Electrical-Optical Printed Circuit Boards: Technology - Design - Modeling

  • Elmar Griese
  • Detlef Krabe
  • Engelbert Strake


A novel hybrid electrical-optical printed circuit board technology is introduced which is able to meet the high performance requirements of future electronic equipment. On-board data rates exceeding significantly 1 Gbps are enabled where at the same time EMC- and signal integrity problems can be reduced. The technology has a far-reaching compatibility with the existing technologies and processes for designing and manufacturing printed circuit boards, which means that there is no need to substantially modify the electrical part. This compatibility is a very important pre-requisite in order to enable reasonable costs and to allow a successful introduction of this technology to next generation products.

In the first part of the paper the basic technologies for manufacturing electrical-optical printed circuit boards are addressed. A hot embossing process enabling a high precision manufacturing of optical multimode waveguides within so-called optical layers is introduced and the manufacturing process of entire boards through the integration of these optical layers is described. Moreover, the active and passive components necessary for coupling the optical power into and out of the optical multimode waveguides are described. In the second part the focus is on the necessary extension of the printed circuit board design process. Especially the required modeling and simulation strategies and approaches, respectively, are addressed which are necessary to perform timing and signal integrity analysis of optical onboard interconnects. This kind of analysis is necessary for providing timing and signal integrity information in order to support the design process, especially the continuous and post-layout validation of the design data, respectively.


Print Circuit Board VLSI Design Optical Interconnect Optical Layer Wave Vector Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Th. Bierhoff, E. Strake, A. Himmler, E. Griese, G. Mrozynski: Ein Ansatz für ein statistisches Ray Tracing-Verfahren zur Modellierung optischer Multimode-Wellenleiterstrukturen. Proc. 3. Workshop ”Optik in der Rechentechnik”, pp. 59–65, Paderborn (Germany), 1998.Google Scholar
  2. 2.
    E. Griese, A. Himmler: Conventional Printed Circuit Boards with Integrated Optical Interconnects, Proc. 1998 PIERS, p. 781, Nantes/France 1998.Google Scholar
  3. 3.
    E. Griese: Eine hybride elektrisch/optische Aufbau-und Verbindungstechnik für leistungsfähige Informations-und Kommunikationssysteme, Proc. 3. Workshop ”Optik in der Rechentechnik”, pp. 3–14, Paderborn (Germany), 1998.Google Scholar
  4. 4.
    E. Griese: Reducing EMC Problems Through an Electrical/Optical Interconnection Technology, IEEE Transactions on EMC, Vol. 41, No. 4, pp. 502–509, Nov. 1999.Google Scholar
  5. 5.
    D. Krabe, W. Scheel: Optische Verbindungstechnik auf Boardebene — Das EOCB-Konzept, Proc. 3. Workshop ”Optik in der Rechentechnik”, pp. 15–30, Paderborn (Germany), 1998.Google Scholar
  6. 6.
    D. Krabe, W. Scheel: Optical Interconnects by Hot Embossing for Module and PCB Technology — The EOCB Approach. Proc. 49th Electronic Components and Technology Conference, pp. 1164–1166, San Diago/CA (USA), 1999.Google Scholar
  7. 7.
    D. Krabe, F. Ebling, N. Arndt-Staufenbiel, G. Lang, W. Scheel: New Technology for Electrical/Optical Systems on Module and Board Level — The EOCB Approach —. Proc. 50th Electronic Components and Technology Conference, Las Vegas/NV (USA), 2000.Google Scholar
  8. 8.
    D. Marcuse: Theory of Dielectric Optical Waveguides, Academic Press, New York, 1972.Google Scholar
  9. 9.
    A. Neyer: Polymere Wellenleiter für die optische Verbindungstechnik, Proc. 3. Workshop ”Optik in der Rechentechnik”, pp. 95–103, Paderborn (Germany), 1998.Google Scholar
  10. 10.
    M. Ramme, E. Griese, M. Kurten: Fast Simulation Method for a Transient Analysis of Lossy Coupled Transmission Lines Using a Semi-Analytical Recursive Convolution Procedure. Proc. 1997 IEEE Int. Symp. on EMC, pp. 277–282, Austin/Texas (USA), 1997.Google Scholar
  11. 11.
    M. Lebby: Optoelectronic Devices and Packaging: VCSEL Technology. 1998 IEEE/EIA Technical Seminar at 48th Electronic Components and Technology Conference (seminar paper) May 25-28, 1998, Seattle/WA (USA).Google Scholar
  12. 12.
    W. Scheel: Baugruppentechnolgie der Elektronik. Verlag Technik Berlin, Eugen G. Leutze Verlag Saulgau, 1997.Google Scholar
  13. 13.
    Semiconductor Industry Association: The National Technology Roadmapfor Semiconductors. 1997 Edition and 1998 Update, San Jose/CA (USA), 1999.Google Scholar
  14. 14.
    Semiconductor Industry Association: Internaational Technology Roadmap for Semiconductors. 1999 Edition, San Jose/CA (USA), 2000.Google Scholar
  15. 15.
    E. Strake, D. Krabe: Ein Modell zur Beschreibung der Lichtstreuung an rauhen dielektrischen Grenzflächen, Proc. 3. Workshop ”Optik in der Rechentechnik”, pp. 49–57, Paderborn (Germany), Dec. 1998.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Elmar Griese
    • 1
  • Detlef Krabe
    • 2
  • Engelbert Strake
    • 3
  1. 1.Siemens AG IC C-LABPaderbornGermany
  2. 2.FhG IZMBerlinGermany
  3. 3.Robert Bosch GmbH FV/SLD-HiHildesheimGermany

Personalised recommendations