Skip to main content

Beneficial Effects of Angiotensin Blockade in Heart Failure Due to Myocardial Infarction

  • Chapter
The Hypertrophied Heart

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 3))

  • 100 Accesses

Summary

Although congestive heart failure is commonly associated with cardiac hypertrophy and/or cardiac dilation, the exact mechanisms for this complex syndrome are not clear. Furthermore, very little is known about the factors associated with the transition of cardiac hypertrophy to heart failure. Since the activation of both peripheral and tissue rennin-angiotensin systems (RAS) is considered to be involved in the genesis of cardiac hypertrophy, we believe that the increased activity of RAS for a prolonged period constitutes one of the important factors in the development of congestive heart failure. Thus angiotensin blockade in animals or patients with congestive heart failure has been shown to exert beneficial effects in terms of preventing clinical signs, improving heart function, and reducing mortality. In this regard, it is pointed out that the blockade of RAS can be achieved either by using different types of angiotensin-converting enzyme (ACE) inhibitors or by angiotensin receptor blockers. Because of the role of the sarcoplasmic reticulum (SR) in the regulation of intracellular Ca2+ and the evidence that the occurrence of Ca2+-handling abnormalities in cardiornyocytes plays a critical role in heart dysfunction, it is becoming dear that remodeling of the SR membrane with respect to changes in some of the Ca2+-regulation proteins such as Ca-pump ATPase, Ca2+-release channels, and phospholamban is intimately associated with congestive heart failure. Some studies have now shown that the SR functional defects in congestive heart failure can be partially prevented by treatment with ACE inhibitors or inhibitors of the angiotensin receptors. Further, investigations with respect to the cardiac SR gene expression and protein contents in the failing hearts with or without RAS blockade are required to show whether ACE inhibitors and angiotensin receptor blockers prevent SR defects by affecting the cardiac gene expression in congestive heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dhalla NS, Afzal N, Beamish RE, Naimark B, Takeda N, Nagano M. 1993. Pathophysiology of cardiac dysfunction in congestive heart failure. Can J Cardiol 9:873–887.

    PubMed  CAS  Google Scholar 

  2. Pfeffer JM, Fischer TA, Pfeffer MA. 1995. Angiotensin-converting enzyme inhibition and ventricular remodeling after myocardial infarction. Annu Rev Physiol 57:805–826.

    Article  PubMed  CAS  Google Scholar 

  3. Massie BM, Shah NB. 1997. Evolving trends in the epidemiologic factors of heart failure: rationale for preventive strategies and comprehensive disease management. Am Heart J 133:703–712.

    Article  PubMed  CAS  Google Scholar 

  4. Kurrelmeyer K, Kalra D, Bozkurt B, Wang F, Dibbs Z, Seta Y, Baumgarten G, Engle D, Sivasubramanian N, Mann DL. 1998. Cardiac remodeling as a consequence and cause of progressive heart failure, Clin Cardiol 21:114–119.

    Article  Google Scholar 

  5. Pfeffer MA, Braunwald E. 1990. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81:1161–1172.

    Article  PubMed  CAS  Google Scholar 

  6. Nelson KM, Yeager BE 1996. What is the role of angiotensin-converting enzyme inhibitors in congestive heart failure and after myocardial infarction? Ann Pharmacother 30:986–993.

    PubMed  CAS  Google Scholar 

  7. Anversa P, Sonnenblick EH. 1990. Ischemic cardiomyopathy: pathophysiologic mechanisms. Prog Cardiovasc Dis 33:49–70.

    Article  PubMed  CAS  Google Scholar 

  8. Roberts CS, Maclean D, Maroko P, Kloner RA. 1984. Early and late remodeling of the left ventricle after acute myocardial infarction. Am J Cardiol 54:407–410.

    Article  PubMed  CAS  Google Scholar 

  9. Erlebacher JA. 1985. Ventricular remodeling in myocardial infarction-the rat and the human [letter]. Am J Cardiol 56:910.

    Article  PubMed  CAS  Google Scholar 

  10. Sharpe N. 1992. Ventricular remodeling following myocardial infarction. Am J Cardiol 70:20C–26C.

    Article  PubMed  CAS  Google Scholar 

  11. Maisch B. 1996. Ventricular remodeling. Cardiology 87:2–10.

    Article  PubMed  Google Scholar 

  12. Yue P, Long CS, Austin R, Chang KC, Simpson PC, Massie BM, 1998. Post-infarction heart failure in the rat is associated with distinct alterations in cardiac myocyte molecular phenotype. J Mol Cell Cardiol 30:1615–1630.

    Article  PubMed  CAS  Google Scholar 

  13. Nelissen-Vrancken HJ, Debets JJ, Snoeckx LH, Daemen MJ, Smits JE 1996. Time-related normalization of maximal coronary flow in isolated perfused hearts of rats with myocardial infarction. Circulation 93:349–355.

    Article  PubMed  CAS  Google Scholar 

  14. Packer M. 1988. Neurohormonal interactions and adaptations in congestive heart failure. Circulation 77:721–730.

    Article  PubMed  CAS  Google Scholar 

  15. Sigurdsson A, Swedberg K. 1996. The role of neurohormonal activation in chronic heart failure and postmyocardial infarction. Am Heart J 132:229–234.

    PubMed  CAS  Google Scholar 

  16. Whittaker P. 1997. Collagen and ventricular remodeling after acute myocardial infarction: concepts and hypotheses. Basic Res Cardiol 92:79–81.

    PubMed  CAS  Google Scholar 

  17. Rumberger JA. 1994. Ventricular dilatation and remodeling after myocardial infarction. Mayo Clin Proc 69:664–674.

    PubMed  CAS  Google Scholar 

  18. Chien KR, Grace AA, Hunter JJ. 1999. Molecular and cellular biology of cardiac hypertrophy and failure. In Molecular Basis of Cardiovascular Disease-A Companion to Braunwald’s Heart Disease. Ed. KR Chien, JL Breslow, JM Leiden, RD Rosenberg, and CE Seidman, 211–250. Philadelphia: WB Saunders.

    Google Scholar 

  19. Marijianowski MM, Teeing P, Becker AE. 1997. Remodeling after myocardial infarction in humans is not associated with interstitial fibrosis of noninfarcted myocardium [see comments], J Am Coll Cardiol 30:76–82.

    Article  PubMed  CAS  Google Scholar 

  20. Sweet CS, Rucinska EJ. 1994. Losartan in heart failure: preclinical experiences and initial clinical outcomes. Eur Heart J 15:139–144.

    Article  PubMed  Google Scholar 

  21. Hasenfuss G. 1998. Alterations of calcium-regulatory proteins in heart failure. Cardiovasc Res 37:279–289.

    Article  PubMed  CAS  Google Scholar 

  22. Doggrell SA, Brown L. 1998. Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc Res 39:89–105.

    Article  PubMed  CAS  Google Scholar 

  23. Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Monet RA, Braunwald E. 1979. Myocardial infarct size and ventricular function in rats. Circ Res 44:503–512.

    Article  PubMed  CAS  Google Scholar 

  24. Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E. 1984. Ventricular performance in rats with myocardial infarction and failure. Am J Med 76:99–103.

    Article  PubMed  CAS  Google Scholar 

  25. Anversa P, Beghi C, Kikkawa Y, Olivetti G. 1986. Myocardial infarction in rats. Infarct size, myocyte hypertrophy and capillary growth. Circ Res 58:26–37.

    Article  PubMed  CAS  Google Scholar 

  26. Pfeffer JM. 1991. Progressive ventricular dilation in experimental myocardial infarction and its attenuation by angiotensin-converting enzyme inhibition. Am J Cardiol 68:17D–25D,

    Article  PubMed  CAS  Google Scholar 

  27. Capasso JM, Li P, Anversa P. 1993. Cytosolic calcium transients in myocytes isolated from rats with ischemic heart failure. Am J Physiol 265:H1953-H1964.

    PubMed  CAS  Google Scholar 

  28. Sanbe A, Takeo S. 1995. Long-term treatment with angiotensin I-converting enzyme inhibitors attenuates the loss of cardiac beta-adrenoceptor responses in rats with chronic heart failure. Circulation 92:2666–2675.

    Article  PubMed  CAS  Google Scholar 

  29. Zarain-Herzberg A, Afzal N, Elimban V, Dhalla NS. 1996. Decreased expression of cardiac sarcoplasmic reticulum Ca(2+)-pump ATPase in congestive heart failure due to myocardial infarction. Mol Cell Biochem 163/164:285–290.

    Article  CAS  Google Scholar 

  30. Ye J, Yang L, Sethi R, Copps J, Ramjiawan B, Summers R, Deslauriers R. 1997. A new technique of coronary artery ligation: experimental myocardial infarction in rats in vivo with reduced mortality. Mol Cell Biochem 176:227–233.

    Article  PubMed  CAS  Google Scholar 

  31. Liu YH, Yang XP, Nass O, Sabbah HN, Peterson E, Carretero OA. 1997. Chronic heart failure induced by coronary artery ligation in Lewis inbred rats. Am J Physiol 272:H722-H227.

    PubMed  CAS  Google Scholar 

  32. Isgaard J, Kujacic V, Jennische E, Holmang A, Sun XY, Hedner T, Hjalmarson A, Bengtsson BA. 1997. Growth hormone improves cardiac function in rats with experimental myocardial infarction. Eur J Clin Invest 27:517–525.

    Article  PubMed  CAS  Google Scholar 

  33. Hasenfuss G. 1998. Animal models of human cardiovascular disease, heart failure and hypertrophy. Cardiovasc Res 39:60–76.

    Article  PubMed  CAS  Google Scholar 

  34. Tajima M, Weinberg EO, Bartunek J, Jin H, Yang R, Paoni NF, Lorell BH 1999. Treatment with growth hormone enhances contractile reserve and intracellular calcium transients in myocytes from rats with postinfarction heart failure. Circulation 99:127–134.

    Article  PubMed  CAS  Google Scholar 

  35. DeFelice A, Frering R, Horan P. 1989. Time course of hemodynamic changes in rats with healed severe myocardial infarction. Am J Physiol 257:H289-H296.

    PubMed  CAS  Google Scholar 

  36. Yamaguchi F, Sanbe A, Takeo S. 1997. Cardiac sarcoplasmic reticular function in rats with chronic heart failure following myocardial infarction. J Mol Cell Cardiol 29:753–763.

    Article  PubMed  CAS  Google Scholar 

  37. Liu X, Shao Q, Dhalla NS. 1995. Myosin light chain phosphorylation in cardiac hypertrophy and failure due to myocardial infarction. J Mol Cell Cardiol 27:2613–2621.

    Article  PubMed  CAS  Google Scholar 

  38. Ganguly PK, Dhalla KS, Shao Q, Beamish RE, Dhalla NS. 1997. Differential changes in sympathetic activity in left and right ventricles in congestive heart failure after myocardial infarction. Am Heart J 133:340–345.

    Article  PubMed  CAS  Google Scholar 

  39. Sethi R, Elimban V, Chapman D, Dixon IM, Dhalla NS. 1998. Differential alterations in left and right ventricular G- proteins in congestive heart failure due to myocardial infarction. J Mol Cell Cardiol 30:2153–2163.

    Article  PubMed  CAS  Google Scholar 

  40. Afzal N, Dhalla NS. 1996. Sarcoplasmic reticular Ca2+ pump ATPase activity in congestive heart failure due to myocardial infarction. Can J Cardiol 12:1065–1073.

    PubMed  CAS  Google Scholar 

  41. Holt E, Tonnessen T, Lunde PK, Semb SO, Wasserstrom JA, Sejersted OM, Christensen G. 1998. Mechanisms of cardiomyocyte dysfunction in heart failure following myocardial infarction in rats. J Mol Cell Cardiol 30:1581–1593.

    Article  PubMed  CAS  Google Scholar 

  42. Parmley WW. 1985. Pathophysiology of congestive heart failure. Am J Cardiol 55:9A–14A.

    Article  PubMed  CAS  Google Scholar 

  43. Yamaguchi F, Sanbe A, Takeo S. 1998. Effects of long-term treatment with trandolapril on sarcoplasmic reticulum function of cardiac muscle in rats with chronic heart failure following myocardial infarction. Br J Pharmacol 123:326–334.

    Article  PubMed  CAS  Google Scholar 

  44. Anand IS, Liu D, Chugh SS, Prahash AJ, Gupta S, John Popescu F, Chandrashekhar Y. 1997. Isolated myocyte contractile function is normal in postinfarct remodeled rat heart with systolic dysfunction. Circulation 96:3974–3984.

    Article  PubMed  CAS  Google Scholar 

  45. Shen YT, Wiedmann RT, Lynch JJ, Grossman W, Johnson RG. 1996. GH replacement fails to improve ventricular function in hypophysectomized rats with myocardial infarction. Am J Physiol 271:H1721-H1727.

    PubMed  CAS  Google Scholar 

  46. Sanbe A, Tanonaka K, Niwano Y, Takeo S. 1994. Improvement of cardiac function and myocardial energy metabolism of rats with chronic heart failure by long-term coenzyme Q10 treatment. J Pharmacol Exp Ther 269:51–56.

    PubMed  CAS  Google Scholar 

  47. Kumar R, Hood WB Jr, Abelmun WH. 1971. Hemodynamic spectrum of left ventricular failure in experimental myocardial infarction. Am Heart J 82:713–714.

    Article  PubMed  CAS  Google Scholar 

  48. Litwin SE, Bridge JH. 1997. Enhanced Na(+)-Ca2+ exchange in the infarcted heart. Implications for excitation-contraction coupling. Circ Res 81:1083–1093.

    Article  PubMed  CAS  Google Scholar 

  49. Ganguly PK, Pierce GN, Dhalla KS, Dhalla NS. 1983. Defective sarcoplasmic reticular calcium transport in diabetic cardiomyopathy. Am J Physiol 244:E528–E535.

    PubMed  CAS  Google Scholar 

  50. Xu YJ, Botsford MW, Panagia V, Dhalla NS. 1996. Responses of heart function and intracellular free Ca2+ to phosphatidic acid in chronic diabetes. Can J Cardiol 12:1092–1098.

    PubMed  CAS  Google Scholar 

  51. Dhalla NS, Liu X, Panagia V, Take& N. 1998. Subcellular remodeling and heart dysfunction in chronic diabetes [editorial]. Cardiovasc Res 40:239–247.

    Article  PubMed  CAS  Google Scholar 

  52. Ming Z, Nordin C, Siri F, Aronson RS. 1994. Reduced calcium current density in single myocytes isolated from hypertrophied failing guinea pig hearts. J Mol Cell Cardiol 26:1133–1143.

    Article  PubMed  CAS  Google Scholar 

  53. Kiss E, Ball NA, Kranias EG, Walsh RA. 1995. Differential changes in cardiac phospholamban and sarcoplasmic reticular Ca(2+)-ATPase protein levels. Effects on Ca2+ transport and mechanics in compensated pressure-overload hypertrophy and congestive heart failure. Circ Res 77:759–764.

    Article  PubMed  CAS  Google Scholar 

  54. Bailey BA, Dipla K, Li S, Houser SR. 1997. Cellular basis of contractile derangements of hypertrophied feline ventricular myocytes. J Mol Cell Cardiol 29:1823–1835.

    Article  PubMed  CAS  Google Scholar 

  55. Wang J, Flemal K, Qiu Z, Ablin L, Grossman W, Morgan JP. 1994. Ca2+ handling and myofibrillar Ca 2+ sensitivity in ferret cardiac myocytes with pressure-overload hypertrophy. Am J Physiol 267: H918–H9124.

    PubMed  CAS  Google Scholar 

  56. Furukawa N, Bassett AL, Furukawa T, Myerburg RJ, Kimura S. 1991. Hypertrophy alters effect of Ins(1,4,5)P3 on Ca2+ release in skinned rat heart muscle. Am J Physiol 260:H612–H618.

    Google Scholar 

  57. Rupp H, Elimban V, Dhalla NS. 1998. Differential influence of fasting and BM13.907 treatment on growth and phenotype of pressure overloaded rat heart. Mol Cell Biochem 188:209–215.

    Article  PubMed  CAS  Google Scholar 

  58. Ohkusa T, Hisamatsu Y, Yano M, Kobayashi S, Tatsuno H, Saiki Y, Kohno M, Matsuzaki M. 1997. Altered cardiac mechanism and sarcoplasmic reticulum function in pressure overload-induced cardiac hypertrophy in rats. J Mol Cell Cardiol 29:45–54.

    Article  PubMed  CAS  Google Scholar 

  59. Delbridge LM, Satoh H, Yuan W, Bassani JW, Qi M, Ginsburg KS, Samarel AM, Bers DM. 1997. Cardiac myocyte volume, Ca2+ fluxes, and sarcoplasmic reticulum loading in pressure-overload hypertrophy. Am J Physiol 272:H2425–2435.

    PubMed  CAS  Google Scholar 

  60. Qi M, Shannon TR, Euler DE, Bars DM, Samarel AM. 1997. Downregulation of sarcoplasmic reticulum Ca(2+)-ATPase during progression of left ventricular hypertrophy. Am J Physiol 272: H2416–H2424.

    PubMed  CAS  Google Scholar 

  61. Gomez AM, Valdivia HH, Chang H, Lederer MR, Santana LF, Cannell MB, McCune SA, Altschuld RA, Lederer WJ. 1997. Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276:800–806.

    Article  PubMed  CAS  Google Scholar 

  62. Hisamatsu Y, Ohkusa T, Kihara Y, Inoko M, Ueyama T, Yano M, Sasayama S, Matsuzaki M. 1997. Early changes in the functions of cardiac sarcoplasmic reticulum in volume-overloaded cardiac hypertrophy in rats. J Mol Cell Cardiol 29:1097–1109.

    Article  PubMed  CAS  Google Scholar 

  63. Spinale FG, Mukherjee R, Iannini JP, Whitebread S, Hebbar L, Clair MJ, Melton DM, Cox MH, Thomas PB, de Gasparo M. 1997. Modulation of the renin-angiotensin pathway through enzyme inhibition and specific receptor blockade in pacing-induced heart failure: II. Effects on myocyte contractile processes. Circulation 96:2397–2406.

    Article  PubMed  CAS  Google Scholar 

  64. O’Rourke B, Kass DA, Tomaselli GF, Kaab S, Tunin R, Marban E. 1999. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: experimental studies. Circ Res 84:562–570.

    Article  PubMed  Google Scholar 

  65. Winslow AL, Rice J, Jafri S, Marban E, O’Rourke B. 1999. Mechanisms of altered excitationcontraction coupling in canine tachycardia-induced heart failure, II: model studies. Circ Res 84:571–586.

    Article  PubMed  CAS  Google Scholar 

  66. Gertz EW. 1972. Cardiomyopatbic Syrian hamster: a possible model of human disease. Prog Exp Tumor Res 16:242–260.

    PubMed  CAS  Google Scholar 

  67. Arai M, Matsui H, Periasamy M. 1994. Sarcoplasmic reticulum gene expression in cardiac hypertrophy and heart failure. Circ Res 74:555–564.

    Article  PubMed  CAS  Google Scholar 

  68. Sapp JL, Howlett SE. 1994. Density of ryanodine receptors is increased in sarcoplasmic reticulum from prehypertrophic cardiomyopathic hamster heart. J Mol Cell Cardiol 26:325–334.

    Article  PubMed  CAS  Google Scholar 

  69. Dhalla NS, Ziegelhoffer A, Harrow JA. 1977. Regulatory role of membrane systems in heart function. Can J Physiol Pharmacol 55:1211–1234.

    Article  PubMed  Google Scholar 

  70. Dhalla NS, Das PK, Sharma GP. 1978. Subcellular basis of cardiac contractile failure. J Mol Cell Cardiol 10:363–385.

    Article  PubMed  CAS  Google Scholar 

  71. Dhalla NS, Pierce GN, Panagia V, Singal PK, Beamish RE. 1982. Calcium movements in relation to heart function. Basic Res Cardiol 77:117–139.

    Article  PubMed  CAS  Google Scholar 

  72. Morgan JP, Perreault CL, Morgan KG. 1991. The cellular basis of contraction and relaxation in cardiac and vascular smooth muscle. Am Heart J 1991. 121:961–968.

    Article  PubMed  CAS  Google Scholar 

  73. Barry WH, Bridge JH. 1993. Intracellular calcium homeostasis in cardiac myocytes. Circulation 87:1806–1815.

    Article  PubMed  CAS  Google Scholar 

  74. Hasenfuss G, Meyer M, Schillinger W, Preuss M, Pieske B, Just H. 1997. Calcium handling proteins in the failing human heart. Basic Res Cardiol 92:87–93.

    Article  PubMed  CAS  Google Scholar 

  75. Movsesian MA, Schwinger RH. 1998. Calcium sequestration by the sarcoplasmic reticulum in heart failure. Cardiovasc Res 37:352–359.

    Article  PubMed  CAS  Google Scholar 

  76. Fabiato A. 1983. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol. 245:C1-C14.

    PubMed  CAS  Google Scholar 

  77. Fabiato A. 1985. Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 85:291–320.

    Article  PubMed  CAS  Google Scholar 

  78. Balke CW, Shorofiky SR. 1998. Alterations in calcium handling in cardiac hypertrophy and heart failure. Cardiovasc Res 37:290–299.

    Article  PubMed  CAS  Google Scholar 

  79. Shorofsky SR, Aggarwal R, Corretti M, Baffa JM, Strum JM, Al-Seikhan BA, Kobayashi YM, Jones LR, Wier WG, Balke CW. 1999. Cellular mechanisms of altered contractility in the hypertrophied heart: big hearts, big sparks. Circ Res 84:424–434.

    Article  PubMed  CAS  Google Scholar 

  80. Winegrad S. 1997. Endothelial cell regulation of contractility of the heart. Arum Rev Physiol 59:505–525.

    Article  CAS  Google Scholar 

  81. Cheung JY, Musch TI, Misawa H, Semanchick A, Elensky M, Yelamarty RV, Moore RL. 1994. Impaired cardiac function in rats with healed myocardial infarction: cellular vs. myocardial mechanisms. Am J Physiol 266:C29–C36.

    PubMed  CAS  Google Scholar 

  82. Li P, Park C, Micheletti R, Li B, Cheng W, Sonnenblick EH, Anversa P, Bianchi G. 1995. Myocyte performance during evolution of myocardial infarction in rats: effects of propionyl-L-carnitine. Am J Physiol 268:H1702–H1713.

    PubMed  CAS  Google Scholar 

  83. Denvir MA, MacFarlane NG, Cobbe SM, Miller DJ. 1998. Sarcoplasmic reticulum Ca loading in rabbits 8 and 15 weeks after coronary artery ligation. Pflugers Arch-Eur J Physiol 436:436–442.

    Article  CAS  Google Scholar 

  84. Williams JH, Ward CW 1998. Changes in skeletal muscle sarcoplasmic reticulum function and force production following myocardial infarction in rats. Exp Physiol 83:85–94.

    PubMed  CAS  Google Scholar 

  85. Otsu K, Willard HF, Khanna VK, Zorzato F, Green NM, MacLennan DH. 1990. Molecular cloning of cDNA encoding the Ca2+ release channel (ryanodine receptor) of rabbit cardiac muscle sarcoplasmic reticulum. J Biol Chem 265:13472–13483.

    PubMed  Google Scholar 

  86. Rousseau E, Smith JS, Meissner G. 1987. Ryanodine modifies conductance and gating behavior of single Ca2+ release channel. Am J Physiol 253:C364–C368.

    PubMed  CAS  Google Scholar 

  87. Lai FA, Erickson HP, Rousseau E, Liu QY, Meissner G. 1988. Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 331:315–319.

    Article  PubMed  CAS  Google Scholar 

  88. Anderson K, Lai FA, Liu QY, Rousseau E, Erickson HP, Meissner G. 1989. Structur-Ca2+ release channel complex. J Biol Chem 264:1329–1335.

    PubMed  CAS  Google Scholar 

  89. Meissner G. 1986. Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J Biol Chem 261:6300–6306.

    PubMed  CAS  Google Scholar 

  90. McPherson PS, Campbell KP. 1993. The ryanodine receptor/Ca2+ release channel. J Biol Chem 268:13765–13768.

    PubMed  CAS  Google Scholar 

  91. Phillips RM, Narayan P, Gomez AM, Dilly K, Jones LR, Lederer WJ, Altschuld RA. 1998. Sarcoplasmic reticulum in heart failure: central player or bystander? Cardiovasc Res 37:346–351.

    Article  PubMed  CAS  Google Scholar 

  92. Jorgensen AO, Shen AC, Daly P, MacLennan DH. 1982. Localization of Ca2+ + Mg2+ -ATPase of the sarcoplasmic reticulum in adult rat papillary muscle. J Cell Biol 93:883–892.

    Article  PubMed  CAS  Google Scholar 

  93. Cantilina T, Sagara Y, Inesi G, Jones LR. 1993. Comparative studies of cardiac and skeletal sarcoplasmic reticulum ATPases. Effect of a phospholamban antibody on enzyme activation by Ca2+. J Biol Chem 268:17018–17025.

    PubMed  CAS  Google Scholar 

  94. Burk SE, Lytton J, MacLennan DH, Shull GE. 1989. cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca2+ pump. J Biol Chem 264:18561–18568.

    PubMed  Google Scholar 

  95. Wu KD, Lee WS, Wey J, Bungard D, Lytton J. 1995. Localization and quantification of endoplasmic reticulum Ca(2+)-ATPase isoform transcripts. Am J Physiol 269:C775-C784.

    PubMed  CAS  Google Scholar 

  96. Zarain-Herzberg A, MacLennan DH, Periasamy M. 1990. Characterization of rabbit cardiac sarco(endo)plasmic reticulum Ca2(+)-ATPase gene. J Biol Chem 265:4670–4677.

    PubMed  CAS  Google Scholar 

  97. Periasamy M, Reed TD, Liu LH, Ji Y, Loukianov E, Paul RJ, Nieman ML, Riddle T, Duffy JJ, Doetschman T, Lorenz JN, Shull GE. 1999. Impaired cardiac performance in heterozygous mice with a null mutation in the sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) gene. J Biol Chem 274:2556–2562.

    Article  PubMed  Google Scholar 

  98. Verboomen H, Wuytack F, De Smedt H, Himpens B, Casteels R. 1992. Functional difference between SERCA2a and SERCA2b Ca2+ pumps and their modulation by phospholamban. Biochem J 286:591–595.

    PubMed  CAS  Google Scholar 

  99. Zarain-Herzberg A, Rupp H, Elimban V, Dhalla NS. 1996. Modification of sarcoplasmic reticulum gene expression in pressure overload cardiac hypertrophy by etomoxir. FASEB J 10:1303–1309.

    PubMed  CAS  Google Scholar 

  100. Ji Y, Loukianov E, Loukianova T, Jones LR, Periasamy M. 1999. SERCA1a can functionally substitute for SERCA2a in the heart. Am J Physiol 276:H89–H97.

    PubMed  CAS  Google Scholar 

  101. Jones LR, Besch HR Jr, Watanabe AM. 1978. Regulation of the calcium pump of cardiac sarcoplasmic reticulum. Interactive roles of potassium and ATP on the phosphoprotein intermediate of the (K+, Ca2+)-ATPase. J Biol Chem 253:1643–1653.

    PubMed  CAS  Google Scholar 

  102. Davis K, Davies CH, Harding SE. 1997. Effects of inhibition of sarcoplasmic reticulum calcium uptake on contraction in myocytes isolated from failing human ventricle. Cardiovasc Res 33:88–97.

    Article  Google Scholar 

  103. Baker DL, Hashimoto K, Grupp IL, Ji Y, Reed T, Loukianov E, Grupp G, Bhagwhat A, Hoit B, Walsh R, Marban E, Periasamy M. 1998. Targeted overexpression of the sarcoplasmic reticulum Ca2+-ATPase increases cardiac contractility in transgenic mouse hearts. Circ Res 83:1205–1214.

    Article  PubMed  CAS  Google Scholar 

  104. Meyer M, Dillmann WH. 1998. Sarcoplasmic reticulum Ca(2+)-ATPase overexpression by adenovirus mediated gene transfer and in transgenic mice. Cardiovasc Res 37:360–366.

    Article  PubMed  CAS  Google Scholar 

  105. Tada M, Kirchberger MA, Katz AM. 1975. Phosphorylation of a 22,000-dalton component of the cardiac sarcoplasmic reticulum by adenosine 3′:5′-monophosphate-dependent protein kinase. J Biol Chem 250:2640–2647.

    PubMed  CAS  Google Scholar 

  106. Kirchberger MA, Antonetz T. 1982. Calmodulin-mediated regulation of calcium transport and (Ca2+ + Mg2+)- activated ATPase activity in isolated cardiac sarcoplasmic reticulum. J Biol Chem 257:5685–5691.

    PubMed  CAS  Google Scholar 

  107. Gwathmey JK, Copelas L, MacKinnon R, Schoen FJ, Feldman MD, Grossman W, Morgan JP, 1987. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res 61:70–76.

    Article  PubMed  CAS  Google Scholar 

  108. Morgan JP Erny RE, Allen PD, Grossman W, Gwathmey JK, 1990. Abnormal intracellular calcium handling, a major cause of systolic and diastolic dysfunction in ventricular myocardium from patients with heart failure. Circulation 81:III21–III32.

    PubMed  CAS  Google Scholar 

  109. Dipla K, Mattiello JA, Margulies KB, Jeevanandam V, Houser SR. 1999. The sarcoplasmic reticulum and the Na+/Ca2+ exchanger both contribute to the Ca2+ transient of failing human ventricular myocytes. Circ Res 84:435–444.

    Article  PubMed  CAS  Google Scholar 

  110. Qin D, Zhang ZH, Caref EB, Boutjdir M, Jain P, El-Sherif N. 1996. Cellular and ionic basis of arrhythmias in postinfarction remodeled ventricular myocardium. Circ Res 79:461–473.

    Article  PubMed  CAS  Google Scholar 

  111. Limas CJ, Olivari MT, Goldenberg IF, Levine TB, Benditt DG, Simon A. 1987, Calcium uptake by cardiac sarcoplasmic reticulum in human dilated cardiomyopathy. Cardiovasc Res 21:601–605.

    Article  PubMed  CAS  Google Scholar 

  112. Zhang XQ, Moore RL, Tenhave T, Cheung JY. 1995. [Ca2+]i transients in hypertensive and postinfarction myocytes. Am J Physiol 269:C632–C640.

    PubMed  Google Scholar 

  113. Zhang XQ, Tillotson DL, Moore RL, Zelis R, Cheung JY. 1996. Na+/Ca2+ exchange currents and SR Ca2+ contents in postinfarction myocytes. Am J Physiol 271:C1800–C1807.

    PubMed  CAS  Google Scholar 

  114. Zhang XQ, Moore RL, Tillotson DL, Cheung JY. 1995. Calcium currents in postinfarction rat cardiac myocytes. Am J Physiol 269:C1464–C1473.

    PubMed  CAS  Google Scholar 

  115. Meyer M, Schillinger W, Pieske B, Holubarsch C, Heilmann C, Posival H, Kuwajima G, Mikoshiba K, Just H, Hasenfuss G. 1995. Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation 92:778–784.

    Article  PubMed  CAS  Google Scholar 

  116. Schwinger RH, Bohm M, Schmidt U, Karczewski P, Bavendiek U, Flesch M, Krause EG, Erdmann E. 1995. Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca(2+)-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation 92:3220–3228.

    Article  PubMed  CAS  Google Scholar 

  117. Iijima K, Geshi E, Nomizo A, Arata Y, Katagiri T. 1998. Alterations in sarcoplasmic reticulum and angiotensin II type 1 receptor gene expression after myocardial infarction in rats. Jpn Circ J 62:449–454.

    Article  PubMed  CAS  Google Scholar 

  118. Griendling KK, Murphy TJ, Alexander RW. 1993. Molecular biology of the renin-angiotensin system. Circulation 87:1816–1828.

    Article  PubMed  CAS  Google Scholar 

  119. Dzau VJ, Burt DW, Pratt RE. 1988. Molecular biology of the renin-angiotensin system. Am J Physiol 255:F563-F573.

    PubMed  CAS  Google Scholar 

  120. Furuta H, Guo DF, Inagami T. 1992. Molecular cloning and sequencing of the gene encoding human angiotensin II type 1 receptor. Biochem Biophys Res Common 183:8–13.

    Article  CAS  Google Scholar 

  121. Timmermans PB, Smith RD. 1994. Angiotensin II receptor subtypes: selective antagonists and functional correlates. Eur Heart J 15(Suppl D):79–87.

    Article  PubMed  CAS  Google Scholar 

  122. Bartunek J, Weinberg EO, Tajima M, Rohrbach S, Lorell BH. 1999. Angiotensin II type 2 receptor blockade amplifies the early signals of cardiac growth response to angiotensin II in hypertrophied hearts. Circulation 99:22–25.

    Article  PubMed  CAS  Google Scholar 

  123. Sechi LA, Griffin CA, Grady EF, Kalinyak JE, Schambelan M. 1992. Characterization of angiotensin II receptor subtypes in rat heart. Cite Res 71:1482–1489.

    Article  CAS  Google Scholar 

  124. Shao Q, Saward L, Zahradka P, Dhalla NS. 1998. Ca2+ mobilization in adult rat cardiomyocytes by angiotensin type 1 and 2 receptors. Biochem Pharmacol 55:1413–1418.

    Article  PubMed  CAS  Google Scholar 

  125. Shao Q, Panagia V, Beamish RE, Dhalla NS. 1998. Role of renin-angiotensin system in cardiac hypertrophy and failure. In Angiotensin II Receptor Blockade: Physiological and Clinical Implications Ed. NS. Dhalla, P Zahradka, I Dixon, and RE Beamish, 283–310. Boston: Kluwer Academic.

    Chapter  Google Scholar 

  126. Sadoshima J, Xu Y, Slayter HS, Izumo S. 1993. Autocrine release of angiotensin II mediates stretchinduced hypertrophy of cardiac myocytes in vitro. Cell 75:977–984.

    Article  PubMed  CAS  Google Scholar 

  127. Liu JL, Zucker IH. 1999. Regulation of sympathetic nerve activity in heart failure: a role for nitric oxide and angiotensin II. Circ Res 84:417–423.

    Article  PubMed  CAS  Google Scholar 

  128. Lindpaintner K, Lu W, Neidermajer N, Schieffer B, Just H, Ganten D, Drexler H. 1993. Selective activation of cardiac angiotensinogen gene expression in post-infarction ventricular remodeling in the rat. J Mol Cell Cardiol 25:133–143.

    Article  PubMed  CAS  Google Scholar 

  129. Kohzuki M, Kanazawa M, Yoshida K, Kamimoto M, Wu XM, Jiang ZL, Yasujima M, Abe K, Johnston CI, Sato T. 1996. Cardiac angiotensin converting enzyme and endothelin receptor in rats with chronic myocardial infarction. Jpn Circ J 60:972–980.

    Article  PubMed  CAS  Google Scholar 

  130. Meggs LG, Coupet J, Huang H, Cheng W, Li P, Capasso JM, Homey CJ, Anversa P. 1993. Regulation of angiotensin II receptors on ventricular myocytes after myocardial infarction in rats. Circ Res 72:1149–1162.

    Article  PubMed  CAS  Google Scholar 

  131. Zhu YC, Zhu YZ, Gohlke P, Stauss HM, Unger T. 1997. Effects of angiotensin-converting enzyme inhibition and angiotensin II AT1 receptor antagonism on cardiac parameters in left ventricular hypertrophy. Am J Cardiol 80:110A–117A.

    Article  PubMed  CAS  Google Scholar 

  132. Anthonio RL, van Veldhuisen DJ, van Gilst WH. 1998. Left ventricular dilatation after myocardial infarction: ACE inhibitors, beta-blockers, or both? J Cardiovasc Pharmacol 32:S1–S8.

    PubMed  CAS  Google Scholar 

  133. Mulder P, Devaux B, Richard V, Henry JP, Wimart MC, Thibout E, Mace B, Thuillez C. 1997. Early versus delayed angiotensin-converting enzyme inhibition in experimental chronic heart failure. Effects on survival, hemodynamics, and cardiovascular remodeling. Circulation 95:1314–1319.

    Article  PubMed  CAS  Google Scholar 

  134. Pitt B. 1995. Importance of angiotensin-converting enzyme inhibitors in myocardial infarction and congestive heart failure: implications for clinical practice. Cardiology 86:41–45.

    Article  PubMed  Google Scholar 

  135. Cody RJ. Comparing angiotensin-converting enzyme inhibitor trial results in patients with acute myocardial infarction. Arch Intern Med 154:2029–2036.

    Google Scholar 

  136. Cody RJ. 1995. ACE inhibitors: myocardial infarction and congestive heart failure. Am Fam Physician 52:1801–1806.

    PubMed  CAS  Google Scholar 

  137. Colucci WS. 1997. Molecular and cellular mechanisms of myocardial failure. Am J Cardiol 80:15L–25L.

    Article  PubMed  CAS  Google Scholar 

  138. van den Heuvel AF, van Gilst WH, van Veldhuisen DJ, de Vries RJ, Dunselman PH, Kingma JH. 1997. The Captopril and Thrombolysis Study (CATS) Investigators. Long-term anti-ischemic effects of angiotensin-converting enzyme inhibition in patients after myocardial infarction. J Am Coll Cardiol 30:400–405.

    Article  PubMed  Google Scholar 

  139. Sanbe A, Tanonaka K, Kobayasi R, Takeo S. 1995. Effects of long-term therapy with ACE inhibitors, captopril, enalapril and trandolapril, on myocardial energy metabolism in rats with heart failure following myocardial infarction. J Mol Cell Cardiol 27:2209–2222.

    Article  PubMed  CAS  Google Scholar 

  140. Takeishi Y, Bhagwat A, Ball NA, Kirkpatrick DL, Periasamy M, Walsh RA. 1999. Effect of angiotensin-converting enzyme inhibition on protein kinase C and SR proteins in heart failure. Am J Physiol 276:H53–H62.

    PubMed  CAS  Google Scholar 

  141. Smits JF, van Krimpen C, Schoemaker RG, Cleutjens JP, Daemen MJ. 1992. Angiotensin II receptor blockade after myocardial infarction in rats: effects on hemodynamics, myocardial DNA synthesis, and interstitial collagen content. J Cardiovasc Pharmacol 20:772–778.

    PubMed  CAS  Google Scholar 

  142. Regitz-Zagrosek V, Neuss M, Fleck E. 1995. Effects of angiotensin receptor antagonists in heart failure: clinical and experimental aspects. Eur Heart J 16:86–91.

    Article  PubMed  CAS  Google Scholar 

  143. Dickstein K, Chang P, Willenheimer R, Haunso S, Remes J, Hall C, Kjekshus J. 1995. Comparison of the effects of losartan and enalapril on clinical status and exercise performance in patients with moderate or severe chronic heart failure. J Am Coll Cardiol 26:438–445.

    Article  PubMed  CAS  Google Scholar 

  144. Hamroff G, Katz SD, Mancini D, Blaufarb I, Bijou R, Patel R, Jondeau G, Olivari MT, Thomas S, Le Jemtel TH. 1999. Addition of angiotensin II receptor blockade to maximal angiotensin-converting enzyme inhibition improves exercise capacity in patients with severe congestive heart failure. Circulation 99:990–992.

    Article  PubMed  Google Scholar 

  145. Taylor K, Patten RD, Smith JJ, Aronovitz MJ, Wight J, Salomon RN, Konstam MA. 1998. Divergent effects of angiotensin-converting enzyme inhibition and angiotensin II-receptor antagonism on myocardial cellular proliferation and collagen deposition after myocardial infarction in rats. J Cardiovasc Pharmacol 31:654–660.

    Article  PubMed  CAS  Google Scholar 

  146. Murakami M, Suzuki H, Naitoh M, Matsumoto A, Kageyama Y, Tsujimoto G, Saruta T. 1995. Blockade of the renin-angiotensin system in heart failure in conscious dogs. J Hypertens 13:1405–1412.

    Article  PubMed  CAS  Google Scholar 

  147. Movsesian MA, Karimi M, Green K, Jones LR. 1994. Ca(2+)-transporting ATPase, phospholamban, and calsequestrin levels in nonfailing and failing human myocardium. Circulation 90:653–657.

    Article  PubMed  CAS  Google Scholar 

  148. Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, Holubarsch C, Posival H, Just H, Drexler H. 1994. Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ Res 75:434–442.

    Article  PubMed  CAS  Google Scholar 

  149. Linck B, Boknik P, Eschenhagen T, Muller FU, Neumann J, Nose M, Jones LR, Schmitz W, Scholz H. 1996, Messenger RNA expression and immunological quantification of phospholamban and SR-Ca(2+)-ATPase in failing and nonfailing human hearts. Cardiovasc Res 31:625–632.

    PubMed  CAS  Google Scholar 

  150. Liu X, Sentex E, Goldman L, Takeda S, Osada M, Dhalla NS. 1999. Modification of cardiac subcellular remodeling due to pressure overload by captopril and losartan. Clin Exp Hypertens 21: 145–156.

    Article  PubMed  CAS  Google Scholar 

  151. Mercadier JJ, Lompre AM, Duc P, Boheler KR, Fraysse JB, Wisnewsky C, Allen PD, Komajda M, Schwartz K. 1990. Altered sarcoplasmic reticulum Ca2(+)-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest 85:305–309.

    Article  PubMed  CAS  Google Scholar 

  152. Feldman AM, Ray PE, Silan CM, Mercer JA, Minobe W, Bristow MR. 1991. Selective gene expression in failing human heart. Quantification of steady-state levels of messenger RNA in endomyocardial biopsies using the polymerase chain reaction. Circulation 83:1866–1872.

    Article  PubMed  CAS  Google Scholar 

  153. Feldman AM, Weinberg EO, Ray PE, Lorell BH. 1993. Selective changes in cardiac gene expression during compensated hypertrophy and the transition to cardiac decompensation in rats with chronic aortic banding. Circ Res 73:184–192.

    Article  PubMed  CAS  Google Scholar 

  154. Arai M, Alpert NR, MacLennan DH, Barton P, Periasamy M. 1993. Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res 72:463–469.

    Article  PubMed  CAS  Google Scholar 

  155. The CONSENSUS Trial Study Group. 1987. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 316:1429–1435.

    Article  Google Scholar 

  156. Swedberg K, Held P, Kjekshus J, Rasmussen K, Ryden L, Wedel H. 1992, Effects of the early administration of enalapril on mortality in patients with acute myocardial infarction. Results of the Cooperative New Scandinavian Enalapril Survival Study II (CONSENSUS II). N Engl J Med 327: 678–684.

    Article  PubMed  CAS  Google Scholar 

  157. Cohn JN, Johnson G, Ziesche S, Cobb F, Francis G, Tristani F, Smith R, Dunkman WB, Loeb H, Wong M. 1991. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med 325:303–310.

    Article  PubMed  CAS  Google Scholar 

  158. The SOLVD Investigators. 1992. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. [published erratum appears in N Engl J Med 327: 1768]. N Engl J Med 327:685–691.

    Article  Google Scholar 

  159. The SOLVD Investigators. 1991. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 325:293–302.

    Article  Google Scholar 

  160. Schieffer B, Wirger A, Meybrunn M, Seitz S, Holtz J, Riede UN, Drexler H. 1994. Comparative effects of chronic angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor blockade on cardiac remodeling after myocardial infarction in the rat. Circulation 89:2273–2282.

    Article  PubMed  CAS  Google Scholar 

  161. Rays TE, Fonken SJ, Lee RW, Daugherty S, Goldman S, Wong PC, Timmermans PB, Mackin E. 1991. Hemodynamic effects of direct angiotensin II blockade compared to converting enzyme inhibition in rat model of heart failure. Am J Hypertens 4:334S–340S.

    PubMed  Google Scholar 

  162. Richard S, Leclercq F, Lemaire S, Piot C, Nargeot J. 1998. Ca2+ currents in compensated hypertrophy and heart failure. Cardiovasc Res 37:300–311.

    Article  PubMed  CAS  Google Scholar 

  163. Wagner GS, Freye CJ, Palmeri ST, Roark SF, Stack NC, Ideker RE, Harrell FE Jr, Selvester RH. 1982. Evaluation of a QRS scoring system for estimating myocardial infarct size. I. Specificity and observer agreement. Circulation 65:342–347.

    Article  PubMed  CAS  Google Scholar 

  164. Chomczynski P, Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Siochem 162:156–159.

    Article  CAS  Google Scholar 

  165. Dixon IM, Hata T, Dhalla NS, 1992. Sarcolemmal calcium transport in congestive heart failure due to myocardial infarction in rats. Am J Physiol 262:H1387–H1394.

    PubMed  CAS  Google Scholar 

  166. Ross J Jr. 1999. Growth hormone, cardiomyocyte contractile reserve, and heart failure. Circulation 99:15–17.

    Article  PubMed  Google Scholar 

  167. Shao, Q. 1999. Captopril treatment improves the sarcoplasmic reticular Ca2+transport in heart failure due to myocardial infarction. J Mol Cell Cardiol 31:1663–1672.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dhalla, N.S., Guo, X. (2000). Beneficial Effects of Angiotensin Blockade in Heart Failure Due to Myocardial Infarction. In: Takeda, N., Nagano, M., Dhalla, N.S. (eds) The Hypertrophied Heart. Progress in Experimental Cardiology, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4423-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4423-4_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6991-2

  • Online ISBN: 978-1-4615-4423-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics