Skip to main content

Mechanisms of Neuroendocrine Cell Excitability

  • Chapter
Vasopressin and Oxytocin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 449))

Abstract

Oxytocin (OT) and vasopressin (VP), two neuronally synthesized nonapeptides, are made in the hypothalamic paraventricular and supraoptic nuclei of mammals and released into their blood, eventually to have profound hormonal actions on peripheral tissues. In the rat both OT and VP neurons fire slowly and irregularly under conditions of low demand for peptide release, but natural or artificial depolarizing stimuli result in differential patterns of activity: either regular continuous firing, strongly associated with OT cells, or phasic bursting, characteristic of VP neurons. Recently published findings offer an explanation for the dominant presence of certain Ca2+-dependent membrane potentials that typically lead to phasic firing in VP neurons. Mechanisms of excitability involved in the differential activities of the two cell types, as well as of the same cell type under different physiological conditions, include such factors as Ca2+ binding proteins, voltage-and ligand-gated ion channels, release of Ca2+ from internal stores and gap junctional conductances. The evidence for these factors is reviewed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hatton GI 1990 Emerging concepts of structure-function dynamics in adult brain: the hypothalamo-neurohypophysial system. Prog Neurobiol 34:437–504.

    Article  PubMed  CAS  Google Scholar 

  2. Poulain DA, Wakerley JB 1982 Electrophysiology of hypothalamic neurones secreting oxytocin and vasopressin. Neuroscience 7:773–808.

    Article  PubMed  CAS  Google Scholar 

  3. Renaud LP, Bourque CW 1991 Neurophysiology and neuropharmacology of hypothalamic magnocellular neurons secreting vasopressin and oxytocin. Prog Neurobiol 36:131–169.

    Article  PubMed  CAS  Google Scholar 

  4. Li Z, Decavel C, Hatton GI 1995 Calbindin-D28k: Role in determining intrinsically generated firing patterns in rat supraoptic neurones. J Physiol (Lond) 488:601–608.

    CAS  Google Scholar 

  5. Bourque CW, Oliet SHR, Richard D 1994 Osmoreceptors, osmoreception, and osmoregulation. Front Neuroendocrin 15:231–274.

    Article  CAS  Google Scholar 

  6. Bourque CW, Renaud LP 1990 Electrophysiology of mammalian magnocellular vasopressin and oxytocin neurosecretory neurons. Front Neuroendocrin 11:183–212.

    Google Scholar 

  7. Legendre P, Poulain DA 1992 Intrinsic mechanisms involved in the electrophysiological properties of the vasopressin-releasing neurons of the hypothalamus. Prog Neurobiol 38:1–17.

    Article  PubMed  CAS  Google Scholar 

  8. Connor JA, Stevens CF 1971 Inward and delayed outward membrane currents in isolated neural somata under voltage clamp. J Physiol (Lond) 213:1–19.

    CAS  Google Scholar 

  9. Galvan M, Sedlmeir C 1984 Outward currents in voltage-clamped rat sympathetic neurones. J Physiol (Lond) 356:115–133.

    CAS  Google Scholar 

  10. Meech RW, Standen NB 1975 Potassium activation in Helix Aspersa neurones under voltage clamp: a component mediated by calcium influx. J Physiol (Lond) 249:211–239.

    CAS  Google Scholar 

  11. Thompson SH 1977 Three pharmacologically distinct potassium channels in molluscan neurones. J Physiol (Lond) 265:465–488.

    CAS  Google Scholar 

  12. Cobbett P, Legendre P, Mason WT 1989 Characterization of three types of potassium current in cultured neurones of rat supraoptic nucleus area. J Physiol (Lond) 410:443–462.

    CAS  Google Scholar 

  13. Li Z, Ferguson AV 1996 Electrophysiological properties of paraventricular magnocellular neurons in rat brain slices: modulation of IA by angiotensin II. Neuroscience 71:133–145.

    Article  PubMed  CAS  Google Scholar 

  14. Nagatomo T, Inenaga K, Yamashita H 1995 Transient outward current in adult rat supraoptic neurones with slice patch-clamp technique: Inhibition by angiotensin II. J Physiol (Lond) 485:87–96.

    CAS  Google Scholar 

  15. Erickson KR, Ronnekleiv OK, Kelly MJ 1990 Inward rectification (Ih) in immunocytochemically-identifled vasopressin and oxytocin neurons of guinea-pig supraoptic nucleus. J Neuroendocrinology 2:261–265.

    Article  CAS  Google Scholar 

  16. Erickson KR, Ronnekleiv OK, Kelly MJ 1993 Electrophysiology of guinea-pig supraoptic neurones: role of a hyperpolarization-activated cation current in phasic firing. J Physiol (Lond) 460:407–425.

    CAS  Google Scholar 

  17. Li Z, Hatton GI 1996 Histamine-induced prolonged depolarization in rat supraoptic neurons: G-protein mediated, Ca2+-independent suppression of K+ leakage conductance. Neuroscience 70:145–158.

    Article  PubMed  CAS  Google Scholar 

  18. Stern JE, Armstrong WE 1995 Electrophysiological differences between oxytocin and vasopressin neurones recorded from female rats in vitro. J Physiol (Lond) 488:701–708.

    CAS  Google Scholar 

  19. Stern JE, Armstrong WE 1997 Sustained outward rectification of oxytocinergic neurones in the rat supraoptic nucleus: ionic dependence and pharmacology. J Physiol (Lond) 500:497–508.

    CAS  Google Scholar 

  20. Li Z, Hatton GI 1996 Oscillatory bursting of phasically firing rat supraoptic neurones in low-Ca2+ medium: Na+ influx, cytosolic Ca2+ and junctional conductance. J Physiol (Lond) 496:379–394.

    CAS  Google Scholar 

  21. Kang J, Sumners C, Posner P 1993 Angiotensin II type 2 receptor-modulated changes in potassium currents in cultured neurons. Am J Physiol 265:C607–C616.

    PubMed  CAS  Google Scholar 

  22. Bourque CW 1988 Transient calcium-dependent potassium current in magnocellular neurosecretory cells of the rat supraoptic nucleus. J Physiol (Lond) 397:331–347.

    CAS  Google Scholar 

  23. Connor JA, Stevens CF 1971 Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J Physiol (Lond) 213:21–30.

    CAS  Google Scholar 

  24. Sah P, McLachlan EM 1992 Potassium currents contributing to action potential repolarization and the afterhyperpolarization in rat vagal motoneurons. J Neurophysiol 68:1834–1841.

    PubMed  CAS  Google Scholar 

  25. Bourque CW 1988 Noradrenaline (NA) inhibits a transient outward current in rat supraoptic (SON) neurons. Soc Neurosci Abstr 14:1089.

    Google Scholar 

  26. Armstrong WE, Gallagher MJ, Sladek CD 1986 Noradrenergic stimulation of supraoptic neuronal activity and vasopressin release in vitro: mediation by an a1-receptor. Brain Res 365:192–197.

    Article  PubMed  CAS  Google Scholar 

  27. Randle JCR, Bourque CW, Renaud LP 1986 a1-Adrenergic receptor activation depolarizes rat supraoptic neurosecretory neurons in vitro. Am J Physiol 251:R569–R574.

    PubMed  CAS  Google Scholar 

  28. Okuya S, Inenaga K, Kaneko T, Yamashita H 1987 Angiotensin II sensitive neurons in the supraoptic nucleus, subfornical organ and anteroventral third ventricle of rats in vitro. Brain Res 402:58–67.

    Article  PubMed  CAS  Google Scholar 

  29. Li Z, Ferguson AV 1993 Subfomical organ efferents to paraventricular nucleus utilize angiotensin as a neurotransmitter. Am J Physiol 265:R302–R309.

    PubMed  CAS  Google Scholar 

  30. Li Z, Ferguson AV 1993 Angiotensin II responsiveness of rat paraventricular and subfomical organ neurons in vitro. Neuroscience 55:197–207.

    Article  PubMed  CAS  Google Scholar 

  31. Kirkpatrick K, Bourque CW 1991 Dual role for calcium in the control of spike duration in rat supraoptic neuroendocrine cells. Neurosci Lett 133:271–274.

    Article  PubMed  CAS  Google Scholar 

  32. Inenaga K, Akamatsu N, Nagatomo T, Ueta Y, Yamashita H 1992 Intracellular EGTA alters phasic firing of neurons in the rat supraoptic nucleus in vitro. Neurosci Lett 147:189–192.

    Article  PubMed  CAS  Google Scholar 

  33. Andrew RD, Dudek FE 1984 Intrinsic inhibition in magnocellular neuroendocrine cells of rat hypothalamus. J Physiol (Lond) 353:171–185.

    CAS  Google Scholar 

  34. Bourque CW, Brown DA 1987 Apamin and d-tubocurarine block the afterhyperpolarization of rat supraoptic neurosecretory neurons. Neurosci Lett 82:185–190.

    Article  PubMed  CAS  Google Scholar 

  35. Fagan M, Andrew RD 1991 Intracellular study of calcium-related events in cat magnocellular neuroendocrine cells. J Physiol (Lond) 434:337–349.

    CAS  Google Scholar 

  36. Armstrong WE, Smith BN, Tian M 1994 Electrophysiological characteristics of immunochemically identified rat oxytocin and vasopressin neurones in vitro. J Physiol (Lond) 475:115–128.

    CAS  Google Scholar 

  37. Sah, P 1996 Ca2+-activated K+currents in neurones: types, physiological roles and modulation. TINS. 19:150–154.

    PubMed  CAS  Google Scholar 

  38. Kirkpatrick K, Bourque CW 1995 Effects of neurotensin on rat supraoptic nucleus neurones in vitro. J Physiol (Lond) 482:373–381.

    CAS  Google Scholar 

  39. Hatton GI, Young WS, Yang QZ, Miyata S, Li Z 1996 Targeted reduction of oxytocin gene expression: electrophysiological and immunocytochemical studies of supraoptic nucleus neurons. Soc Neurosci Abstr 22:629.

    Google Scholar 

  40. Tasker JG, Dudek FE 1991 Electrophysiological properties of neurones in the region of the paraventricular nucleus in slices of rat hypothalamus. J Physiol (Lond) 434:271–293.

    CAS  Google Scholar 

  41. Madison DV, Lancaster B, Nicoll RA 1987 Voltage clamp analysis of cholinergic action in the hippocampus. J Neurosci 7:733–741.

    PubMed  CAS  Google Scholar 

  42. Benson DM, Blitzer RD, Landau EM 1988 An analysis of the depolarization produced in guinea-pig hippo-campus by cholinergic receptor stimulation. J Physiol (Lond) 404:479–496.

    CAS  Google Scholar 

  43. McCormick DA, Williamson A 1991 Modulation of neuronal firing mode in cat and guinea pig LGNd by histamine: possible cellular mechanisms of histaminergic control of arousal. J Neurosci 11:3188–3199.

    PubMed  CAS  Google Scholar 

  44. Munakata M, Akaike N 1994 Regulation of K’ conductance by histamine H, and H, receptors in neurones dissociated from rat neostriatum. J Physiol (Lond) 480:233–245.

    CAS  Google Scholar 

  45. Brown DA, Adams PR 1980 Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283:673–676.

    Article  PubMed  CAS  Google Scholar 

  46. Fisher TE, Bourque CW 1995 Voltage-gated calcium currents in the magnocellular neurosecretory cells of the supraoptic nucleus. J Physiol (Lond) 486:571–580.

    CAS  Google Scholar 

  47. Foehring RC, Armstrong WE 1996 Pharmacological dissection of high-voltage-activated Ca“ current types in acutely dissociated rat suproptic magnocellular neurons. J Neurophysiol 76:977–983.

    PubMed  CAS  Google Scholar 

  48. Li Z, Hatton GI 1997 Ca2+ release from internal stores: Role in generating depolarizing afterpotentials in supraoptic nucleus neurons. J Physiol (Lond) 498:339–350.

    CAS  Google Scholar 

  49. Erickson KR, Ronnekleiv OK, Kelly MJ 1993 Role of a T-type calcium current in supporting a depolarizing potential, damped oscillations, and phasic firing in vasopressinergic guinea pig supaoptic neurons. Neuroendocrinology 57:789–800.

    Article  PubMed  CAS  Google Scholar 

  50. Oliet SHR, Bourque CW 1992 Properties of supraoptic magnocellular neurones isolated from the adult rat. J Physiol (Lond) 455:291–306.

    CAS  Google Scholar 

  51. Fisher TE, Bourque CW 1995 Distinct co-agatoxin-sensitive calcium currents in somata and axon terminals of rat supraoptic neurones. J Physiol (Lond) 489:383–388.

    CAS  Google Scholar 

  52. Cobbett P, Mason WT 1987 Whole cell voltage clamp recordings from cultured neurons of the supraoptic area of neonatal rat hypothalamus. Brain Res 409:175–180.

    Article  PubMed  CAS  Google Scholar 

  53. Jahnsen H, Llinas R 1984 Ionic basis for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol (Lond) 349:227–247.

    CAS  Google Scholar 

  54. Stafstrom CE, Schwindt PC, Chubb MC, Crill WE 1985 Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro. J Neurosci 53:153–170.

    CAS  Google Scholar 

  55. Moczydlowski E, Schild L. 1994 Unitary properties of the batrachotoxin-trapped state of voltage-sensitive sodium channels. In: Peracchia C (ed) Handbook of membrane channels: molecular and cellular physiology. Academic Press, Inc., San Diego, pp 137–160.

    Google Scholar 

  56. Yang CR, Bourque CW, Renaud LP 1991 Dopamine D, receptor activation depolarizes rat supraoptic neurones in hypothalamic explants. J Physiol (Lond) 443:465–419.

    Google Scholar 

  57. Yang CR, Phillips MI, Renaud LP 1992 Angiotensin II receptor activation depolarizes rat supraoptic neurons in vitro. Am J Physiol 263:R1333–R1338.

    PubMed  CAS  Google Scholar 

  58. Hiruma H, Bourque CW 1995 P-2 purinoceptor-mediated depolarization of rat supraoptic neurosecretory cells in vitro. J Physiol (Lond) 489:805–811.

    CAS  Google Scholar 

  59. Chakfe Y, Bourque CW 1996 Angiotensin II (AII), cholecystokinin 1–8 (CCK) and neurotensin 8–13 (NT) modulate cationic conductance in magnocellular neurosecretory cells (MNCs) isolated from supraoptic nucleus of the adult rat. Soc Neurosci Abstr 22:1555.

    Google Scholar 

  60. Oliet SHR, Bourque CW 1993 Mechanosensitive channels transduce osmosensitivity in supraoptic neurons. Nature 364:341–343.

    Article  PubMed  CAS  Google Scholar 

  61. Li Z, Hatton GI 1997 Reduced outward K. conductances generate depolarizing afterpotentials in supraoptic neurons. Soc Neurosci Abstr 23: in press.

    Google Scholar 

  62. Andrew RD, Dudek FE 1983 Burst discharge in mammalian neuroendocrine cells involves an intrinsic regenerative mechanism. Science 221:1050–1052.

    Article  PubMed  CAS  Google Scholar 

  63. Jande SS, Maler L, Lawson DE 1981 Immunohistochemical mapping of vitamin D-dependent calcium-binding protein in brain. Nature 294:765–767.

    Article  PubMed  CAS  Google Scholar 

  64. Celio MR 1990 Calbindin D28k and parvalbumin in the rat nervous system. Neuroscience 35:375–475.

    Article  PubMed  CAS  Google Scholar 

  65. Lledo PM, Somasundaram B, Morton AJ, Emson PC, Mason WT 1992 Stable transfection of Calbindin D28k into the GH3 cell line alters Ca2+ current and intracellular Ca2+ homeostasis. Neuron 9:943–954.

    Article  PubMed  CAS  Google Scholar 

  66. Chard PS, Bleakman D, Christakos S, Fullmer CS, Miller RJ 1993 Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurones. J Physiol (Lond) 472:341–357.

    CAS  Google Scholar 

  67. Lacopino AM, Christakos S 1990 Specific reduction of calcium binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc Natl Acad Sci USA 87:4078–4082.

    Article  Google Scholar 

  68. Kohr G, Lambert CE, Mody I 1991 Calbindin-D28K (CaBP) level and calcium currents in acutely dissociated epileptic neurons. Exp Brain Res 85:543–551.

    Article  PubMed  CAS  Google Scholar 

  69. Sanchez F, Alonso JR, Arevalo R, Carretero J, Vazquez R, Aijon J 1992 Calbindin D28K-and parvalbuminreacting neurons in the hypothalamic magnocellular neurosecretory neuclei of the rat. Brain Res Bull 28:39–46.

    Article  PubMed  CAS  Google Scholar 

  70. Arai R, Jacobowitz DM, Deura S 1993 Immunohistochemical localization of calretinin-, calbindin-D28kand parvalbumin-containing cells in the hypothalamic paraventricular and supraoptic nuclei of the rat. Brain Res 618:323–327.

    Article  PubMed  CAS  Google Scholar 

  71. Henzi V, MacDermott AB 1992 Characteristics and function of Ca2+-and inositol I,4,5-trisphosphate-releasable stores of Ca2+ in neurons. Neuroscience 46:251–273.

    Article  PubMed  CAS  Google Scholar 

  72. Sah P, McLachlan EM 1991 Ca2+-activated K+ currents underlying the afterhyperpolarization in guinea pig vagal neurons: a role for Ca2+-activated Ca2+ release. Neuron 7:257–264.

    Article  PubMed  CAS  Google Scholar 

  73. Yoshizaki K, Hoshino T, Sato M, Koyano H, Nohmi M, Hua SY, Kuba K 1995 Ca2+-induced Ca2+ release and its activation in response to a single action potential in rabbit otic ganglion cells. J Physiol (Lond) 486:177–187.

    CAS  Google Scholar 

  74. Zhang L, Valiante TA, Carlen PL 1993 Contribution of the low-threshold T-type calcium current in generating the post-spike depolarizing afterpotential in dentate granule neurons of immature rats. J Neurophysiol 70:223–231.

    PubMed  CAS  Google Scholar 

  75. Barish ME, Thompson SH 1983 Calcium buffering and slow recovery kinetics of calcium-dependent outward current in molluscan neurones. J Physiol (Lond) 337:201–219.

    CAS  Google Scholar 

  76. Andrew RD, MacVicar BA, Dudek FE, Hatton GI 1981 Dye transfer through gap junctions between neuroendocrine cells of rat hypothalamus. Science 211:1187–1189.

    Article  PubMed  CAS  Google Scholar 

  77. Yang QZ, Hatton GI 1987 Dye coupling among supraoptic nucleus neurons without dendritic damage: differential incidence in nursing mother and virgin rats. Brain Res Bull 19:559–565.

    Article  PubMed  CAS  Google Scholar 

  78. Yang QZ, Hatton GI 1988 Direct evidence for electrical coupling among rat supraoptic nucleus neurons. Brain Res 463:47–56.

    Article  PubMed  CAS  Google Scholar 

  79. Miyata S, Hatton GI 1997 Connexin-32 protein in magnocellular neurons of the rat hypothalamus: light and electron microscopic immunohistochemistry. Soc Neurosci Abstr 23: in press.

    Google Scholar 

  80. Micevych PE, Popper P Hatton GI 1996 Connexon-32 mRNA levels in the rat supraoptic nucleus: up-regulation prior to parturition and during lactation. Neuroendocrinology 63:39–45

    Article  PubMed  CAS  Google Scholar 

  81. Hatton GI, Yang QZ 1994 Incidence of neuronal coupling in supraoptic nuclei of virgin and lactating rats: estimation by neurobiotin and Lucifer Yellow. Brain Res 650:63–69.

    Article  PubMed  CAS  Google Scholar 

  82. Hatton GI, Yang QZ 1996 Synaptically released histamine increases dye coupling among vasopressinergic neurons of the supraoptic nucleus: mediation by H -receptors and cyclic nucleotides. J Neurosci 16:123–129.

    PubMed  CAS  Google Scholar 

  83. Hatton GI, Yang QZ 1990 Activation of excitatory amino acid inputs to supraoptic neurons: I. Induced increases in dye coupling in lactating, but not virgin or male rats. Brain Res 513:264–269.

    Article  PubMed  CAS  Google Scholar 

  84. Kumamoto K, Yang QZ, Hatton GI 1997 Dye coupling among supraoptic nucleus oxytocin neurons in peripartum rats: relation to connexin-32 expression. Soc Neurosci Abstr 22: in press.

    Google Scholar 

  85. Perez-Velazquez JL, Valiante TL, Carlen PL 1994 Modulation of gap junctional mechanisms during calcium-free induced field burst activity: a possible role for electrotonic coupling in epileptogenesis. J Neurosci 14:4308–4317.

    PubMed  CAS  Google Scholar 

  86. Summerlee AJS, Parry LJ 1988 Stimulus-secretion coupling in the oxytocin system. In: Ganten D, Pfaff D (eds) Stimulus-secretion coupling in neuroendocrine systems. Springer-Verlag, Berlin, pp 29–72.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn I. Hatton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hatton, G.I., Li, Z. (1998). Mechanisms of Neuroendocrine Cell Excitability. In: Zingg, H.H., Bourque, C.W., Bichet, D.G. (eds) Vasopressin and Oxytocin. Advances in Experimental Medicine and Biology, vol 449. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4871-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4871-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7210-3

  • Online ISBN: 978-1-4615-4871-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics