Skip to main content

Natural selection of flower color polymorphisms in morning glory populations

  • Chapter
Plant Evolutionary Biology

Abstract

A mechanistic analysis of natural selection requires two kinds of information. First, the causal relationship between an environment and natural selection on a phenotype must be established. In other words, why is one phenotype better adapted to a particular environment while a second phenotype is less well adapted? What does this differential adaptation mean in terms of probabilities of survival and reproductive success, and how are these differentials manifested during the life history of the organism? Second, it is necessary to establish the genetic basis of the phenotypic differences that confer differential adaptation. Genetic analysis is simplest for major gene polymorphisms that are determined by alleles at a single locus. In addition, the formal theory of population genetics can be readily used to make predictions about rates of evolutionary change for single locus polymorphisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allard, R. W. (1975) The mating system and microevolution. Genetics, 79, s115 — s126.

    Google Scholar 

  • Bishop, J. A. and Cook, L. M. (1981) Genetic Consequences of Man Made Change. Academic Press, New York.

    Google Scholar 

  • Brown, B. A. and Clegg, M. T. (1984) The influence of flower color polymorphisms on genetic transmission in a natural population of the common morning glory, Ipomoea purpurea. Evolution, 38, 796–803.

    Google Scholar 

  • Charlesworth, B. and Charlesworth, D. (1979) The evolutionary genetics of sexual systems in flowering plants. Proc. R. Soc. London B, 205, 513–30.

    Article  Google Scholar 

  • Clegg, M. T. (1980) Measuring plant mating systems. Bioscience, 30, 814–18.

    Article  Google Scholar 

  • Eaton, A. (1833) Manual of Botany for North America. Oliver Steele, Albany, NY.

    Google Scholar 

  • Ellstrand, N. C. (1984) Multiple paternity within the fruits of the wild radish. Am. Natur., 123, 819–28.

    Article  Google Scholar 

  • Ellstrand, N. C. and Marshall, D. L. (1985) Interpopulation gene flow by pollen in wild radish, Raphanus sativus. Am. Natur., 126, 606–16.

    Article  Google Scholar 

  • Ellstrand, N. C. and Marshall, D. L. (1986) Patterns of multiple paternity in populations of Raphanus sativus. Evolution, 40, 837–42.

    Article  Google Scholar 

  • Ennos, R. A. (1981) Quantitative studies of the mating system in two sympatric species of Ipomoea (Convolvulaceae). Genetica, 57, 93–8.

    Article  Google Scholar 

  • Ennos, R. A. and Clegg, M. T. (1982) Effect of population substructuring on estimates of outcrossing rate in plant populations. Heredity, 48, 282–92.

    Article  Google Scholar 

  • Ennos, R. A. and Clegg, M. T. (1983) Flower color variation in the morning glory, Ipomoea purpurea. J. Hered., 74, 247–50.

    Google Scholar 

  • Epperson, B. K. and Clegg, M. T. (1986) Spatial autocorrelation analysis of flower color polymorphisms within substructured populations of morning glory (Ipomoea purpurea). Am. Natur., 128, 840–58.

    Article  Google Scholar 

  • Epperson, B. K. and Clegg, M. T. (1987a) First-pollination primacy and pollen selection in the morning glory, Ipomoea purpurea. Heredity, 58, 5–14.

    Article  Google Scholar 

  • Epperson, B. K. and Clegg, M. T. (1987c) Instability at a flower color locus in the morning glory. J. Hered., 78, 346–52.

    Google Scholar 

  • Epperson, B. K. and Clegg, M. T. (1988) Genetics of flower color polymorphisms in the common morning glory (Ipomoea purpurea). J. Hered. (in press).

    Google Scholar 

  • Fisher, R. A. (1941) Average excess and average effect of a gene substitution. Ann. Eugen., 11, 53–63.

    Article  Google Scholar 

  • Ford, E. B. (1965) Genetic Polymorphism. MIT Press, Cambridge, MA.

    Google Scholar 

  • Gregorius, H.-R. (1986) Polymorphisms for purely cytoplasmically inherited traits in bisexual plants. Genetics, 112, 385–92.

    Google Scholar 

  • Harding, J. (1970) Genetics of Lupinus. II. The selective disadvantage of the pink flower color mutant in Lupinus nanus. Evolution, 24, 120–7.

    Article  Google Scholar 

  • Heinrich, B., Mudge, P. R. and Deringis, P. G. (1977) Laboratory analysis of flower constancy in foraging bumblebees: Bombus ternarius and B. terricola. Behav. Ecol. Sociobiol., 2, 247–65.

    Article  Google Scholar 

  • Holsinger, K. E., Feldman, M. W. and Christiansen, F. B. (1984) The evolution of self-fertilization in plants: a population genetic model. Am. Natur., 124, 446–53.

    Article  Google Scholar 

  • Horovitz, A. and Harding, J. (1972) Genetics of Lupinus. V. Intraspecific variability for reproductive traits in Lupinus nanus. Bot. Gaz., 133, 155–65.

    Article  Google Scholar 

  • Kettlewell, H. B. D. (1961) The phenomenon of industrial melanism in Lepidoptera. Ann. Rev. Ent., 6, 245–62.

    Article  Google Scholar 

  • Kimura, M. (1983) The Neutral Theory of Molecular Evolution. Cambridge University Press, London.

    Google Scholar 

  • Kimura, M. and Ohta, T. (1971) Theoretical Aspects of Population Genetics. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Lees (1981) Industrial melanism: genetic adaptation of animals to air pollution. in Genetic Consequences of Man Made Change (eds J. A. Bishop and L. M. Cook ), Academic Press, New York.

    Google Scholar 

  • Levin, D. A. (1972) Low frequency disadvantage in the exploitation of pollinators by corolla variants in Phlox. Am. Natur., 106, 453–60.

    Article  Google Scholar 

  • Lewontin, R. C. (1985) Population genetics. Ann. Rev. Genet., 19, 81–102.

    Article  Google Scholar 

  • Lloyd, D. G. (1979) Some reproductive factors affecting the selection of self-fertilization in plants. Am. Natur., 113, 67–79.

    Article  Google Scholar 

  • Meagher, T. R. (1986) Analysis of paternity within a natural population of Chamaelirium luteum. I. Identification of most likely male parents. Am. Natur., 128, 199–215.

    Article  Google Scholar 

  • Nagylaki, T. (1976) A model for the evolution of self-fertilization and vegetative reproduction. J. Theor. Biol., 58, 55–8.

    Article  Google Scholar 

  • Pursh, F. (1814) Flora Americae Septentrionalis. White, Cochrane, London.

    Google Scholar 

  • Rick, C. M., Fobes, J. F. and Tanksley, S. D. (1979) Evolution of mating system in Lycopersicon hirsutum as deduced from genetic variation in electrophoretic characters. Plant Syst. Evol., 132, 279–98.

    Article  Google Scholar 

  • Ross, M. D. (1984) Frequency-dependent selection in hermaphrodites: The rule rather than the exception. Biol. J. Linn. Soc., 23, 145–55.

    Article  Google Scholar 

  • Schoen, D. J. (1982) The breeding system of Gilia achilleifolia: variation in floral characteristics and outcrossing rate. Evolution, 36, 352–60.

    Article  Google Scholar 

  • Schoen, D. J. and Clegg, M. T. (1984) Estimation of mating system parameters when outcrossing events are correlated. Proc. Natl. Acad. Sci. USA, 81, 5258–62.

    Article  Google Scholar 

  • Schoen, D. J. and Clegg, M. T. (1985) The influence of flower color on outcrossing rate and male reproductive success in Ipomoea purpurea. Evolution, 39, 1242–9.

    Article  Google Scholar 

  • Schoen, D. J. and Clegg, M. T. (1986) Monte Carlo studies of plant mating system estimation models: the one pollen parent and mixed mating models. Genetics, 112, 927–45.

    Google Scholar 

  • Schoen, D. J. and Lloyd, D. G. (1984) The selection of cleistogamy and heteromorphic diaspores. Biol. J. Linn. Soc., 23, 303–22.

    Article  Google Scholar 

  • Sheppard, P. M. (1967) Natural Selection and Heredity. Hutchinson University Library, London.

    Google Scholar 

  • Sokal, R. R. and Oden, N. L. (1978) Spatial autocorrelation in biology. 1. Methodology. Biol. J. Linn. Soc., 10, 199–228.

    Article  Google Scholar 

  • Sokal, R. R. and Wartenberg, D. E. (1983) A test of spatial autocorrelation analysis using an isolation-by-distance model. Genetics, 105, 219–37.

    Google Scholar 

  • Stebbins, G. L. (1950) Variation and Evolution in Plants. Columbia University Press, New York.

    Google Scholar 

  • Stucky, J. M. (1985) Pollination systems of sympatric Ipomoea hederacea and I. purpurea and the significance of interspecific pollen flow. Am. J. Bot., 72, 32–43.

    Article  Google Scholar 

  • Turner, M. E., Stephens, J. C. and Anderson, W. W. (1982) Homozygosity and patch structure in plant populations as a result of nearest-neighbor pollination. Proc. Natl. Acad. Sci. USA, 79, 203–7.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Chapman and Hall Ltd

About this chapter

Cite this chapter

Clegg, M.T., Epperson, B.K. (1988). Natural selection of flower color polymorphisms in morning glory populations. In: Gottlieb, L.D., Jain, S.K. (eds) Plant Evolutionary Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1207-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1207-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7036-2

  • Online ISBN: 978-94-009-1207-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics