Skip to main content

Thermodynamic State Diagrams of Oligonucleotide Triple Helices

  • Chapter
Triple Helix Forming Oligonucleotides

Part of the book series: Perspectives in Antisense Science ((DARE,volume 2))

  • 118 Accesses

Summary

Understanding of the cellular role of nucleic acid triple helices and utilization of triple-helix forming oligonucleotides in biotechnology, diagnostics, and therapeutics depend on development of an understanding of triple-helix formation as a function of the nucleic acid components and solution conditions. This article reviews developments in nucleic acid triple-helix thermodynamics with emphasis on the construction and interpretation of state diagrams as a means of characterizing the complex behavior of triple-helix forming oligonucleotides.1

This paper is a truncated version of a more extensive review of triple helix thermodynamics (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Plum, G. E. (1997). Thermodynamics of oligonucleotide triple helices. Biopolymers (Nucleic Acid Sciences) 44, 241–256.

    Article  CAS  Google Scholar 

  2. Wells, R. D., Collier, D. A., Hanvey, J. C., Shimizu, M. and Wohlrab, F. (1988). The chemistry and biology of unusual DNA structures adopted by oligopurine-oligopyrimidine sequences. FASEB J. 2, 2939–2949.

    PubMed  CAS  Google Scholar 

  3. Htun, H. and Dahlberg, J. E. (1989). Topology and formation of triple-stranded H-DNA. Science 243, 1571–1576.

    Article  PubMed  CAS  Google Scholar 

  4. Frank-Kamenetskii, M. D. and Mirkin, S. M. (1995). Triplex DNA structures. Ann. Rev. Biochem. 64, 65–95.

    Article  PubMed  CAS  Google Scholar 

  5. Soyfer, V. N. and Potaman, V. N. Triple-Helical Nucleic Acids. New York: Springer-Verlag, 1996.

    Book  Google Scholar 

  6. Sun, J.-S. and Hélène, C. (1993). Oligonucleotide-directed triple helix formation. Curr. Opin. Struct. Biol. 3, 345–356.

    Article  CAS  Google Scholar 

  7. Lönnberg, H. and Vuorio, E. (1996). Towards genomic drag therapy with antisense oligonucleotides. Ann. Med. 28, 511–522.

    Article  PubMed  Google Scholar 

  8. Giovannangeli, C. and Hélène, C. (1997). Progress in developments of triplex-based strategies. Antisense Nucleic Acid Drug Dev. 7, 413–421.

    Article  PubMed  CAS  Google Scholar 

  9. Cheng, Y.-K. and Pettitt, B. M. (1992). Stabilities of double-and triple-strand helical nucleic acids Prog. Biophys. Mol. Biol. 58, 225–257.

    Article  PubMed  CAS  Google Scholar 

  10. Plum, G. E., Pilch, D. S., Singleton, S. F. and Breslauer, K. J. (1995). Nucleic acid hybridization: triplex stability and energetics. Ann. Rev. Biophys. Biomol. Struct. 24, 319–350.

    Article  CAS  Google Scholar 

  11. Plum, G. E. and Breslauer, K. J. (1995). Thermodynamics of an intramolecular DNA triple helix: a calorimetric and spectroscopic study of the pH and salt dependence of thermally induced structural transitions. J. Mol. Biol. 248, 679–695.

    Article  PubMed  CAS  Google Scholar 

  12. Völker, J., Botes, D. P., Lindsey, G. C. and Klump, H. H. (1993). Energetics of a stable intramolecular DNA triple helix formation. J. Mol. Biol. 230, 1278–1290.

    Article  PubMed  Google Scholar 

  13. Mills, M., Völker, J. and Klump, H. H. (1996). Triple helical structures involving inosine: there is a penalty for promiscuity. Biochemistry 35, 13338–13344.

    Article  PubMed  CAS  Google Scholar 

  14. Puglisi, J. D. and Tinoco, I., Jr. (1989). Absorbance melting curves of RNA. Methods Enzymol. 180, 304–325.

    Article  PubMed  CAS  Google Scholar 

  15. Marky, L. A. and Breslauer, K.J. (1987). Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers 26, 1601–1620.

    Article  PubMed  CAS  Google Scholar 

  16. Plum, G. E., Breslauer, K. J. and Roberts, R. W. “Thermodynamics and kinetics of nucleic acid association/dissociation and folding processes.” In Comprehensive Natural Products Chemistry. Oxford, England: Elsevier Science, 1998, in press.

    Google Scholar 

  17. Thomas, T. and Thomas, T. J. (1993). Selectivity of polyamines in triplex DNA stabilization. Biochemistry 32, 14068–14074.

    Article  PubMed  CAS  Google Scholar 

  18. Singleton, S. F. and Dervan, P. B. (1993). Equilibrium association constants for oligonucleotide-directed triple helix formation at single DNA sites: linkage to cation valence and concentration. Biochemistry 32, 13171–13179.

    Article  PubMed  CAS  Google Scholar 

  19. Xodo, L. E., Manzini, G., Quadrifoglio, F., van der Marel, G. A. and van Boom, J. H. (1991). Effect of 5-methylcytosine on the stability of triple-stranded DNA—a thermodynamic study. Nucleic Acids Res. 19, 5625–5631.

    Article  PubMed  CAS  Google Scholar 

  20. Gaffney, B. L., Kung, P.P., Wang, C. and Jones, R. A. (1995). Nitrogen-15-labeled oligodeoxynucleotides. 8. Use of 15N NMR to probe Hoogsteen hydrogen bonding at guanine and adenine N7 atoms of a DNA triplex. J. Am. Chem. Soc. 117, 12281–12283.

    Article  CAS  Google Scholar 

  21. Wilson, W. D., Hopkins, H. P., Mizan, S., Hamilton, D.D. and Zon, G. (1994). Thermodynamics of DNA triplex formation in oligomers with and without cytosine bases: influence of buffer species, pH, and sequence. J. Am. Chem. Soc. 116, 3607–3608.

    Article  CAS  Google Scholar 

  22. Plum, G. E., Park, Y.-W., Singleton, S. F., Dervan, P. B. and Breslauer, K. J. (1990). Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study. Proc. Natl. Acad. Sci. USA 87, 9436–9440.

    Article  PubMed  CAS  Google Scholar 

  23. Völker, J. and Klump, H. H. (1994). Electrostatic effects in DNA triple helices. Biochemistry 33, 13502–13508.

    Article  PubMed  Google Scholar 

  24. Owczarzy, R., Vallone, P.M., Gallo, F. J., Paner, T. M., Lane, M. and Benight, A. S. (1997). Predicting sequence-dependent melting stability of short duplex DNA oligomers. Biopolymers (Nucleic Acid Sciences) 44, 217–239.

    Article  CAS  Google Scholar 

  25. Singleton, S. F. and Dervan, P. B. (1994). Temperature dependence of the energetics of oligonucleotide-directed triple-helix formation at a single DNA site. J. Am. Chem. Soc. 116, 10376–10382.

    Article  CAS  Google Scholar 

  26. Husler, P. L. and Klump, H. H. (1995). Prediction of pH-dependent properties of DNA triple helices. Arch. Biochem. Biophys. 317, 46–56.

    Article  PubMed  CAS  Google Scholar 

  27. Lavelle, L. R. and Fresco, J. R. (1995). UV spectroscopic identification and thermodynamic analysis of protonated third strand deoxycytidine residues at neutrality in the triplex d(C+-T)6:[d(A-G)6·d(C-T)6]; evidence for a proton switch. Nucleic Acids Res. 23, 2692–2705.

    Article  PubMed  CAS  Google Scholar 

  28. Record, M. T., Jr., Woodbury, C. P. and Lohman, T. M. (1976). Na+ effects on transition of DNA and polynucleotides of variable linear charge density. Biopolymers 15, 893–915.

    Article  PubMed  CAS  Google Scholar 

  29. Manning, G. S. (1978). The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Quart. Rev. Biophys. 11, 179–246.

    Article  CAS  Google Scholar 

  30. Olmsted, M. E., Anderson, C. F. and Record, M. T., Jr. (1989). Monte Carlo description of oligoelectrolyte properties of DNA oligomers: range of the end effect and the approach of molecular and thermodynamic properties to the polyelectrolyte limits. Proc. Natl. Acad. Sci. USA 86, 7766–7770.

    Article  PubMed  CAS  Google Scholar 

  31. Olmsted, M. E., Anderson, C. F. and Record, Jr., M. T. (1991). Importance of oligoelectrolyte end effects for the thermodynamics of conformational transitions of nucleic acid oligomers: a grand canonical Monte Carlo analysis. Biopolymers 31, 1593–1604.

    Article  PubMed  CAS  Google Scholar 

  32. Gill, S. J., Richey, B., Bishop, G. and Wyman, J. (1985). Generalized binding phenomena in an allosteric macromolecule. Biophys. Chem. 21, 1–14.

    Article  PubMed  CAS  Google Scholar 

  33. Wyman, J. and Gill, S. J. Binding and Linkage: Functional Chemistry of Biological Macromolecules, Mill Valley, CA: University Science Books, pp. 168–178, 1990.

    Google Scholar 

  34. Best, C. C. and Dervan, P. B. (1995). Energetics of formation of sixteen triple helical complexes which vary at a single position within a pyrimidine motif. J. Am. Chem. Soc. 117, 1187–1193.

    Article  CAS  Google Scholar 

  35. Greenberg, W. A. and Dervan, P. B. (1995). Energetics of formation of sixteen triple helical complexes which vary at a single position within a purine motif. J. Am. Chem. Soc. 117, 5016–5022.

    Article  CAS  Google Scholar 

  36. Roberts, R. W. and Crothers, D.M. (1992). Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science 258, 1463–1466.

    Article  PubMed  CAS  Google Scholar 

  37. Han, H. and Dervan, P. B. (1993). Sequence-specific recognition of double helical RNA and RNA·DNA by triple helix formation. Proc. Natl. Acad. Sci. USA 90, 3806–3810.

    Article  PubMed  CAS  Google Scholar 

  38. Wang, S. and Kool, E. T. (1995). Relative stabilities of triple helices composed of combinations of DNA, RNA and 2′-O-methyl-RNA backbones: chimeric circular oligonucleotides as probes. Nucleic Acids Res. 23, 1157–1164.

    Article  PubMed  CAS  Google Scholar 

  39. Escudé, C., Francois, J.-C., Sun, J.-S., Ott, G., Sprinzl, M., Garestier, T. and Hélène, C. (1993). Stability of triple helices containing RNA and DNA strands: experimental and molecular modeling studies. Nucleic Acids Res. 21, 5547–5553.

    Article  PubMed  Google Scholar 

  40. Roberts, R. W. and Crothers, D.M. (1996). Prediction of the stability of DNA triplexes. Proc. Natl. Acad. Sci. USA 93, 4320–4325.

    Article  PubMed  CAS  Google Scholar 

  41. Bartley, J. P., Brown, T. and Lane, A.N. (1997). Solution conformation of an intramolecular DNA triplex containing a nonnucleotide linker: comparison with the DNA duplex. Biochemistry 36, 14502–14511.

    Article  PubMed  CAS  Google Scholar 

  42. Kamiya, M., Torigoe, H., Shindo, H. and Sarai, A. (1996). Temperature dependence and sequence specificity of DNA triplex formation: An analysis using isothermal titration calorimetry. J. Am. Chem. Soc. 118, 4532–4538.

    Article  CAS  Google Scholar 

  43. Scaria, P. V. and Shafer, R. H. (1996). Calorimetric analysis of triple helices targeted to the d(G3A4G3)·d(C3T4C3) duplex. Biochemistry 35, 10985–10994.

    Article  PubMed  CAS  Google Scholar 

  44. Pilch, D. S., Brousseau, R. R. and Shafer, R. H. (1990). Thermodynamics of triple helix formation: spectrophotometric studies on the d(A)10·2d(T)10 and d(C+ 3T4C+ 3)·d(G3A4G3)·d(C3T4C3) triple helices. Nucleic Acids Res. 18, 5743–5750.

    Article  PubMed  CAS  Google Scholar 

  45. Manzini, G., Xodo, L. E., Gasparotto, D., Quadrifoglio, F., van der Marel, G. A. and van Boom, I. H. (1990). Triple helix formation by oligopurine-oligopyrimidine DNA fragments. Electrophoretic and thermodynamic behavior. J. Mol. Biol. 213, 833–843.

    Article  PubMed  CAS  Google Scholar 

  46. Xodo, L. E., Manzini, G. and Quadrifoglio, F. (1990). Spectroscopic and calorimetric investigation on the DNA triplex formed by d(CTCTTCTTTCTTTTCTTTCTTCTC) and d(GAGAAGAAAGA) at acidic pH. Nucleic Acids Res. 18, 3557–3564.

    Article  PubMed  CAS  Google Scholar 

  47. Hopkins, H. P., Hamilton, D. D., Wilson, W. D. and Zon, G. (1993). Duplex and triplex formation with dA19 and dT19. Thermodynamic parameters from calorimetry, NMR, and circular dichroism studies. J. Phys. Chem. 97, 6555–6563.

    Article  CAS  Google Scholar 

  48. Roberts, R. W. and Crothers, D.M. (1991). Specificity and stringency in DNA triplex formation. Proc. Natl. Acad. Sci. USA 88, 9397–9401.

    Article  PubMed  CAS  Google Scholar 

  49. Scaria, P. V., Will, S., Levenson, C. and Shafer, R. H. (1995). Physicochemical studies of the d(G3T4G3)·d(G3A4G3)·d(C3T4C3) triple helix. J. Biol. Chem. 270, 7295–7303.

    Article  PubMed  CAS  Google Scholar 

  50. Chaires, J. B. (1997). Possible origin of differences between van’t Hoff and calorimetric enthalpy estimates. Biophys. Chem. 64, 15–23.

    Article  PubMed  CAS  Google Scholar 

  51. Liu, Y. and Sturtevant, J. M. (1995). Significant discrepancies between van’t Hoff and calorimetric enthalpies. III. Biophys. Chem. 64, 121–126.

    Article  Google Scholar 

  52. Liu, Y. and Sturtevant, J. M. (1995). Significant discrepancies between van’t Hoff and calorimetric enthalpies. II. Protein Sci. 4, 2559–2561.

    Article  PubMed  CAS  Google Scholar 

  53. Naghibi, H., Tampa, A. and Sturtevant, J. M. (1995). Significant discrepancies between van’t Hoff and calorimetric enthalpies. Proc. Natl. Acad. Sci. USA 92, 5597–5599.

    Article  PubMed  CAS  Google Scholar 

  54. Eftink, M. R., Anusiem, A. and Biltonen, R. L. (1983). Enthalpy-entropy compensation and heat capacity changes for protein-ligand interactions: general thermodynamic models and data for the binding of nucleotides to ribonuclease A. Biochemistry 22, 3884–3896.

    Article  PubMed  CAS  Google Scholar 

  55. Ferrari, M.E. and Lohman, T. M. (1994). Apparent heat capacity change accompanying a nonspecific protein-DNA interaction. Escherichia coli SSB tetramer binding to oligodeoxyadenylates. Biochemistry 33, 12896–12910.

    Article  PubMed  CAS  Google Scholar 

  56. Vesnaver, G. and Breslauer, K. J. (1991). The contribution of DNA single-stranded order to the thermodynamics of duplex formation. Proc. Natl. Acad. Sci. USA 88, 3569–3573.

    Article  PubMed  CAS  Google Scholar 

  57. Mergny, J. L., Lacroix, L., Han, X., Leroy, I.-L. and Hélène, C. (1995). Intramolecular folding of pyrimidine oligodeoxynucleotides into an i-DNA motif. J. Am. Chem. Soc. 117, 8887–8898.

    Article  CAS  Google Scholar 

  58. Lacroix, L., Mergny, J. L., Leroy, J. L. and Hélène, C. (1996). Inability of RNA to form the i-motif: implications for triplex formation. Biochemistry 35, 8715–8722.

    Article  PubMed  CAS  Google Scholar 

  59. Olivas, W. M. and Maher, L. J. (1995). Competitive triplex/quadruplex equilibria involving guanine-rich oligonucleotides. Biochemistry 34, 278–284.

    Article  PubMed  CAS  Google Scholar 

  60. Alunni-Fabbroni, M., Manzini, G., Quadrifoglio, F. and Xodo, L. E. (1996). Guanine-rich oligonucleotides targeted to a critical R. Y site located in the Ki-ras promoter. The effect of competing self-structures on triplex formation. Eur. J. Biochem. 238, 143–151.

    Article  PubMed  CAS  Google Scholar 

  61. Noonberg, S. B., Francois, J. C., Garestier, T. and Hélène, C. (1995). Effect of competing self-structure on triplex formation with purine-rich oligodeoxynucleotides containing GA repeats. Nucleic Acids Res. 23, 1956–1963.

    Article  PubMed  CAS  Google Scholar 

  62. Shiber, M. C., Braswell, E. H., Klump, H. and Fresco, J. R. (1996). Duplex-tetraplex equilibrium between a hairpin and two interacting hairpins of d(A-G)10 at neutral pH. Nucleic Acids Res. 24, 5004–5012.

    Article  PubMed  CAS  Google Scholar 

  63. Mukerji, L., Shiber, M. C., Fresco, J. and Spiro, T. G. (1996). A UV resonance Raman study of hairpin dimer helices of d(A-G)10 at neutral pH containing intercalated dA residues and alternating dG tetrads. Nucleic Acids Res. 24, 5013–5020.

    Article  PubMed  CAS  Google Scholar 

  64. Kandimalla, E. R. and Agrawal, S. (1995). Single strand targeted triplex-formation. Destabilization of guanine quadruplex structures by foldback triplex-forming oligonucleotides. Nucleic Acids Res. 23, 1068–1074.

    Article  PubMed  CAS  Google Scholar 

  65. Faruqi, A. F., Krawczyk, S. H., Matteucci, M. D. and Glazer, P.M. (1997). Potassium-resistant triple helix formation and improved intracellular gene targeting by oligodeoxyribonucleotides containing 7-deazaxanthine. Nucleic Acids Res. 25, 633–640.

    Article  PubMed  CAS  Google Scholar 

  66. Svinarchuk, F., Cherny, D., Debin, A., Delain, E. and Malvy, C. (1996). A new approach to overcome potassium-mediated inhibition of triplex formation. Nucleic Acids Res. 24, 3858–3865.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Plum, G.E., Breslauer, K.J. (1999). Thermodynamic State Diagrams of Oligonucleotide Triple Helices. In: Malvy, C., Harel-Bellan, A., Pritchard, L.L. (eds) Triple Helix Forming Oligonucleotides. Perspectives in Antisense Science, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5177-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5177-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7358-2

  • Online ISBN: 978-1-4615-5177-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics