Skip to main content

Limits to Knowledge in Population Genetics

  • Chapter
Evolutionary Biology

Part of the book series: Evolutionary Biology ((EBIO,volume 32))

Abstract

The modern science of Biology traces, in large part, to the publication of The Origin of Species, by Charles Darwin (1859). By invoking natural selection as the causal agent of biological change, Darwin provided a mechanistic explanation for the elaboration of biological diversity that focused on the experimental manipulation of observable processes. In one stroke, biology was transformed from a purely descriptive enterprise concerned with cataloging the wonders of biological diversity discovered during the age of exploration to an experimental science. The second major impact of the publication was to focus late 19th-century Biology on the great unsolved puzzle of hereditary transmission. It is, of course, well known that the solution to this great puzzle was published within a decade of The Origin but lay unappreciated for more than 30 years. It is also well known that the first two decades of the 20th century were consumed by a debate about whether the selection of minute continuous variations (as postulated by Darwin) could be consistent with the particulate system of inheritance described by Mendel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brown, A. H. D., Zohary, D., and Nevo, E., 1978, Outcrossing rates and heterozygosity in natural populations of Hordeum spontaneum Koch in Israel, Heredity 41:49–62.

    Article  Google Scholar 

  • Charlesworth, B., Morgan, M. T., and Charlesworth, D., 1993, The effect of deleterious mutations on neutral molecular evolution, Genetics 134:1289–1303.

    PubMed  CAS  Google Scholar 

  • Clegg, M. T., 1997, Plant genetic diversity and the struggle to measure selection, J. Hered. 88:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Clegg, M. T., and Epperson, B. K., 1988, Natural selection on flower color polymorphisms in morning glory populations, in: Plant Evolutionary Biology (L. Gottlieb and S. K. Jain, eds.), pp. 255–273, Chapman-Hall Ltd., London.

    Chapter  Google Scholar 

  • Clegg, M. T., Kahler, A. L., and Allard, R. W., 1978, The estimation of life cycle components of selection in an experimental population of barley, Genetics 89:765–792.

    PubMed  CAS  Google Scholar 

  • Crow, J. F., and Kimura, M., 1970, An Introduction to Population Genetics Theory, Harper & Row, New York.

    Google Scholar 

  • Cummings, M. P., and Clegg, M. T., 1998, Nucleotide sequence diversity at the alcohol dehydrogenase I locus in wild barley (Hordeum vulgare ssp. spontaneum): An evaluation of the background selection hypothesis, Proc. Natl. Acad. Sci. USA 95:5637–5642.

    Article  PubMed  CAS  Google Scholar 

  • Darwin, C., 1859, The Origin of Species, John Murray, London.

    Google Scholar 

  • Dobzhansky, T., 1981, Dobzhansky’s Genetics of Natural Populations I-XLIII (R. C. Lewontin, J. A. Moore, W. B. Provine, and B. Wallace, eds.), Columbia University Press, New York.

    Google Scholar 

  • Durbin, M. L., Learn, G. J., Huttley, G. A., and Clegg, M. T., 1995, Evolution of the chalcone synthase gene family in the genus Ipomoea, Proc. Natl. Acad. Sci. USA 92:3338–3342.

    Article  CAS  Google Scholar 

  • Durbin, M. L., McCaig, B., and Clegg, M. T., 2000, Molecular evolution of the chalcone synthase multigene family in the morning glory genome, Plant Mol. Biol. 42:79–92.

    Article  PubMed  CAS  Google Scholar 

  • Ennos, R. A., and Clegg, M. T., 1983, Flower color variation in morning glory, Ipomoea purpurea Roth, (Convolvulaceae), J. Hered. 74:247–250.

    Google Scholar 

  • Epperson, B. K., and Clegg, M. T., 1988, Genetics of flower color polymorphism in the common morning glory, lpomoea purpurea, J. Hered. 79:64–68.

    Google Scholar 

  • Epperson, B. K., and Clegg, M.T., 1992, Unstable white flower color genes and their derivatives in the morning glory, J. Hered. 83:405–409.

    Google Scholar 

  • Fisher, R. A., 1930, The Genetical Theory of Natural Selection, Oxford University Press, Oxford, England.

    Google Scholar 

  • Fisher, R. A., 1941, Average excess and average effect of a gene substitution, Ann. Eugen. 11:53–63.

    Google Scholar 

  • Fu, Y.-X., and Li, W.-H., 1993, Statistical tests of neutrality of mutations, Genetics 133:693–709.

    PubMed  CAS  Google Scholar 

  • Fukada-Tanaka, S., Hoshino, A., Hisatomi, Y., Habu, Y., Hasebe, M., and Lida, S., 1997, Identification of new chalcone synthase genes for flower pigmentation in the Japanese and common morning glories, Plant Cell Physiol. 38:754–758.

    Article  PubMed  CAS  Google Scholar 

  • Glover, D., Durbin, M. L., Huttley, G., and Clegg, M. T., 1996, Genetic diversity in the common morning glory, Plant Species Biol. 11:41–50.

    Article  Google Scholar 

  • Holmes, E. C., Nee, S., Rambaut, A., Garnett, G. P., and Harvey, P. H., 1995, Revealing the history of infectious disease epidemics using phylogenetic trees, Phil. Trans. R. Soc. Lond. B 349:33–40.

    Article  CAS  Google Scholar 

  • Holsinger, K. E., 1996, Pollination Biology and the evolution of mating systems in flowering plants, Evol. Biol. 29:107–149.

    Google Scholar 

  • Hudson, R., 1990, Gene genealogies and the coalescent process, Oxford Surv. Evol. Biol. 7:1–44.

    Google Scholar 

  • Huttley, G. A., Durbin, M. L., Glover, D. E., and Clegg, M. T., 1997, Nucleotide polymorphism in the chalcone synthase-A locus and evolution of the chalcone synthase multigene family of common morning glory (Ipomoea purpurea), Mol. Ecol. 6:549–558.

    Article  CAS  Google Scholar 

  • Kuhner, M. K., Yamato, J., and Felsenstein, J., 1995, Estimating effective population size and mutation rate from sequence data using Metropolis-Hastings sampling, Genetics 140:1421–1430.

    PubMed  CAS  Google Scholar 

  • Lewontin, R. C., 1974, The Genetic Basis of Evolutionary Change, Columbia University Press, New York.

    Google Scholar 

  • Nee, S., Holmest, E. C., Rambau, A., and Harvey, P. H., 1995, Inferring population history from molecular phylogenies, Phil. Trans. R. Soc. Lond. B 349:25–31.

    Article  CAS  Google Scholar 

  • Ohta, T., 1973, Slightly deleterious mutant substitutions in evolution, Nature 246:96–98.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, T., 1992, The nearly neutral theory of molecular evolution, Annu. Rev. Ecol. Syst. 23:263–286.

    Article  Google Scholar 

  • Provine, W. B., 1971, The Origins of Theoretical Population Genetics, University of Chicago Press, Chicago.

    Google Scholar 

  • Sawyer, S. A., and Hartl, D. L., 1992, Population genetics of polymorphism and divergence, Genetics 132:1161–1176.

    PubMed  CAS  Google Scholar 

  • Simonsen, K. L., Churchil, G. A., and Aquadro, C. F., 1995, Properties of statistical tests of neutrality for DNA polymorphism data, Genetics 141:413–429.

    PubMed  CAS  Google Scholar 

  • Tajima, F, 1989, Statistical method for testing the neutral mutation hypothesis by DNA polymorphism, Genetics 123:585–595.

    PubMed  CAS  Google Scholar 

  • Tropf, S., Lanz, T., Rensing, S. A., Schroder, J., and Schroder, C., 1994, Evidence that stilbene synthases have developed from chalcone synthases several times in the course of evolution, J. Mol. Evol. 38:610–618.

    Article  PubMed  CAS  Google Scholar 

  • Veuille, M., and King, L. M., 1995, Molecular basis of polymorphism at the esterase-5B locus in Drosophila pseudoobscura, Genetics 141:255–262.

    CAS  Google Scholar 

  • Watterson, G. A., 1975, On the number of segregating nucleotide sites in genetical models without recombination, Theor. Pop. Biol. 7:256–276.

    Article  CAS  Google Scholar 

  • Wright, S., 1931, Evolution in Mendelian populations, Genetics 16:97–159.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Clegg, M.T. (2000). Limits to Knowledge in Population Genetics. In: Clegg, M.T., Hecht, M.K., Macintyre, R.J. (eds) Evolutionary Biology. Evolutionary Biology, vol 32. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4135-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4135-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6854-0

  • Online ISBN: 978-1-4615-4135-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics