipoprotein E mRNA is abundant in the brain and adrenals as well as in the liver, and is present in other peripheral tissues of rats and marmosets, Proc. Natl. Acad. Sci. USA 82:203-207.

    Google Scholar 

  21. Eskenasy, M., Mora, M., and Simionescu, N., 1984, In vitro study of low density lipoproteincollagen interaction, Morphol. Embryol. 30:147–152.

    Google Scholar 

  22. Faggiotto, A., Ross, R., and Harker, L., 1984, Studies on hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation, Arteriosclerosis 4:323–340.

    Article  PubMed  CAS  Google Scholar 

  23. Faggiotto, A., and Ross, R., 1984, Studies on hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque, Arteriosclerosis 4:341–356.

    Article  PubMed  CAS  Google Scholar 

  24. Falcone, D. J., Mated, N., Shio, H., Minick, C. R., and Fowler, S. D., 1984, Lipoproteinheparin-fibronectin-denatured collagen complexes enhance cholesteryl ester accumulation in macrophages, J. Cell Biol. 99:1266-1274.

    Google Scholar 

  25. Feldman, D. L., Hoff, H. F., and Gerrity, R. G., 1982,Immunocytochemical localization of LDL in aortas of hyperlipemic swine, Fed. Proc. 41:321.

    Google Scholar 

  26. Fielding, C. J., 1984, The origin and properties of free cholesterol potential gradients in plasma, and their relation to atherogenesis, J. Lipid Res. 25:1624–1628.

    PubMed  CAS  Google Scholar 

  27. Fielding, P. E., Vlodansky, I., Gospodarowicz, D., and Fielding, C. J., 1979, Effect of contact inhibition on the regulation of cholesterol metabolism in cultured vascular endothelial cells, J. Biol. Chem. 254:749–755.

    PubMed  CAS  Google Scholar 

  28. Filip, D. A., Nistor, A., Bulla, A., Radu, A., Lupu, F., and Simionescu, M., 1987, Cellular events in the development of valvular atherosclerotic lesions induced by experimental hypercholesterolemia, Atherosclerosis 67:199–214.

    Article  PubMed  CAS  Google Scholar 

  29. Fischer, G. M., Cherian, K., and Swain, M. L., 1981, Increased synthesis of aortic collagen and elastin in experimental atherosclerosis, Atherosclerosis 39:463–467.

    Article  PubMed  CAS  Google Scholar 

  30. Gaffney, J., West, D., Arnold, F., Sattar, A., and Kumar, S., 1985, Differences in the uptake of modified low density lipoproteins by tissue cultured endothelial cells, J. Cell Sci. 79:317–325.

    PubMed  CAS  Google Scholar 

  31. Georgescu, L., Antohe, F., and Simionescu, N., 1986, The permeability of aortic endothelium to 125I-BSA in hyperlipidemic hamster: Effect of histamine and serotonin, Rev. Roum. Physiol. 23:221–225.

    CAS  Google Scholar 

  32. Gerrity, R. G., 1981, The role of the monocyte in atherogenesis. I. Transition of blood-borne monocytes into foam cells in fatty lesions, Am. J. Pathol. 103:181–190.

    PubMed  CAS  Google Scholar 

  33. Gerrity, R. G., Naito, H. K., Richardson, M., and Schwartz, C. J., 1979, Dietary induced atherogenesis in swine: Morphology of the intima in prelesional stages, Am. J. Pathol. 95:775–792.

    PubMed  CAS  Google Scholar 

  34. Gerrity, R. G., and Goss, J. A., 1983, A monocyte chemotactic factor from lesion prone areas of swine aorta, Circulation 68(Suppl. 3):301.

    Google Scholar 

  35. Gerrity, R. G., Goss, J. A., and Soby, L., 1985, Control of monocyte recruitment by chemotactic factor(s) in lesion-prone areas of swine aorta, Arteriosclerosis 5:55–66.

    Article  PubMed  CAS  Google Scholar 

  36. Ghinea, N., Leabu, M., Hasu, M., Muresan, V., Colceag, J., and Simionescu, N., 1987, Prelesional events in atherogenesis: Changes induced by hypercholesterolemia in the cell surface chemistry of arterial endothelium and blood monocytes in rabbit, J. Submicrosc. Cytol. 19:209–227.

    PubMed  CAS  Google Scholar 

  37. Ghitescu, L., Fixman, A., Simionescu, M., and Simionescu, N., 1986, Different mechanisms of serum albumin transcytosis in continuous endothelium of capillaries and large vessels, in: 4th Int. Symp. Biol. Vase. Endoth. Cell, Noordwijkerhout, Abstr. Vol., p. 131.

    Google Scholar 

  38. Goldstein, J. L., Basu, S. K., Brunschede, V. Y., and Brown, M. S., 1976, Release of low density lipoprotein from its cell surface receptor by sulfated glycosaminoglycans, Cell 7:85–95.

    Article  PubMed  CAS  Google Scholar 

  39. Goldstein, J. L., Hoff, H. F., Ho, Y. K., Basu, S. K., and Brown, M. S., 1981, Stimulation of cholesteryl ester synthesis in macrophages by extracts of atherosclerotic human aortas, and complexes of albumin/cholesterol esters, Arteriosclerosis 1:210–226.

    Article  PubMed  CAS  Google Scholar 

  40. Gordon, J. L., and Pearson, J. D., 1982, Response of endothelial cells to injury, in: Pathobiology of the Endothelial Cell (H.L. Nossel H.J. Vogel, eds.), Academic Press, New York, pp 443–454.

    Google Scholar 

  41. Gorog, P., and Born, G. V. R., 1982, Increased uptake of circulating low density lipoproteins and fibrinogen by arterial walls after removal of sialic acids from their endothelial surface, Br. J. Exp. Pathol. 63:447–451.

    PubMed  CAS  Google Scholar 

  42. Gorog, P., and Pearson, J. D., 1984, Surface determinants of low density lipoprotein uptake by endothelial cells, Atherosclerosis 53:21–29.

    Article  PubMed  CAS  Google Scholar 

  43. Grunwald, J., Hesz, A., Ronenek, H., Brucker, J., and Buddecke, E., 1985, Proliferation, morphology and low density lipoprotein metabolism of arterial endothelial cells cultured from normal and diabetic minipigs, Exp. Mol. Pathol. 42:60–70.

    Article  PubMed  CAS  Google Scholar 

  44. Guyton, J. R., Bocan, T. M. A., and Schifani, T. A., 1985, Quantitative ultrastructural analysis of perifibrous lipid and its association with elastin in non-atherosclerotic human aorta, Arteriosclerosis 5:644–652.

    Article  PubMed  CAS  Google Scholar 

  45. Hashida, R., Anamizu, C., Kimura, J., Ohkuma, S., Yoshida, Y., and Takano, T., 1986, Transcellular transport of lipoprotein through arterial endothelial cells in monolayer culture, Cell Struct. Funct. 11:31–42.

    Article  PubMed  CAS  Google Scholar 

  46. Henning, B., Shasby, D. M., and Spector, A. A., 1985, Exposure to fatty acid increases human low density lipoprotein transfer across cultured endothelial monolayers, Circ. Res. 57:776–780.

    Google Scholar 

  47. Henriksen, T., Mahoney, E. M., and Steinberg, D., 1982, Interactions of plasma lipoproteins with endothelial cells, Ann. N.Y. Acad. Sci. 401:102–116.

    Article  PubMed  CAS  Google Scholar 

  48. Hessler, J. R., Morel, D. W., Lewis, L. J., and Chisolm, G. M., 1983, Lipoprotein oxidation and lipoprotein-induced cytotoxicity, Arteriosclerosis 3:215–222.

    Article  PubMed  CAS  Google Scholar 

  49. Hoff, H. F., and Gaubatz, J. W., 1975, Ultrastructural localization of plasma lipoproteins in human intracranial arteries, Virchows Arch. A 369:111–121.

    CAS  Google Scholar 

  50. Hoff, H. F., Heideman, C. L., Jackson, R. L., Bayardo, R. J., Kim, H.-S., and Gotto, A. M., Jr., 1975, Localization of patterns of plasma apolipoproteins in human atherosclerotic lesions, Circ. Res. 37:72–79.

    PubMed  CAS  Google Scholar 

  51. Hoff, H. F., and Gaubatz, J. W., 1977, Ultrastructural localization of apolipoprotein B in human aortic and coronary atherosclerotic plaques, Exp. Mol. Pathol. 26:214.

    Article  PubMed  CAS  Google Scholar 

  52. Hoff, H. F., and Gaubatz, J. W., 1982, Isolation, purification, and characterization of a lipoprotein containing apo B from the human aorta, Atherosclerosis 42:273–297.

    Article  PubMed  CAS  Google Scholar 

  53. Hoff, H. F., and Morton, R. E., 1985,Lipoproteins containing apo B extracted from human aortas: Structure and function, Ann. N.Y. Acad. Sci. 454:183–194.

    Article  PubMed  CAS  Google Scholar 

  54. Hoff, H. F., Dusek, D. M., and Lynn, M. P., 1986, Spatial distribution and accumulation of low density lipoproteins in the abdominal aorta of swine: Determination by a novel electrotransfer procedure, Lab. Invest. 55:377–386.

    PubMed  CAS  Google Scholar 

  55. Hoff, H. F., and Wagner, W. D., 1986, Plasma low density lipoprotein accumulation in aortas of hypercholesterolemic swine correlates with modifications in aortic glycosaminoglycan composition, Atherosclerosis 61:231–236.

    Article  PubMed  CAS  Google Scholar 

  56. Hsu, M. J., and Juliano, R. L., 1982, Interactions of liposomes with the reticuloendothelial system. II. Nonspecific and receptor-mediated uptake of liposomes by mouse peritoneal macrophages, Biochim. Biophys. Acta 720:411–419.

    Article  PubMed  CAS  Google Scholar 

  57. Jackson, R. L., and Gotto, A. M., Jr., 1976, Hypothesis concerning membrane structure, cholesterol and atherosclerosis, Atheroscl. Rev. 1:1–21.

    Google Scholar 

  58. Jerome, W. G., and Lewis, J. C., 1984, Early atherogenesis in White Cornean pigeons. I. Leukocyte margination and endothelial alterations at the celiac bifurcation, Am. J. Pathol. 116:56–68

    PubMed  CAS  Google Scholar 

  59. Jerome, W. G., and Lewis, J. C., 1985, Early atherogenesis in White Cornean pigeons. II. Ultrastructural and cytochemical observations, Am. J. Pathol. 119:210–222.

    PubMed  CAS  Google Scholar 

  60. Joris, J., Zand, T., Nunnary, J. L., Krolikowski, F. J., and Majno, G., 1983, Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats, Am. J. Pathol. 113:341–358.

    PubMed  CAS  Google Scholar 

  61. Joris, J., Billingham, M. E., and Majno, G., 1984, Human coronary arteries: An ultrastructural search for the early changes of atherosclerosis, Fed. Proc. 43:710.

    Google Scholar 

  62. Kenagy, R., Bierman, E. L., Schwartz, S., and Albers, J. J., 1984, Metabolism of low density lipoprotein by bovine endothelial cells as a function of cell density, Arteriosclerosis 4:365–371.

    Article  PubMed  CAS  Google Scholar 

  63. Klimov, A. N., Popov, A. V., Nagornev, V. A., and Pleskov, V. M., 1985, Effect of high density lipoproteins on permeability of rabbit aorta to low density lipoproteins, Atherosclerosis 55:217–223.

    Article  PubMed  CAS  Google Scholar 

  64. Kruth, H. S., 1983, Filipin-positive, Oil red O-negative particles in atherosclerotic lesions induced by cholesterol feeding, Lab. Invest. 50:87–93.

    Google Scholar 

  65. Kruth, H. S., 1984, Histochemical detection of unesterified cholesterol within human atherosclerotic lesions using the fluorescent probe filipin, Atherosclerosis 51:281–292.

    Article  PubMed  CAS  Google Scholar 

  66. Kruth, H. S., and Fry, D. L., 1984, Histochemical detection and differentiation of free and esterified cholesterol in swine atherosclerosis using filipin, Exp. Mol. Pathol. 40:288–294.

    Article  PubMed  CAS  Google Scholar 

  67. Kurozumi, T., Imamura, T., Tanaka, K., Yae, Y., and Koga, S., 1984, Permeation and deposition of fibrinogen and low density lipoprotein in the aorta and cerebral artery of rabbit: Immunoelectron microscopic study, Br. J. Exp. Pathol. 65:355–364.

    PubMed  CAS  Google Scholar 

  68. Leabu, M., Ghinea, N., Muresan, V., Colceag, J., Hasu, M., and Simionescu, N., 1987, Cell surface chemistry of arterial endothelium and blood monocytes in the normolipidemic rabbit, J. Submicrosc. Cytol. 19:193–208.

    PubMed  CAS  Google Scholar 

  69. Lewis, J. C., Taylor, R. G., Jones, N. D., St. Clair, R. W., and Cornhill, J. F., 1982, Endothelial surface characteristics in pigeon coronary artery atherosclerosis. I. Cellular alterations during the initial stages of dietary cholesterol challenge, Lab. Invest. 46:123–138.

    PubMed  CAS  Google Scholar 

  70. Lin, C.-T., Xu, Y., Wu, J.-Y., and Chan, L., 1986, Immunoreaction apolipoprotein E is a widely distributed cellular protein: Immunohistochemical localization of apolipoprotein E in baboon tissues, J. Clin. Invest. 78:947–958.

    Article  PubMed  CAS  Google Scholar 

  71. Lundberg, B., 1985, Chemical composition and physical state of lipid deposits in atherosclerosis, Atherosclerosis 56:93–110.

    Article  PubMed  CAS  Google Scholar 

  72. Lupu, F., Danaricu, I., and Simionescu, N., 1986, Endothelial cell-derived foam cells in experimental atherosclerosis: A physical, cytochemical,and ultrastructural study, in: 4th Int. Symp. Biol. Vase. Endoth. Cell, Noordwijkerhout, Abstr. Vol., p. 124.

    Google Scholar 

  73. Lupu, F., Danaricu, I., and Simionescu, N., 1987, The development of intracellular lipid deposits in the lipid-laden cells of the atherosclerotic lesions: A cytochemical and ultrastructural study, Atherosclerosis 67:127–142.

    Article  PubMed  CAS  Google Scholar 

  74. Mahley, R. W., 1983, Development of accelerated atherosclerosis: Concepts derived from cell biology and animal model studies, Arch. Pathol. Lab. Med. 107:393–399.

    PubMed  CAS  Google Scholar 

  75. Mahley, R. W., Innenarity, T. L., Weisgraber, K. H., and Oh, S. Y., 1979, Altered metabolism (in vivo and in vitro) of plasma lipoproteins after selective chemical modifications of lysine residues of the apoproteins, J. Clin. Invest. 64:743–750.

    Article  PubMed  CAS  Google Scholar 

  76. Mahley, R. W., Weisgraber, K. H., Melchior, G. W., Innenarity, T. L., and Hollcombe, K. S., 1980, Inhibition of receptor-mediated clearance of lysine and arginine-modified lipoproteins from the plasma of rats and monkeys, Proc. Natl. Acad. Sci. USA 77:225-229.

    Google Scholar 

  77. Mahley, R. W., Innenarity, T. L., Brown, M. S., Ho, Y. K., and Goldstein, J. L., 1980, Cholesteryl ester synthesis in macrophages: Stimulation by beta-very low density lipoproteins from cholesterol-fed animals of several species, J. Lipid Res. 21:970–980.

    PubMed  CAS  Google Scholar 

  78. Majno, G., Joris, J., and Zand, T., 1985, Atherosclerosis: New horizons, Hum. Pathol. 16:3–5.

    Article  PubMed  CAS  Google Scholar 

  79. Mazzone, T., Jensen, M., and Chait, A., 1983, Human arterial wall cells secrete factors that are chemotactic for monocytes, Proc. Natl. Acad. Sci. USA 80:5094-5097.

    Google Scholar 

  80. Modrak, J. B., and Langner, L. O., 1980, Possible relationship of cholesterol accumulation and collagen synthesis in rabbit aortic tissues, Atherosclerosis 37:211–218.

    Article  PubMed  CAS  Google Scholar 

  81. Mommaas-Kienhuis, A. M., Krijbolder, L. H., Van Hinsbergh, V. W., Daems, V. T., and Vermeer, B. J., 1985, Visualization of binding and receptor-mediated uptake of low density lipoproteins by human endothelial cells, Eur. J. Cell Biol. 36:201–208.

    PubMed  CAS  Google Scholar 

  82. Mora, R., Lupu, F., and Simionescu, N., 1986, Prelesional events in atherogenesis: Colocalization of apoprotein B, unesterified cholesterol and extracellular phospholipid liposomes in lesion-prone areas of aortic intima in hyperlipidemic rabbit, J. Cell Biol. 103(Part 2): 197a (abstract).

    Google Scholar 

  83. Mora, R., Eskenazy, M., Hillebrand, A., and Simionescu, N., 1986, Immunocytochemical localization of apolipoprotein B in the aorta during prelesional stages of hyperlipidemia, Acta Biol. Hung. 37(Suppl.):253.

    Google Scholar 

  84. Mora, R., Lupu, F., and Simionescu, M., 1987, Prelesional events in atherogenesis: Colocalization of apolipoprotein B, unesterified cholesterol and extracellular phospholipid liposomes in the aorta of hyperlipidemic rabbit, Atherosclerosis 67:143–154.

    Article  PubMed  CAS  Google Scholar 

  85. Morel, D. W., Di Corleto, P. E., and Chisohu, G. M., 1984, Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation, Arteriosclerosis 4:357–364.

    Article  PubMed  CAS  Google Scholar 

  86. Murase, T., Oka, T., Yamada, N., Mori, N., Ishibashi, S., Takaku, F., and Mori, W., 1986, Immunohistochemical localization of apolipoprotein E in atherosclerotic lesions of the aorta and coronary arteries,Atherosclerosis 60:1–6.

    Article  PubMed  CAS  Google Scholar 

  87. Noma, A., Takabashi, T., and Wada, T., 1981, Elastin-lipid interaction in the arterial wall, Atherosclerosis 38:373–382.

    Article  PubMed  CAS  Google Scholar 

  88. Navab, M., Hough, G. P., Berliner, J. A., Frank, J. A., Fogelman, A. M., Haberland, M. E., and Edwards, P. A., 1986, Rabbit beta-migrating very low density lipoprotein increases endothelial macromolecular transport without altering electrical resistance, J. Clin. Invest. 78:389–397.

    Article  PubMed  CAS  Google Scholar 

  89. Navab, M., Hough, G. P., Fogelman, A. M., Berliner, J. A., Haberland, M. E., and Edwards, P. A., 1986, Transport of low density lipoprotein across monolayers of human aortic endothelial cells co-cultured with human aortic smooth muscle cells, Arteriosclerosis 6:524a.

    Google Scholar 

  90. Nicoll, A., Duffleld, R., and Lewis, B., 1981, Flux of plasma lipoproteins into human arterial intima: Comparison between grossly normal and atheromatous intima, Atherosclerosis 39:229–242.

    Article  PubMed  CAS  Google Scholar 

  91. Nistor, A., Bulla, A., Filip, D. A., and Radu, A., 1987, The hyperlipidemic hamster as a model of experimental atherosclerosis, Atherosclerosis 68:159–173.

    Article  PubMed  CAS  Google Scholar 

  92. Quinn, M. T., Parthasarathy, S., and Steinberg, D., 1985, Endothelial cell-derived chemotactic activity for mouse peritoneal macrophages and the effects of modified forms of low density lipoprotein, Proc. Natl. Acad. Sci. USA 82:5949-5953.

    Google Scholar 

  93. Parthasarathy, S., Steinbrecher, V. P., Barnett, J., Witztum, J. L., and Steinberg, D., 1985, Essential role of phospholipase A activity in endothelial cell-induced modification of low density lipoprotein, Proc. Natl. Acad. Sci. USA 82:3000-3004.

    Google Scholar 

  94. Pitas, R. E., Innerarity, T. L., and Mahley, R. W., 1983, Foam cells in explants of atherosclerotic rabbit aortas have receptors for beta-very low density lipoproteins and modified low density lipoproteins, Arteriosclerosis 3:2–12.

    Article  PubMed  CAS  Google Scholar 

  95. Rapp, J. H., Connor, W. E., Lin, D. S., Inahara, T., and Porter, J. M., 1983, Lipids of human atherosclerotic plaques and xanthomas: Clues to the mechanism of plaque progression, J. Lipid Res. 24:1329–1335.

    PubMed  CAS  Google Scholar 

  96. Reichel, D., Myant, N. B., Rudra, D. N., and Pflug, J. J., 1980, Evidence for the presence of tissue free cholesterol in low density and high density lipoprotein of human peripheral lymph, Atherosclerosis 37:489–495.

    Article  Google Scholar 

  97. Reidy, M. A., 1985, A reassessment of endothelial injury and arterial lesion formation, Lab. Invest. 53:513–520.

    PubMed  CAS  Google Scholar 

  98. Ross, R., 1986, The pathogenesis of atherosclerosis—An update, N. Engl. J. Med. 314:488–500.

    Article  PubMed  CAS  Google Scholar 

  99. Rudel, L. L., Bond, M. G., and Bullock, B. C., 1985, LDL heterogeneity and atherosclerosisin nonhuman primates,Ann. N.Y. Acad. Sci. 454:248–253.

    Article  PubMed  CAS  Google Scholar 

  100. Rudel, L. L., Parks, J. S., Johnson, F. L., and Babiak, J., 1986, Low density lipoproteins in atherosclerosis, J. Lipid Res. 27:465–474.

    PubMed  CAS  Google Scholar 

  101. Salisbury, B. G., Falcone, D. J., and Minick, C. R., 1985, Insoluble low density lipoproteinproteoglycan complexes enhance cholesteryl ester accumulation in macrophages, Am. J. Pathol. 120:6–11.

    PubMed  CAS  Google Scholar 

  102. Sanan, D. A., Strumfer, A. E. M., van der Westhuyzen, D. R., and Coetzee, G. A., 1985, Native and acetylated low density lipoprotein metabolism in proliferating and quiescent bovine endothelial cells in culture, Eur. J. Cell Biol. 36:81–90.

    PubMed  CAS  Google Scholar 

  103. Schwendener, R. A., Lagocki, P. A., and Rahman, Y. E., 1984, The effect of charge and size on the interaction of unilamellar liposomes with macrophages, Biochim. Biophys. Acta 772:93–101.

    Article  PubMed  CAS  Google Scholar 

  104. Schwenke, D. C., and Carew, T. E., 1986, Enhanced LDL content and degradation near the branch orifices of normal rabbit aorta, Arteriosclerosis 6:527a.

    Google Scholar 

  105. Schwenke, D. C., and Carew, T. E., 1986, LDL content and rate of LDL degradation near aortic branch orifices increase with cholesterol feeding, Arteriosclerosis 6:554a.

    Google Scholar 

  106. Scott, R. F., Kim, D. N., Schmee, J., and Thomas, W. A., 1986, Atherosclerotic lesions in coronary arteries of hyperlipidemic swine. Part 2. Endothelial cell kinetics and leukocyte adherence associated with early lesions, Atherosclerosis 62:1–10.

    Article  PubMed  CAS  Google Scholar 

  107. Scott, R. F., Reidy, M. A., Kim, D. N., Schmee, J., and Thomas, W. A., 1986, Intimal cell mass-derived atherosclerotic lesions in the abdominal aorta of hyperlipidemic swine. Part 2. Investigation of endothelial cell changes and leukocyte adherence associated with early smooth muscle cell proliferative activity, Atherosclerosis 62:27–38.

    Article  PubMed  CAS  Google Scholar 

  108. Schwartz, C. J., Sprague, E. A., Kelley, J. L., Valente, A. J., and Suenram, C. A., 1985, Aortic intimal monocyte recruitment in the normo and hypercholesterolemic baboon (Papio cynocephalus), Virchows Arch. A 405:175–191.

    Article  CAS  Google Scholar 

  109. Shio, H., Haley, N. J., and Fowler, S., 1979, Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. III. Intracellular localization of cholesterol and cholesteryl esters, Lab. Invest. 41:160–167.

    PubMed  CAS  Google Scholar 

  110. Simionescu, M., Ghitescu, L., Fixman, A., and Simionescu, N., 1986, Receptor-mediated transcytosis of albumin in vascular endothelium, Acta Biol. Hung. 37(Suppl.):104.

    Google Scholar 

  111. Simionescu, M., and Simionescu, N., 1986, Receptor-mediated transcytosis of plasma molecules by vascular endothelium, in:4th Int. Symp. Biol. Vase. Endoth. Cell, Noordwijkerhout, Abstr. Vol. p. 21.

    Google Scholar 

  112. Simionescu, N., and Simionescu, M., 1976,Galloyl-glucose of low molecular weight as mordants in electron microscopy, J. Cell Biol. 70:608–621.

    Article  PubMed  CAS  Google Scholar 

  113. Simionescu, N., 1983, Cellular aspects of transcapillary exchange, Physiol. Rev. 63:1536–1579.

    PubMed  CAS  Google Scholar 

  114. Simionescu, N., and Simionescu, M., 1985, Interactions of endogenous lipoproteins with capillary endothelium in spontaneously hyperlipoproteinemic rats, Microvasc. Res. 30:314–332.

    Article  PubMed  CAS  Google Scholar 

  115. Simionescu, N., Vasile, E., Lupu, F., Popescu, G., and Simionescu, M., 1985, Accumulation of extracellular liposomes in the arterial intima as early change in experimental hyperlipidemia, J. Cell Biol. 101:113a.

    Google Scholar 

  116. Simionescu, N., and Simionescu, M., 1986, Biopathology of arterial intima in the prelesional stages of atherogenesis, in: XVIth Int. Congr. Acad. Pathol., Vienne, Abstr. Vol., p. 4.

    Google Scholar 

  117. Simionescu, N., Lupu, F., Vasile, E., Popescu, G., and Simionescu, M., 1986, Early changes of arterial wall in experimental hypercholesterolemia, in: Hleme Congr. Entente Med. Mediterr., Palermo, Abstr. Vol. p. 5.

    Google Scholar 

  118. Simionescu, N., and Simionescu, M., 1986, Pathophysiological aspects of vascular endothelium in atherogenesis, Biol. Chem. Hoppe-Seyler 367(Suppl.):104.

    Google Scholar 

  119. Simionescu, N., Vasile, E., Lupu, F., Popescu, G., and Simionescu, M., 1986, Prelesional events in atherogenesis: Accumulation of extracellular cholesterol-rich liposomes in the arterial intima and cardiac valves of the hyperlipidemic rabbit, Am. J. Pathol. 123:109–125.

    PubMed  CAS  Google Scholar 

  120. Slater, H. R., Shepherd, J., and Packard, C. J., 1982, Receptor-mediated catabolism and tissue uptake of human low density lipoprotein in the cholesterol-fed atherosclerotic rabbit, Biochim. Biophys. Acta 713:435–445.

    PubMed  CAS  Google Scholar 

  121. Small, D. M., and Shipley, G. G., 1974, Physical chemical basis of lipid deposition in atherosclerosis, Science 185:129–177.

    Article  Google Scholar 

  122. Smith, E. B., and Staples, E. M., 1980, Distribution of plasma proteins across the human aortic wall: Barrier functions of endothelium and internal elastic lamina, Atherosclerosis 37:579–590.

    Article  PubMed  CAS  Google Scholar 

  123. Smith, E. B., and Staples, E. M., 1982, Plasma protein concentrations in interstitial fluid from human aortas, Proc. R. Soc. London B Ser. 217:59–75.

    Article  CAS  Google Scholar 

  124. Smith, E. B., and Ashall, C., 1983, Low density lipoprotein concentration in interstitial fluid from human atherosclerotic lesions: Relation to theories of endothelial damage and lipoprotein binding, Biochim. Biophys. Acta 754:249–257.

    PubMed  CAS  Google Scholar 

  125. Spector, A. A., Scanu, A. M., Kaduce, T. L., Figard, P. H., Fless, G. M., and Czervionke, R. L., 1985, Effect of human piasma lipoproteins on prostacyclin production by cultured endothelial cells, J. Lipid Res. 26:288–297.

    PubMed  CAS  Google Scholar 

  126. Srinivasan, S. R., Jost, C., Radhakrishnamurthy, B., Dalferes, E. R., Jr., and Berenson, G. S., 1981, Lipoprotein-elastin interactions in human aorta fibrous plaque lesions, Atherosclerosis 38:137–147.

    Article  PubMed  CAS  Google Scholar 

  127. Srinivasan, S. R., Vijayagopal, P., Dalferes, E. R., Jr., Abbate, B., Radhakrishnamurthy, B., and Berenson, G. S., 1984, Dynamics of lipoprotein-glycosaminoglycan interactions in the atherosclerotic rabbit aorta in vivo, Biochim. Biophys. Acta 793:157–168.

    PubMed  CAS  Google Scholar 

  128. St. Clair, R. W., Randolph, R. K., Jokinen, M. P., Clarkson, T. B., and Barakat, H. A., 1986, Relationship of plasma lipoproteins and the monocyte-macrophage system to atherosclerosis severity in cholesterol-fed pigeons, Arteriosclerosis 6:614–626.

    Article  PubMed  CAS  Google Scholar 

  129. Stein, O., Halpern, G., and Stein, Y., 1986, Cholesteryl ester efflux from extracellular and cellular elements of the arterial wall: Model systems in culture with cholesteryl linoleyl ether, Arteriosclerosis 6:70–78.

    Article  PubMed  CAS  Google Scholar 

  130. Steinberg, D., 1983, Lipoproteins and atherosclerosis: A look back and a look ahead, Arteriosclerosis 3:283–301.

    Article  PubMed  CAS  Google Scholar 

  131. Steinberg, D., Pittman, R. C., and Carew, T. E., 1985, Mechanisms involved in the uptake and degradation of low density lipoprotein by the artery wall in vivo, Ann. N. Y. Acad. Sci. 454:195–206

    Article  PubMed  CAS  Google Scholar 

  132. Steinbrecher, U. P., Parthasarathy, S., Leake, D. S., Witztum, J. L., and Steinberg, D., 1984, Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids, Proc. Natl. Acad. Sci. USA 81:3883-3887.

    Google Scholar 

  133. Stemerman, M. B., 1981, Effect of moderate hypercholesterolemia on rabbit endothelium, Arteriosclerosis 1:25–32.

    Article  PubMed  CAS  Google Scholar 

  134. Stemerman, M. B., Morrel, E. M., Burke, K. R., Colton, C. K., Smith, K. A., and Lees, R. S., 1986, Local variation in artery wall permeability to low density lipoprotein in normal rabbit aorta, Arteriosclerosis 6:64–69.

    Article  PubMed  CAS  Google Scholar 

  135. Stender, S., and Zilversmit, D. B., 1981, Transfer of plasma lipoprotein components and of plasma proteins into aortas of cholesterol-fed rabbits, Arteriosclerosis 2:115–124.

    Google Scholar 

  136. Stender, S., 1982, The in vivo transfer of free and esterifled cholesterol from plasma into the arterial wall of hypercholesterolemic rabbits, Scand. J. Clin. Lab. Invest. 42(Suppl. 161):43–52.

    CAS  Google Scholar 

  137. Stender, S., and Hjelms, E., 1984, In vivo influx of free and esterified plasma cholesterol into human aortic tissue without atherosclerotic lesions,J. Clin. Invest. 74:1871–1881.

    Article  PubMed  CAS  Google Scholar 

  138. Taylor, R. G., and Lewis, J. C., 1986, Endothelial cell proliferation and monocyte adhesion to atherosclerotic lesions in White Carnean pigeons, Am. J. Pathol. 125:152–160.

    PubMed  CAS  Google Scholar 

  139. Territo, M., Berliner, J. A., and Fogelman, A. M., 1984, Effect of monocyte migration on low density lipoprotein transport across aortic endothelial cell monolayers, J. Clin. Invest. 74:2279–2284.

    Article  PubMed  CAS  Google Scholar 

  140. Trillo, A. A., and Prichard, R. W., 1979, Early endothelial changes in experimental primate atherosclerosis, Lab. Invest. 41:294.

    PubMed  CAS  Google Scholar 

  141. Tsukada, T., Rosenfeld, M., Ross, R., and Gown, A. M., 1986, Immunocytochemical analysis of cellular components in atherosclerotic lesions: Use of monoclonal antibodies with the Watanabe and fat-fed rabbit, Arteriosclerosis 6:601–613.

    Article  PubMed  CAS  Google Scholar 

  142. Van Hinsbergh, V. W. M., Scheffer, M., Havekes, L., and Kempen, H. J. M., 1986, Role of endothelial cells and their products in the modification of low density lipoproteins, Biochim. Biophys. Acta 878:49–64.

    PubMed  Google Scholar 

  143. Vasile, E., Nistor, A., Nedelcu, S., Simionescu, M., and Simionescu, N., 1980, Dual pathway of low density lipoprotein transport through aortic endothelium and vasa vasorum, in situ,Eur. J. Cell Biol. 22:181.

    Google Scholar 

  144. Vasile, E., Simionescu, M., and Simionescu, N., 1983, Visualization of the binding, endocytosis and transcytosis of low density lipoproteins in the arterial endothelium in situ, J. Cell Biol. 96:1677–1689.

    Article  PubMed  CAS  Google Scholar 

  145. Vasile, E., and Simionescu, N., 1985, Transcytosis of low density lipoprotein through vascular endothelium, in: Glomerular Dysfunction and Biopathology of Vascular Wall (E. Seno, A.L. Copley, M.A. Ventkatachalam, Y. Hamashida, T. Tsujii), Academic Press, New York, pp 87–102.

    Google Scholar 

  146. Vasile, E., Popescu, G., Simionescu, M., and Simionescu, N., 1986, Interaction of low density lipoprotein and beta-very low density lipoprotein with the arterial endothelium in normal and hypercholesterolemic animals, in: 4th Int. Symp. Biol. Vase. Endoth. Cell, Noordwijkerhout, Abstr. Vol., p. 123.

    Google Scholar 

  147. Vasile, E., Popescu, G., Simionescu, M., and Simionescu, N., 1986, Enhanced transcytosis and accumulation of beta-very low density lipoproteins in the aorta of rabbits with experimental hyperlipidemia, in: XVIth Int. Congr. Int. Acad. Pathol., Vienna, Abstr. Vol., p. 68.

    Google Scholar 

  148. Wagner, W. D., 1985, Proteoglycan structure and function as related to atherosclerosis,Ann. N.Y. Acad. Sci. 454:52–68.

    Article  PubMed  CAS  Google Scholar 

  149. Wagner, W. D., Salisbury, B. G. J., and Rowe, H. A., 1986, A proposed structure of chondroitin-6-sulfate proteoglycan of human normal and adjacent atherosclerotic plaque, Arteriosclerosis 6:407–414.

    Article  PubMed  CAS  Google Scholar 

  150. Wallis, W. J., Beatty, P. G., Ochs, H. D., and Harlan, J. M., 1985, Human monocyte adherence to cultured vascular endothelium: Monoclonal antibody-defined mechanisms, J. Immunol. 135:2323–2330.

    PubMed  CAS  Google Scholar 

  151. Walton, K. W., and Morris, C. J., 1977, Studies on the passage of plasma proteins across arterial endothelium in relation to atherogenesis, Prog. Biochem. Pharmacol. 14:138–152.

    Google Scholar 

  152. Watanabe, T., Hirata, M., Yoshikawa, Y., Nagazuchi, Y., Toyoshima, H., and Watanabe, T., 1985, Role of macrophages in atherosclerosis: Sequential observations of cholesterol-induced rabbit aortic lesions by the immunoperoxidase technique using monoclonal antimacrophage antibody, Lab. Invest. 53:80–90.

    PubMed  CAS  Google Scholar 

  153. Weber, G., Fabbrini, P., and Resi, L., 1973, On the presence of a concanavalin A-reactive coat over the endothelial aortic surface and its modifications during early experimental cholesterol atherogenesis in rabbits, Virchows Arch. A 359:299–307.

    Article  CAS  Google Scholar 

  154. Weisgraber, K. H., Innenarity, T. L., and Mahley, R. W., 1978, Role of the lysine residues of plasma lipoproteins in high affinity binding to cell surface receptors on human fibroblasts, J. Biol. Chem. 253:9053–9062.

    PubMed  CAS  Google Scholar 

  155. Werb, Z., and Chin, J. R., 1983, Apoprotein E is synthesized and secreted by resident and thioglycolate-elicited macrophages but not by pyran copolymer or bacillus Calmette-Guerinactivated macrophages, J. Exp. Med. 158:1272–1284.

    Article  PubMed  CAS  Google Scholar 

  156. Wiklund, O., Carew, T. E., and Steinberg, D., 1985, Role of the low density lipoprotein receptor in penetration of low density lipoprotein into rabbit aortic wall, Arteriosclerosis 5:135–141.

    Article  PubMed  CAS  Google Scholar 

  157. Williams, K. J., Tall, A., and Bisgaier, C., 1986, Phospholipid liposomes acquire apo E in atherogenic plasma and inhibit cholesterol loading of macrophages, Arteriosclerosis 6:538a.

    Google Scholar 

  158. Williams, R. D., Sgontas, D. S., and Zaatari, G. S., 1986, Enzymology of long-chain base synthesis by aorta: Induction of serine palmitoyltransferase activity in rabbit aorta during atherogenesis, J. Lipid Res. 27:763770.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Simionescu, N. (1988). Prelesional Changes of Arterial Endothelium in Hyperlipoproteinemic Atherogenesis. In: Simionescu, N., Simionescu, M. (eds) Endothelial Cell Biology in Health and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0937-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0937-6_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8254-9

  • Online ISBN: 978-1-4613-0937-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics