Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 468))

Abstract

In most vertebrate tissues, direct electrical and biochemical communication between groups of adjacent cells is mediated by intercellular channels which are present in gap junctions. A complete intercellular channel spans two plasma membranes and is formed by the alignment of two half-channels, termed connexons, that interact in the extracellular space to provide a relatively large hydrated pore between the cytoplasm of the coupled cells (White and Paul, 1999). Each connexon is an oligomer of structural subunit proteins, called connexins (Cx), which form a multigene family whose members are distinguished according to their predicted molecular mass in kDa. More than a dozen connexins have been characterized to date in mammals. Because most cells express multiple connexins, adjacent cells can assemble different types of connexons and contribute to the formation of either homotypic, heterotypic, or heteromeric channels (Fig. 1). In this chapter we will refer to connexin channels when reviewing the molecular properties of intercellular channels and to either coupling, gap junctional or intercellular communication when discussing the general aspects of cell-cell communication. Clearly, these terms are functionally equivalent. We have selected only a few aspects of connexin properties and function in glial cells of the central nervous system (CNS) and peripheral nervous system (PNS), with emphasis on the issues that are likely to shape this area of research in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anzini P., Neuberg D.H.-H., Schachner M., Nelles E., Willecke K., Zielasek J., Toyka K., Suter U., and Martini R. (1997) Structural abnormalities and deficient maintenance of peripheral nerve myelin in mice lacking the gap junction protein connexin32. J Neurosci 17: 4545–4551.

    PubMed  CAS  Google Scholar 

  • Balice-Gordon R.J., Bone L., and Scherer S.S. (1998) Functional gap junctions in the Schwann cell myelin sheath. J Cell Biol 142: 1095–1104.

    Article  PubMed  CAS  Google Scholar 

  • Bergoffen J., Scherer S.S., Wang S., Oronzi Scott M., Bone L.J., Paul D.L., Chen K., Lensch M.W., Chance P.F., and Fischbeck K.H. (1993) Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science 262: 2039–2042.

    Article  PubMed  CAS  Google Scholar 

  • Bevans C.G., Kordel M., Rhee S.K., and Harris A.L. (1998) Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules. J Biol Chem 273: 2808–2816.

    Article  PubMed  CAS  Google Scholar 

  • Bezzi P., Carmignoto G., Pasti L., Vesce S., Rossi D., Rizzini B.L., Pozzan T., and Volterra A. (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391: 281–285.

    Article  PubMed  CAS  Google Scholar 

  • Blanc E.M., Bruce-Keller A.J., and Mattson M.P. (1998) Astrocytic gap junctional communication decreases neuronal vulnerability to oxidative stress-induced disruption of Ca2+ homeostasis and cell death. J Neurochem 70: 958–970.

    Article  PubMed  CAS  Google Scholar 

  • Blankenfeld G.V., Ransom B.R., and Kettenmann H. (1993) Development of cell-cell coupling among cells of the oligodendrocyte lineage. Glia 7: 322–328.

    Article  Google Scholar 

  • Bruzzone R., White T.W., Scherer S.S., Fischbeck K.H., and Paul D.L. (1994) Null mutations of connexin32 in patients with X-linked Charcot-Marie-Tooth disease.Neuron 13: 1253–1260.

    Article  PubMed  CAS  Google Scholar 

  • Bruzzone R., White T.W., and Paul D.L. (1996) Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem 238: 1–27.

    Article  PubMed  CAS  Google Scholar 

  • Bruzzone R. and Ressot C. (1997) Connexins, gap junctions, and cell-cell signalling in the nervous system. Eur J Neurosci 9: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Chandross K.J., Spray D.C., Cohen R.I., Kumar N.M., Kremer M., Dermietzel R., and Kessler J.A. (1996a) TNFα inhibits Schwann cell proliferation, connexin46 expression, and gap junctional communication. Mol Cell Neurosci 7: 479–500.

    Article  PubMed  CAS  Google Scholar 

  • Chandross K.J., Kessler J.A., Cohen R.I., Simburger E., Spray D.C., Bieri P., and Dermietzel R. (1996b) Altered connexin expression after peripheral nerve injury. Mol Cell Neurosci 7: 501–518.

    Article  PubMed  CAS  Google Scholar 

  • Charles A. (1998) Intercellular calcium waves in glia. Glia 24: 39–49.

    Article  PubMed  CAS  Google Scholar 

  • Cornell-Bell A.H., Finkbeiner S.M., Cooper M.S., and Smith S.J. (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247: 470–473.

    Article  PubMed  CAS  Google Scholar 

  • Cotrina M.L., Kang J., Lin XH.-C., Bueno E., Hansen T.W., He L., Liu Y., and Nedergaard M. (1998) Astrocytic gap junctions remain open during ischemic conditions. J Neurosci 18: 2520–2537.

    PubMed  CAS  Google Scholar 

  • Dahl E., Manthey D., Chen Y., Schwarz H.J., Chang Y.S., Lalley P.A., Nicholson B.J., and Willecke K. (1996) Molecular cloning and functional expression of mouse connexin-30, a gap junction gene highly expressed in adult brain and skin. J Biol Chem 271: 17903–17910.

    Article  PubMed  CAS  Google Scholar 

  • Dermietzel R., Traub O., Hwang T.K., Beyer E., Bennettt M.V.L., Spray D.C., and Willecke K. (1989) Differential expression of three gap junction proteins in developing and mature brain tissues. Proc Natl Acad Sci USA 86: 108148–108152.

    Article  Google Scholar 

  • Dermietzel R., Farooq M., Kessler J.A., Althaus H., Hertzberg E.L., and Spary D.C. (1997) Oligodendrocytes express gap junction proteins connexin32 and connexin45. Glia 20: 101–114.

    Article  PubMed  CAS  Google Scholar 

  • Deschênes S.M., Walcott J.L., Wexler T.L., Scherer S.S., and Fischbeck K.H. (1997) Altered trafficking of mutant connexin32. J Neurosci 17: 9077–9084.

    PubMed  Google Scholar 

  • Elfgang C., Eckert R., Lichtenberg-Fraté H., Butterweck A., Traub O., Klein R.A., Hülser D.F., and Willecke K. (1995) Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol 129: 805–817.

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein A. (1994) Gap junctions and intercellular communications. Science 265: 1017–1018.

    PubMed  CAS  Google Scholar 

  • Fróes M.M. and CamposdeCarvalho A.C. (1998) Gap junction-mediated loops of neuronal-glial interactions. Glia 24: 97–107.

    Article  PubMed  Google Scholar 

  • Giaume C., Fromaget C., El Aoumari A., Cordier J., Glowinski J., and Gros D. (1991) Gap junctions in cultured astrocytes: single-channel currents and characterization of channel-forming protein. Neuron 6: 133–143.

    Article  PubMed  CAS  Google Scholar 

  • Giaume C. and McCarthy K.D. (1996) Control of gap-junctional communication in astrocytic networks. Trends Neurosci 19: 319–325.

    Article  PubMed  CAS  Google Scholar 

  • Giaume C. and Venance L. (1998) Intercellular calcium signaling and gap junctional communication in astrocytes. Glia 24: 50–64.

    Article  PubMed  CAS  Google Scholar 

  • Giepmans B.N.G. and Moolenaar W.H. (1998) The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Curr Biol 8: 931–934.

    Article  PubMed  CAS  Google Scholar 

  • Gong X., Li E., Klier G., Huang Q., Wu, Lei H., Kumar N.M., Horwitz J., and Gilula N.B. (1997) Disruption of α3 connexin gene leads to proteolysis and cataractogenesis in mice. Cell 91: 833–843.

    Google Scholar 

  • Guthrie P.B., Lee R.E., Rehder V., Schmidt M.F., and Kater S.B. (1994) Self-recognition: a constraint on the formation of electrical coupling in neurons. J Neurosci 14: 1477–1485.

    PubMed  CAS  Google Scholar 

  • Hofer A. and Dermietzel R. (1998) Visualization and functional blocking of gap junction hemichannels (connexons) with antibodies against external loop domains in astrocytes. Glia 24: 141–154.

    Article  PubMed  CAS  Google Scholar 

  • Kunzelmann P., Blümcke I., Traub O., Dermietzel R., and Willecke K. (1997a) Coexpression of connexin-45 and-32 in oligodendrocytes of the rat brain. J Neurocytol 26: 17–22.

    Article  PubMed  CAS  Google Scholar 

  • Kunzelmann P., Traub O., Manthey D., and Willecke K. (1997b) Upregulation of expression of connexin30 and colocalization with connexin43 in adult astrocytes. In: Gap junctions (Werner R., ed) p. 69 (abstract). Aplmsterdam: IOS Press.

    Google Scholar 

  • Lau A.F., Kurata W.E., Kanemitsu M.Y., Loo L.W.M., Warn-Cramer B.J., and Eckhart, Lampe P.D. (1996) Regulation of connexin43 function by activated tyrosine protein kinases. J Bioenerg Biomembr 28: 359–368.

    Google Scholar 

  • Li W.E.I., Ochalski E.L., Hertzberg E.L., and Nagy J.I. (1998) Immunorecognition, ultrastructure and phosphorylation status of astrcytic gap junctions and connexin43 in rat brain after cerebral focal ischemia. Eur J Neurosci 10: 2444–2463.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy K.D. and Salm A.K. (1991) Pharmacologically-distinct subsets of astroglia can be identified by their calcium responses to neuroligands. Neuroscience 41: 325–333.

    Google Scholar 

  • McKhann G.M. II, D’Ambrosio R., and Janigro D. (1997) Heterogeneity of astrocyte resting membrane potentials and intercellular coupling revealed by whole-cell and gramicidin-perforated patch recordings from cultured neocortical and hippocampal slice astrocytes. J Neurosci 17: 6850–6863.

    PubMed  CAS  Google Scholar 

  • Micevych P.E. and Abelson L. (1991) Distribution of mRNAs coding for liver and heart gap junction proteins in the rat central nervous system. J Comp Neurol 305: 96–118.

    Article  PubMed  CAS  Google Scholar 

  • Mobbs P., Brew H., and Attwell D. (1988) A quantitative analysis of glial cell coupling in the retina of the axolotl (Ambystoma mexicanum). Brain Res 460: 235–245.

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini E. (1986) Cell junctions of astrocytes, ependyma and related cells in the mammalian central nervous system, with emphasis on the hypothesis of a generalized functional syncytium of supporting cells. In: Astrocytes (Fedoroff S. and Vernadakis A., eds) pp. 329–371. New York: Academic Press.

    Google Scholar 

  • Müller T., Möller T., Neuhaus J., and Kettenmann H. (1996) Electrical coupling among Bergmann glial cells and its modulation by glutamate receptor activation. Glia 17: 274–284.

    Article  PubMed  Google Scholar 

  • Naus C.C.G., Bechberger J.F., and Bond S.L. (1996) Effect of gap junctional communication on glioma cell function. In: Gap junctions in the nervous system (Spray D.C. and Dermietzel R., eds), pp. 193–202. Austin: R.G. Landes Company.

    Google Scholar 

  • Naus C.C.G., Bechberger J.F., Zhang Y., Venance L., Yamasaki H., Juneja S.C., Kidder G.M., and Giaume C. (1997) Altered gap junctional communication, intercellular signaling, and growth in cultured astrocytes deficient in connexin43. J Neurosci Res 49: 528–540.

    Article  PubMed  CAS  Google Scholar 

  • Nedergaard M. (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263: 1768–1771.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson S.M. and Bruzzone R. (1997) Gap junctions: getting the message through. Curr Biol 7: R340–R344.

    Article  PubMed  CAS  Google Scholar 

  • Oh S., Yi R., Bennett M.V.L., TrexlerE B., Verselis V.K., and Bargiello T.A. (1997) Changes in permeability caused by connexin 32 mutations underlie X-linked Charcot-Marie-Tooth disease. Neuron 19: 927–938.

    Article  PubMed  CAS  Google Scholar 

  • Omori Y., Mesnil M., and Yamasaki H. (1996) Connexin 32 mutations from X-linked Charcot-Marie-Tooth disease patients: functional defects and dominant negative effects. Mol Biol Cell 7: 907–916.

    PubMed  CAS  Google Scholar 

  • Parpura V., Basarsky T.A., Liu F., Jeftinija K., Jeftinija S., and Haydon P.G. (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369: 744–747.

    Article  PubMed  CAS  Google Scholar 

  • Pastor A., Kremer M., Möller T., Kettenmann H., and Dermietzel R. (1998) Dye-coupling between spinal cord oligodendrocytes: differences in coupling efficiency between gray and white matter. Glia 24: 108–120.

    Article  PubMed  CAS  Google Scholar 

  • Ransom B.R. and Kettenmann H. (1990) Electrical coupling without dye coupling, between mammalian astrocytes and oligodendrocytes in cell culture. Glia 3: 258–266.

    Article  PubMed  CAS  Google Scholar 

  • Rash J.E., Duffy H.S., Dudek F.E., Bilhartz B.L., Whalen L.R., and Yasumura T. (1997) Grid-mapped freeze-fracture analysis of gap junctions in gray and white matter of adult rat central nervous system, with evidence for a “panglial syncytium” that is not coupled to neurons. J Comp Neurol 388: 265–292.

    Article  PubMed  CAS  Google Scholar 

  • Ressot C., Gomès D., Dautigny A., Pham-Dinh D., and Bruzzone R. (1998) Connexin32 mutations associated with X-linked Charcot-Marie-Tooth disease show two distinct phenotypes: loss of function and altered gating properties. J Neurosci 18: 4063–4075.

    PubMed  CAS  Google Scholar 

  • Reuss B., Dermietzel R., and Unsicker K. (1998) Fibroblast growth factor 2 (FGF-2) differentially regulates connexin (ex) 43 expression and function in astroglial cells from distinct brain regions. Glia 22: 19–30.

    Article  PubMed  CAS  Google Scholar 

  • Robinson S.R., Hampson E.C.G.M., Munro M.N., and Vaney D.I. (1993) Unidirectional coupling of gap junctions between neuroglia. Science 262: 1072–1074.

    Article  PubMed  CAS  Google Scholar 

  • Rose C.R. and Ransom B.R. (1997) Gap junctions equalize intracellular Na+ concentration in astrocytes. Glia 20: 299–307.

    Article  PubMed  CAS  Google Scholar 

  • Rufer M., Wirth S.B., Hofer A., Dermietzel R., Pastor A., Kettenmann H., and Unsicker K. (1996) Regulation of connexin-43, GFAP, and FGF-2 is not accompanied by changes in astroglial coupling in MPTP-lesioned, FGF-2-treated parkinsonian mice. J Neurosci Res. 46: 606–617.

    Article  PubMed  CAS  Google Scholar 

  • Scherer S.S., Deschênes S.M., Xu Y.-T., Grinspan J.G., Fischbeck K.H., and Paul D.L. (1995) Connexin32 is a myelin-related protein in the PNS and CNS. J Neurosci 15: 8281–8294.

    PubMed  CAS  Google Scholar 

  • Schmidt C., Ohlemeyer C., Labrakakis C., Walter T., Kettenmann H., and Schnitzer J. (1997) Analysis of motile oligodendrocyte precursor cells in vitroand in brain slices. Glia 20: 284–298.

    Article  PubMed  CAS  Google Scholar 

  • Sontheimer H. and Ritchie J.M. (1995) Voltage-gated sodium and calcium channels. In: Neuroglia (Kettenmann H. and Ransom B.R., eds), pp. 202–220. New York: Oxford University Press.

    Google Scholar 

  • Suter U. and Snipes G.J. (1995) Biology and genetics of hereditary motor and sensory neuropathies. Annu Rev Neurosci 18: 45–75.

    Article  PubMed  CAS  Google Scholar 

  • Toyofuku T., Yabuki M., Otsu K., Kuzuya T., Hori M., and Tada M. (1998) Direct association of the gap junction protein connexin-43 with ZO-1 in cardiac myocytes. J Biol Chem 273: 12725–12731.

    Article  PubMed  CAS  Google Scholar 

  • Veenstra R.D. (1996) Size and selectivity of gap junction channels formed from different connexins. J Bioenerg Biomembr 28: 327–337.

    Article  PubMed  CAS  Google Scholar 

  • Venance L., Cordier J., Monge M., Zalc B., Glowinski J., and Giaume C. (1995) Homotypic and heterotypic coupling mediated by gap junctions during glial cell differentiation in vitro. Eur J Neurosci 7: 451–461.

    Article  PubMed  CAS  Google Scholar 

  • Venance L., Prémont J., Glowinski J., and Giaume C. (1998) Gap junctional communication and pharmacological heterogeneity in astrocytes cultured from the rat striatum. J Physiol (London) 510: 429–440.

    Article  PubMed  CAS  Google Scholar 

  • White T.W., Paul D.L., Goodenough D.A., and Bruzzone R. (1995) Functional analysis of selective interactions among rodent connexins. Mol Biol Cell 6: 459–470.

    PubMed  CAS  Google Scholar 

  • White T.W., Goodenough D.A., and Paul D.L. (1998) Targeted ablation of connexin50 in mice results in microphthalmia and zonular pulverulent cataracts. J Cell Biol, in press.

    Google Scholar 

  • White T.W. and Paul D.L. (1999) Genetic diseases and gene knockouts reveal diverse connexin functions. Annu Rev Physiol 61, in press.

    Google Scholar 

  • Wolff J.R., Stuke K., Missler M., Tytko H., Schwarz P., Rohlmann A., and Chao T.I. (1998) Autocellular coupling by gap junctions in cultured astrocytes: A new view on cellular autoregulation during process formation. Glia 24: 121–140.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T., Ochalski A., Hertzberg E.L., and Nagy J. (1990) On the organization of astrocytes gap junctions in rat brain as suggested by LM and EM immunohistochemistry of connexin-43 expression. J Comp Neurol 302: 853–883.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura T., Satake M., and Kobayashi T. (1996) Connexin43 is another gap junction protein in the peripheral nervous system. J Neurochem 67: 1252–1258.

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura T., Satake M., Ohnishi A., Tsutsumi Y., and Fujikura Y. (1998) Mutations of connexin32 in Charcot-Marie-Tooth disease type X interfere with cell-to-cell communication but not cell proliferation and myelin-specific gene expression. J Neurosci Res 51: 154–161.

    Article  PubMed  CAS  Google Scholar 

  • Zahs K.R. and Newmann E.A. (1997) Asymmetric gap junctional coupling between glial cells in the rat retina. Glia 20: 10–22.

    Article  PubMed  CAS  Google Scholar 

  • Zhao S. and Spray D.C. (1997) Localization of Cx26, Cx32, and Cx43 in myelinating Schwann cells of mouse sciatic nerve during postnatal development. In: Gap junctions (Werner R., ed) pp. 198–202. Amsterdam: IOS Press.

    Google Scholar 

  • Zhu D., Kidder G.M., Caveney S., and Naus C.C.G. (1992) Growth retardation in glioma cells cocultured with cells overexpressing a gap junction protein. Proc Natl Acad Sci USA 89: 10218–10221.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bruzzone, R., Giaume, C. (1999). Connexins and Information Transfer Through Glia. In: Matsas, R., Tsacopoulos, M. (eds) The Functional Roles of Glial Cells in Health and Disease. Advances in Experimental Medicine and Biology, vol 468. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4685-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4685-6_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7121-2

  • Online ISBN: 978-1-4615-4685-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics