Skip to main content

Expression of Chimeric Human Aspartic Proteinases

  • Chapter
Aspartic Proteinases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 436))

  • 214 Accesses

Abstract

The aspartic proteinases form a gene family whose sequences and three-dimensional structures are strongly conserved. These monomeric proteases are initially translated as prepro- precursors into the lumen of the endoplasmic reticulum (ER), whence they are post-translationally modified and sorted. We have studied three members of the gene family which are expressed in man. Procathepsin D carries N-linked oligosaccharides that are modified to contain mannose 6-phosphate residues. Mannose 6-phosphate receptors in the trans Golgi and on the plasma membrane bind and deliver the proenzyme to an acidic prelysosomal compartment and then recycle. Procathepsin D is processed to the mature enzyme and active at low pH (~4.5). Pepsinogen is the abundantly secreted precursor to gastric pepsin and is generally not glycosylated. Propeptide cleavage and activity occur extracellularly at acid pH (>3). Unlike cathepsin D and pepsin, renin shows exquisite specificity towards its physiologi-cal substrate, angiotensinogen, and is active at neutral pH in the circulation. Its glycosylation is variable, and cleavage of the propeptide takes place near neutrality at a paired basic residue site. These three aspartic proteinases share certain common features. Procathepsin D and pepsinogen are processed and active at acid pH. Procathepsin D and prorenin usually carry N-linked glycosylation sites. Procathepsin D is targeted to the lysosome, while pepsinogen and prorenin are sorted into secretory vesicles. Sorting into regulated secretory granules occurs in cells which express this specialized pathway.

We were interested in the practicality of expressing chimeras between the human proenzyme forms of cathepsin D, pepsin and renin. The studies were aimed at testing whether such chimeras would be successfully synthesized by transfected mammalian cells and whether they would be sorted through the ER-Golgi pathway and either secreted or targeted to lysosomes. Kornfeld and colleagues1 have pioneered the use of pepsinogen as a framework for the substitution of segments from procathepsin D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baranski, T.J., Faust, P.L., and Kornfeld, S. (1990). Generation of a lysosomal targeting signal in the secretory protein pepsinogen. Cell 63: 281–291.

    Article  PubMed  CAS  Google Scholar 

  2. Tang, J., and Wong, R.N.S. (1987). Evolution in the structure and function of aspartic proteases. J. Cell Biochem. 33: 53–63.

    Article  PubMed  CAS  Google Scholar 

  3. Davies, D.R. (1990). The structure and function of the aspartic proteinases. Annu. Rev. Biophys. Biophys. Chem. 19: 189–215.

    Article  PubMed  CAS  Google Scholar 

  4. James, M.N.G., and Sielecki, A.R. (1986). Molecular structure of an aspartic proteinase zymogen, porcine pepsinogen, at 1.8 Å resolution. Nature 319: 33–38.

    Article  PubMed  CAS  Google Scholar 

  5. Hartsuck, J.A., Koelsch, G., and Remington, S.J. (1992). The high-resolution crystal structure of porcine pepsinogen. Proteins: Struct. Funct. Genet. 13: 1–25.

    Article  CAS  Google Scholar 

  6. Baker, D., Shiau, A.K., and Agard, D.A. (1993). The role of pro regions in protein folding. Curr Opin. Cell Biol. 5: 966–970.

    Article  PubMed  CAS  Google Scholar 

  7. Mercure, C, Thibault, G., Lussier-Cacan, S., Davignon, J., Schiffrin, E.L., and Reudelhuber, T.L. (1995). Molecular analysis of human prorenin prosegment variants in vitro and in vivo. J. Biol. Chem. 270:16355–16359.

    Article  CAS  Google Scholar 

  8. Fortenberry, S.C., and Chirgwin, J.M. (1995). The propeptide is nonessential for the expression of cathepsin D. J. Biol. Chem. 270: 9778–9782.

    Article  PubMed  CAS  Google Scholar 

  9. Brechler, V., Chu, W.N., Baxter, J.O., Thibault, G., and Reudelhuber, TL. (1996). A protease processing site is essential for prorenin sorting to the regulated secretory pathway. J. Biol. Chem. 271: 20636–20640.

    Article  PubMed  CAS  Google Scholar 

  10. Klionsky, D., Banta, L., and Emr, S. (1988). Intracellular sorting and processing of a yeast vacuolar hydrolase: proteinase A propeptide contains vacuolar targeting information. Molec. Cell. Biol. 8: 2105–2116.

    PubMed  CAS  Google Scholar 

  11. Cooper, A.A., and Stevens, T.H. (1996). VpslOp cycles between the late-Golgi and prevacuolar compartments in its function as the sorting receptor for multiple yeast vacuolar hydrolases. J. Cell Biol. 133: 529–541.

    Article  PubMed  CAS  Google Scholar 

  12. Mclntyre, G.F., Godbold, G.D., and Erickson, A.H. (1994). The pH-dependent membrane association of procathepsin L is mediated by a 9-residue sequence within the propeptide. J. Biol. Chem. 269: 567–572.

    Google Scholar 

  13. Koelsch, G., Mares, M., Metcalf, P., and Fusek, M. (1994). Multiple functions of pro-parts of aspartic proteinase zymogens. FEBS Lett. 343: 6–10.

    Article  PubMed  CAS  Google Scholar 

  14. Nishimura, Y., Takeshima, H., Sakaguchi, M., Mihara, K., Omura, T., Kato, K., and Himeno, M. (1995). Expression of rat cathepsin D cDNA in Saccharomyces cerevisiae: implications for intracellular targeting of cathepsin D to vacuoles. J. Biochem. (Tokyo) 118: 168–177.

    PubMed  CAS  Google Scholar 

  15. Dustin, M.L., Baranski, T.J., Sampath, D„ and Kornfeld, S. (1995). A novel mutagenesis strategy identifies distantly spaced amino acid sequences that are required for phosphorylation of both the oligosaccharides of procathepsin D by N-acetyl glucosamine l-phosphotransferase. J. Biol. Chem. 270: 170–179.

    Article  PubMed  CAS  Google Scholar 

  16. Glickman, J.N., and Kornfeld, S. (1993). Mannose 6-phosphate-independent targeting of lysosomal enzymes in I-cell disease B lymphocytes. J. Cell Biol. 123: 99–108.

    Article  PubMed  CAS  Google Scholar 

  17. Schorey, J.S., Fortenberry, S.C., and Chirgwin, J.M. (1995). Lysine residues in the C-terminal lobe and lysosomal targeting of procathepsin D.J. Cell Sci. 108: 2007–2015.

    PubMed  CAS  Google Scholar 

  18. Barrett, A.J. (1977). Cathepsin D and other related carboxyl proteinases. In Proteinases in mammalian cells and tissues (ed. A.J. Barrett), pp. 209–248. Elsevier/North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  19. Andreeva, N.S., Zdanov, A.S., Gustchina, A.E., and Fedorov, A.A. (1984). Structure of the ethanol-inhibited porcine pepsin at 2-Å resolution and binding of the methyl ester of phenylalanyl-diiodotyrsoine to the enzyme. J. Biol. Chem. 259: 11353–11365.

    PubMed  CAS  Google Scholar 

  20. Šali, A., Veerapandian, B., Cooper, J.B., Moss, D.S., Hofmann, T., and Blundell, T.L. (1992). Domain flexibility in aspartic proteinases. Proteins: Struct. Funct. Genet. 12: 158–170.

    Article  Google Scholar 

  21. Sachdev, D., Schorey, J., and Chirgwin, J. (1991). Efficient mutagenesis, expression, and purification of procathepsin D. Advan. Exp. Med. Biol. 306: 335–338.

    Article  CAS  Google Scholar 

  22. Isidoro, C, Horst, M., Baccino, F., and Hasilik, A. (1991). Differential segregation of human and hamster cathepsin D in transfected baby-hamster kidney cells. Biochem. J. 273: 363–367.

    PubMed  CAS  Google Scholar 

  23. Lin, X., Koelsch, G., Loy, A.J., and Tang, J. (1995). Rearranging the domains of pepsinogen. Protein Sci. 4: 159–166.

    Article  PubMed  CAS  Google Scholar 

  24. Westphal, V., Marcuson, E.G., Winther, J.R., Emr, S.D., and van den Hazel, H.B. (1996). Multiple pathways for vacuolar sorting of yeast proteinase A. J. Biol. Chem. 271: 11865–11870.

    Article  PubMed  CAS  Google Scholar 

  25. Marciniszyn, J., Jr., Huang, J.S., Hartsuck, J.A., and Tang, J. (1976). Mechanism of intramolecular activetion of pepsinogen. J. Biol. Chem. 251: 7095–7102.

    PubMed  CAS  Google Scholar 

  26. Conner, G.E. (1992). The role of the cathepsin D propeptide in sorting to the lysosome. J. Biol. Chem. 267: 21738–21745.

    PubMed  CAS  Google Scholar 

  27. Richo, G.R., and Conner, G.E. (1994). Structural requirements of procathepsin D activation and maturation. J. Biol. Chem. 269: 14806–14812.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chirgwin, J.M., Schultz, S., Sachdev, D. (1998). Expression of Chimeric Human Aspartic Proteinases. In: James, M.N.G. (eds) Aspartic Proteinases. Advances in Experimental Medicine and Biology, vol 436. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5373-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5373-1_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7452-7

  • Online ISBN: 978-1-4615-5373-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics