Skip to main content

Human Uracil-DNA Glycosylase

Gene Structure, Regulation, and Structural Basis for Catalysis

  • Chapter
Advances in DNA Damage and Repair

Abstract

Uracil in DNA results from either misincorporation of dUMP residues during replication, or from deamination of cytosine residues. The latter process results in premutagenic U:G mispairs that, unless uracil is removed, will cause GC→AT transitions in the subsequent round of replication. The 13.8 kb gene for human uracil-DNA glycosylase, UNG, is highly conserved and comprises 7 exons. It encodes more than 98% of the total uracil-DNA glycosylase activity in the cell. The crystal structure of the catalytic domain of UNG in complex with target DNA has demonstrated that all essential contacts are with the uracil-containing strand. The structure also reveals the mechanism of enzyme-assisted flipping of the uracil-containing nucleotide into the deep catalytic pocket that specifically binds uracil. Nuclear (UNG2) and mitochondrial (UNG1) forms of the enzyme result from the use of two promoters, PA and PB, and alternative splicing. mRNA for UNG1 encodes 304 amino acids, the first 35 of which are unique to this form. mRNA for UNG2 encodes 313 amino acids, the first 44 of which are unique to UNG2. The unique N-terminal sequences in UNG1 and UNG2 are required for mitochondrial and nuclear sorting, respectively, but not for catalytic activity. The 269 amino acid residues common to the two forms include the compact catalytic domain of approximately 220 C-terminal residues and an N-terminal part that binds replication protein A (RPA), indicating a possible role for RPA in base excision repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • O.N. Aprelikova and N.V. Tomilin (1982) Activity of uracil-DNA glycosylase in different rat tissues and in regenerating rat liver. FEBS Lett. 137, 193–195.

    Article  PubMed  CAS  Google Scholar 

  • B. Bandaru, J. Gopal, and A.S. Bhagwat (1996) Overproduction of DNA cytosine methyltransferases causes methylation and C→T mutations at non-canonical sites. J. Biol. Chem. 271, 7851–7859.

    Article  PubMed  CAS  Google Scholar 

  • Y. Barak, O. Cohen-Fox, and Z. Livneh (1995) Deamination of cytosine-containing photodimers in UV-irradiated DNA: significance for UV-light mutagenesis. J. Biol. Chem. 270, 24174–24179.

    Article  PubMed  CAS  Google Scholar 

  • M. Bjoras, L. Luna, B. Johnsen, E. Hoff, T. Haug, T. Rognes, and E. Seeberg (1997) Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. EMBO J. 16, 6314–6322.

    Article  PubMed  CAS  Google Scholar 

  • B.C. Blount, M.M. Mack, CM. Wehr, J.T. MacGreagor, R.A. Hiatt, G. Wang, S.N. Wickramasinghe, R.B. Everson, and B.N. Ames (1997) Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc. Natl. Acad. Sci. U.S.A. 94, 3290–3295.

    Article  PubMed  CAS  Google Scholar 

  • R. Bockrath and P. Mosbaugh (1986) Mutation probe of gene structure in E. coli: suppressor mutations in the seven-tRNA operon. Mol. Gen. Genet. 204, 457–462.

    Article  PubMed  CAS  Google Scholar 

  • D. Chakravarti, G.C. Ibeanu, K. Tano, and S. Mitra (1991) Cloning and expression in Escherichia coli of a human cDNA encoding the DNA repair protein N-methylpurine-DNA glycosylase. J. Biol. Chem. 266, 15710–15715.

    PubMed  CAS  Google Scholar 

  • D.L. Croteau, C.M.J. ap Rhys, E.K. Hudson, G.L. Dianov, R.G. Hansford, and V.A. Bohr (1997) An oxidative damage-specific endonuclease from rat liver mitochondria. J. Biol. Chem. 272, 27338–27344.

    Article  PubMed  CAS  Google Scholar 

  • M. Dizdaroglu, A. Karakaya, P. Jaruga, G. Slupphaug, and H.E. Krokan (1996) Novel activities of human uracil DNA N-glycosylase for cytosine-derived products of oxidative DNA damage. Nucl. Acids Res. 24, 418–422.

    Article  PubMed  CAS  Google Scholar 

  • B.K. Duncan and B. Weiss (1982) Specific mutator effects of ung (uracil-DNA glycosylase) mutations in Escherichia coli. J. Bacteriol. 151, 750–755.

    PubMed  CAS  Google Scholar 

  • I. Eftedal, P.H. Guddal, G. Slupphaug, G. Volden, and H.E. Krokan (1993) Consensus sequences for good and poor removal of uracil from double stranded DNA by uracil-DNA glycosylase. Nucleic Acids Res. 21, 2095–2101.

    Article  PubMed  CAS  Google Scholar 

  • H.H. el Hajj, H. Zhang, and B. Weiss (1988) Lethality of a dut (deoxyuridine triphosphatase) mutation in Escherichia coli. J. Bacteriol. 170, 1069–1075.

    PubMed  Google Scholar 

  • H.H. el Hajj, L. Wang, and B. Weiss (1992) Multiple mutant of Escherichia coli synthesizing virtually thymineless DNA during limited growth. J. Bacteriol. 174, 4450–4456.

    PubMed  Google Scholar 

  • D.F. Fix and B.W. Glickman (1987) Asymmetric cytosine deamination revealed by spontaneous mutational specificity in an Ung-strain of Escherichia coli. Mol. Gen. Genet. 209, 78–82.

    Article  PubMed  CAS  Google Scholar 

  • F. Focher, P. Mazzarello, A. Verri, U. Hubscher, and S. Spadari (1990) Activity profiles of enzymes that control the uracil incorporation into DNA during neuronal development. Mutat. Res. 237, 65–73.

    Article  PubMed  CAS  Google Scholar 

  • F. Focher, A. Verri, S. Verzeletti, P. Mazzarello, and S. Spadari (1992) Uracil in OriS of herpes simplex 1 alters its specific recognition by origin binding protein (OBP): does virus induced uracil-DNA glycosylase play a key role in viral reactivation and replication? Chromosoma 102, S67–S71.

    Article  PubMed  CAS  Google Scholar 

  • L.A. Frederico, T.A. Kunkel, and B.R. Shaw (1990) A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry 29, 2532–2537.

    Article  PubMed  CAS  Google Scholar 

  • M.H. Gadsden, E.M. Mclntosh, J.C. Game, P.J. Wilson, and R.H. Haynes (1993) dUTP pyrophosphatase is an essential enzyme in Saccharomyces cerevisiae. EMBO J. 12, 4425–4431.

    PubMed  CAS  Google Scholar 

  • P.K. Gupta and M.A. Sirover (1981) Stimulation of the nuclear uracil DNA glycosylase in proliferating human fibroblasts. Cancer Res. 41, 3133–3136.

    PubMed  CAS  Google Scholar 

  • T. Haug, F. Skorpen, P.A. Aas, V. Malm, C. Skjelbred, and H.E Krokan (1998) Regulation of expression of nuclear and mitochondrial forms of human uracil-DNA glycosylase. Nucleic Acids Res. 26, 1449–1457.

    Article  PubMed  CAS  Google Scholar 

  • T. Haug, F. Skorpen, H. Lund, and H.E. Krokan (1994) Structure of the gene for human uracil-DNA glycosylase and analysis of the promoter function. FEBS Lett. 353, 180–184.

    Article  PubMed  CAS  Google Scholar 

  • T. Haug, F. Skorpen, K. Kvaloy, I. Eftedal, H. Lund, and H.E. Krokan (1996) Human uracil-DNA glycosylase gene: Sequence organization, methylation pattern, and mapping to chromosome 12q23-q24.1. Genomics 36,408–416.

    Article  PubMed  CAS  Google Scholar 

  • K.J. Impellizzeri, B. Anderson, and P.M. Burgers (1991) The spectrum of spontaneous mutations in a Saccharomyces cerevisiae uracil-DNA-glycosylase mutant limits the function of this enzyme to cytosine deamination repair. J. Bacteriol. 173, 6807–6810.

    PubMed  CAS  Google Scholar 

  • P. Karran, R. Cone, and E.C. Friedberg (1981) Specificity of the bacteriophage PBS2 induced inhibitor of uracil-DNA glycosylase. Biochemistry 20, 6092–6096.

    Article  PubMed  CAS  Google Scholar 

  • B. Kavli, G. Slupphaug, C.D. Mol, A.S. Arvai, S.B. Petersen, J.A. Tainer, and H.E. Krokan (1996) Excision of cytosine and thymine from DNA by mutants of human uracil-DNA glycosylase. EMBO J. 15, 3442–3447.

    PubMed  CAS  Google Scholar 

  • H. Krokan (1981) Preferential association of uracil-DNA glycosylase activity with replicating SV40 minichromosomes. FEBS Lett. 133, 89–91.

    Article  PubMed  CAS  Google Scholar 

  • H. Krokan and C.U. Wittwer (1981) Uracil DNA-glycosylase from HeLa cells: general properties, substrate specificity and effect of uracil analogs. Nucl. Acids Res. 9, 2599–2613.

    Article  PubMed  CAS  Google Scholar 

  • H. Krokan, A. Haugen, B. Myrnes, and P.H. Guddal (1983) Repair of premutagenic DNA lesions in human fetal tissues: evidence for low levels of O6-methylguanine-DNA methyltransferase and uracil-DNA glycosylase activity in some tissues. Carcinogenesis. 4, 1559–1564.

    Article  PubMed  CAS  Google Scholar 

  • H.E. Krokan, R. Standal, S. Bharati, M. Otterlei, T. Haug, G. Slupphaug and F. Skorpen (1997a) Uracil in DNA and the family of conserved DNA glycosylases. In Base Excision Repair of DNA damage (ed. I.D. Hick-son), Landes Bioscience, Austin, Texas, pp.7–30.

    Google Scholar 

  • H.E. Krokan, R. Standal, and G. Slupphaug (1997b) DNA glycosylases in the base excision repair of DNA. Biochem. J. 325, 1–16.

    PubMed  CAS  Google Scholar 

  • Y. Kubota, R.A. Nash, A. Klungland, P. Schär, D.E. Barnes, and T. Lindahl (1996) Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase β and the XRCC1 protein. EMBO J. 15, 6662–6670.

    PubMed  CAS  Google Scholar 

  • T. Lindahl (1974) An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proc. Natl. Acad. Sci. U.S.A. 71, 3649–3653.

    Article  PubMed  CAS  Google Scholar 

  • T. Lindahl (1993) Instability and decay of the primary structure of DNA. Nature 362, 709–715.

    Article  PubMed  CAS  Google Scholar 

  • D.J. Mauro, J.K. de Riel, R.J. Tallarida, and M.A. Sirover (1993) Mechanisms of excision of 5-fluorouracil by uracil DNA glycosylase in normal human cells. Mol. Pharmacol. 43, 854–857.

    PubMed  CAS  Google Scholar 

  • C.D. Mol, A.S. Arvai, R.J. Sanderson, G. Slupphaug, B. Kavli, H.E. Krokan, D.W. Mosbaugh, and J.A. Tainer (1995a) Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell 82, 701–708.

    Article  PubMed  CAS  Google Scholar 

  • C.D. Mol, A.S. Arvai, G. Slupphaug, B. Kavli, I. Alseth, H.E. Krokan, and J.A. Tainer (1995b) Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis. Cell 80, 869–878.

    Article  PubMed  CAS  Google Scholar 

  • B. Myrnes, K.E. Giercksky, and H. Krokan (1983) Interindividual variation in the activity of O6-methyl guanine-DNA methyltransferase and uracil-DNA glycosylase in human organs. Carcinogenesis 4, 1565–1568.

    Article  PubMed  CAS  Google Scholar 

  • B. Myrnes, K. Norstrand, K.E. Giercksky, C. Sjunneskog, and H. Krokan (1984) A simplified assay for O6-methylguanine-DNA methyltransferase activity and its application to human neoplastic andnon-neoplastic tissues. Carcinogenesis 5, 1061–1064.

    Article  PubMed  CAS  Google Scholar 

  • T. Nagelhus, T. Haug, K.K. Singh, K.F. Keshav, F. Skorpen, M. Otterlei. S. Bharati, T. Lindmo, S. Benichou, R. Benarous, and H.E. Krokan (1997) A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34 kDa subunit of replication protein A. J. Biol. Chem. 272, 6561–6566.

    Article  PubMed  CAS  Google Scholar 

  • I.D. Nicholl, K. Nealon, and M.K. Kenny (1997) Reconstitution of human base excision repair with purified proteins. Biochemistry 36, 7557–7566.

    Article  PubMed  CAS  Google Scholar 

  • H. Nilsen, S.P. Yazdankhah, I. Eftedal, and H.E. Krokan (1995) Sequence specificity for removal of uracil from U.A pairs and U.G mismatches by uracil-DNA glycosylase from Escherichia coli, and correlation with mutational hotspots. FEBS Lett. 362, 205–209.

    Article  PubMed  CAS  Google Scholar 

  • H. Nilsen, M. Otterlei, T. Haug, K. Solum, T.A. Nagelhus, F. Skorpen and H.E. Krokan (1997) Nuclear and mitochondrial uracil-DNA glycosylase are generated by alternative splicing and transcription from different positions in the UNG gene. Nucleic Acids Res. 25, 750–755.

    Article  PubMed  CAS  Google Scholar 

  • T.R. O’Connor and J. Laval (1991) Human cDNA expressing a functional DNA glycosylase excising 3-methyladenine and 7-methylguanine. Biochem. Biophys. Res. Commun. 176, 1170–1177.

    Article  PubMed  Google Scholar 

  • L.C. Olsen, R. Aasland, C.U. Wittwer, H.E. Krokan, and D.E. Heiland (1989) Molecular cloning of human uracil-DNA glycosylase, a highly conserved DNA repair enzyme. EMBO J. 8, 3121–3125.

    PubMed  CAS  Google Scholar 

  • H. Otterlei, T. Haug, T.A. Nagelhus, G. Slupphaug, T. Lindmo, and H.E. Krokan (1998) Nuclear and mitochondrial splice forms of human uracil-DNA glycosylase contain a complex nuclear localisation signal and a strong classical mitochondrial localisation signal, respectively. Nucleic Acids Res. 26, 4611–4617.

    Article  PubMed  CAS  Google Scholar 

  • L.H. Pearl and R. Savva (1995) DNA repair in three dimensions. Trends Biochem. Sci. 20, 421–426.

    Article  PubMed  CAS  Google Scholar 

  • A. Pendlebury, I.M. Frayling, M.F.S. Koref, G.P. Margison, and J.A. Rafferty (1994) Evidence for the Simultaneous Expression of Alternatively Spliced Alkylpurine N-glycosylase Transcripts in Human Tissues and Cells. Carcinogenesis 15, 2957–2960.

    Article  PubMed  CAS  Google Scholar 

  • I.P. Pogribny, L. Muskhelishvili, B.J. Miller, and S.J. James (1997) Presence and consequence of uracil in preneoplastic DNA from folate/methyl-deficient rats. Carcinogenesis 18, 2071–2076.

    Article  PubMed  CAS  Google Scholar 

  • J.P Radicella, C. Dherin, C. Desmaze, M.S. Fox, and S. Boiteux (1997) Cloning and characterization of hOGGl, a human homolog of the Oggl gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 94, 8010–8015.

    Article  PubMed  CAS  Google Scholar 

  • T. Roldan-Arjona, Y.F. Wei, K.C. Carter, A. Klungland, C. Anselmino, R.P. Wang, M. Augustus, and T. Lindahl (1997) Molecular cloning and functional expression of a human cDNA encoding the antimutator enzyme 8-hydroxyguanine-DNA glycosylase. Proc. Natl. Acad. Sci. U.S.A. 94, 8016–8020.

    Article  PubMed  CAS  Google Scholar 

  • L. Samson, B. Derfler, M. Boosalis, and K. Call (1991) Cloning and characterization of a 3-methyladenine DNA glycosylase cDNA from human cells whose gene maps to chromosome 16. Proc. Natl. Acad. Sci. U.S.A. 88, 9127–9131.

    Article  PubMed  CAS  Google Scholar 

  • R. Savva, K. McAuley Hecht, T. Brown, and L. Pearl (1995) The structural basis of specific base-excision repair by uracil-DNA glycosylase. Nature 373, 487–493.

    Article  PubMed  CAS  Google Scholar 

  • R. Shapiro and R.S. Klein (1966) The deamination of cytidine and cytosine by acidic buffer solutions. Mutagenic implications. Biochemistry 5, 2358–2362.

    Article  PubMed  CAS  Google Scholar 

  • R. Shapiro. (1980) Damage to DNA caused by hydrolysis. In Chromosome Damage and Repair (eds. E. Seeberg and K. Kleppe), Plenum Press, New York, pp.3–18.

    Google Scholar 

  • J.C. Shen, W.M. Rideout, and P.A. Jones (1992) High frequency mutagenesis by a DNA methyltransferase. Cell 71, 1073–1080.

    Article  PubMed  CAS  Google Scholar 

  • J.C. Shen, J.M. Zingg, A.S. Yang, C. Schmutte, and P.A. Jones (1995) A mutant Hpall methyltransferase functions as a mutator enzyme. Nucl. Acids Res. 23, 4275–4282.

    Article  PubMed  CAS  Google Scholar 

  • M.A. Sirover (1979) Induction of the DNA repair enzyme uracil-DNA glycosylase in stimulated human lymphocytes. Cancer Res. 39, 2090–2095.

    PubMed  CAS  Google Scholar 

  • G. Slupphaug, L.C. Olsen, D. Heiland, R. Aasland, and H.E. Krokan (1991) Cell cycle regulation and in vitro hybrid arrest analysis of the major human uracil-DNA glycosylase. Nucl. Acids Res. 19, 5131–5137.

    Article  PubMed  CAS  Google Scholar 

  • G. Slupphaug, I. Alseth, I. Eftedal, G. Volden, and H.E. Krokan (1993a) Low incorporation of dUMP by some thermostable DNA polymerases may limit their use in PCR amplifications. Anal. Biochem. 211, 164–169.

    Article  PubMed  CAS  Google Scholar 

  • G. Slupphaug, F.H. Markussen, L.C. Olsen, R. Aasland, N. Aarsaether, O. Bakke, H.E. Krokan, and D.E. Heiland (1993b) Nuclear and mitochondrial forms of human uracil-DNA glycosylase are encoded by the same gene. Nucl. Acids Res. 21, 2579–2584.

    Article  PubMed  CAS  Google Scholar 

  • G. Slupphaug, I. Eftedal, B. Kavli, S. Bharati, N.M. Helle, T. Haug, D.W. Levine, and H.E. Krokan (1995) Properties of a recombinant human uracil-DNA glycosylase from the UNG gene and evidence that UNG encodes the major uracil-DNA glycosylase. Biochemistry 34, 128–138.

    Article  PubMed  CAS  Google Scholar 

  • G. Slupphaug, C.D. Mol, B. Kavli, A.S. Arvai, H.E. Krokan, and J.A. Tainer (1996) A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature 384, 87–92.

    Article  PubMed  CAS  Google Scholar 

  • R.W. Sobol, J.K. Horton, R. Kuhn, H. Gu, R.K. Singhal, R. Prasad, K. Rajewsky, and S.H. Wilson (1996) Requirement of mammalian DNA polymerase-beta in base-excision repair. Nature 379, 183–186.

    Article  PubMed  CAS  Google Scholar 

  • U. Varshney and J.H. van de Sande (1991) Specificities and kinetics of uracil excision from uracil-containing DNA oligomers by Escherichia coli uracil DNA glycosylase. Biochemistry 30, 4055–4061.

    Article  PubMed  CAS  Google Scholar 

  • A. Verri, P. Mazzarello, G. Biamonti, S. Spadari, and F. Focher (1990) The specific binding of nuclear protein(s) to the cAMP responsive element (CRE) sequence (TGACGTCA) is reduced by the misincorporation of U and increased by the deamination of C. Nucleic. Acids. Res. 18, 5775–5780.

    Article  PubMed  CAS  Google Scholar 

  • M.A. Vickers, P. Vyas, P.C. Harris, D.L. Simmons, and D.R. Higgs (1993) Structure of the human 3-methyladenine DNA glycosylase gene and localization close to the 16p telomere. Proc. Natl. Acad. Sci. U.S.A. 90, 3437–3441.

    Article  PubMed  CAS  Google Scholar 

  • E. Wist, O. Unhjem and H.E. Krokan (1978) Accumulation of small fragments of DNA in isolated HeLa cell nuclei due to transient incorporation of dUMP. Biochim. Biophys. Acta. 250, 253–270.

    Google Scholar 

  • C.U. Wittwer and H. Krokan (1985) Uracil-DNA glycosylase in HeLa S3 cells: interconvertibility of 50 and 20 kDa forms and similarity of the nuclear and mitochondrial form of the enzyme. Biochim. Biophys. Acta. 832,308–318.

    Article  PubMed  CAS  Google Scholar 

  • C.U. Wittwer, G. Bauw, and H.E. Krokan (1989) Purification and determination of the NH2-terminal amino acid sequence of uracil-DNA glycosylase from human placenta. Biochemistry 28, 780–784.

    Article  PubMed  CAS  Google Scholar 

  • M.S. Wold (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Ann. Rev. Biochem. 66, 61–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Krokan, H.E. et al. (1999). Human Uracil-DNA Glycosylase. In: Dizdaroglu, M., Karakaya, A.E. (eds) Advances in DNA Damage and Repair. NATO ASI Series, vol 302. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4865-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4865-2_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7207-3

  • Online ISBN: 978-1-4615-4865-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics