Drug Accumulation and Binding in P-Glycoprotein-Associated Multidrug Resistance

  • William T. Beck


Multidrug resistance (MDR) is a complex phenomenon that has been well described in experimental systems (Beck, 1987; Pastan and Gottesman, 1987, 1988; Moscow and Cowan, 1988; Bradley et al., 1988; van der Bliek and Borst, 1989; Endicott and Ling, 1989). The characteristic feature, as detailed elsewhere in this volume, is a broad cross-resistance to a variety of apparently dissimilar natural-product compounds. The pharmacologic basis for MDR appears to be a decrease in the steady-state accumulation of drug, attributed to either its decreased uptake (Ling and Thompson, 1974) or decreased retention (Danø, 1973; Skovsgaard, 1978a). In turn, decreased drug retention has been ascribed either to increased activity of an “active efflux pump,” mediated through the action of a high-molecular-weight membrane glycoprotein, known as P-glycoprotein or to a diminished binding of drug (Beck, 1987, Pastan and Gottesman, 1988; Bradley et al., 1988; van der Bliek and Borst, 1989; Endicott and Ling, 1989). For clarity, I designate this form of MDR associated with overexpression of P-glycoprotein as Pgp-MDR, to distinguish it from another type of MDR associated with alterations in the essential nuclear enzyme, topoisomerase II, that we have termed at-MDR (Danks et al., 1987, 1988; Beck et al., 1987). Although decreased steady-state accumulation of drug distinguishes Pgp-MDR from other forms of MDR, the basis for this phenomenon has only recently begun to be understood.


Drug Accumulation Drug Binding Vinca Alkaloid Human Leukemic Cell Human Leukemic Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyama, S.-I., Cornwell, M. M., Kuwano, M., Pastan, I., and Gottesman, M. M., 1988, Most drugs that reverse multidrug resistance also inhibit photoaffinity labeling of P-glycoprotein by a vinblastine analog, Mol. Pharmacol. 33:144–147.PubMedGoogle Scholar
  2. Arceci, R. J., Croop, J. M., Horwitz, S. B., and Housman, D., 1988, The gene encoding multidrug resistance is induced and expressed at high levels during pregnancy in the secretory epithelium of the uterus, Proc. Natl. Acad. Sci. USA 85:4350–4354.PubMedCrossRefGoogle Scholar
  3. Beck, W. T., 1984, Cellular pharmacology of vinca alkaloid resistance and its circumvention, Adv. Enzyme Regul. 22:207–227.PubMedCrossRefGoogle Scholar
  4. Beck, W. T., 1987, The cell biology of multiple drug resistance, Biochem. Pharmacol. 36:2879–2887.PubMedCrossRefGoogle Scholar
  5. Beck, W. T., Cirtain, M. C., and Lefko, J. L., 1983, Energy-dependent reduced drug binding as a mechanism of Vinca alkaloid resistance in human leukemic lymphoblasts, Mol. Pharmacol. 24:485–492.PubMedGoogle Scholar
  6. Beck, W. T., Cirtain, M. C, Danks, M. K., Felsted, R. L., Safa, A. R., Wolverton, J. S., Suttle, D. P., and Trent, J. M., 1987, Pharmacologic, molecular and cytogenetic analysis of “atypical” multidrug resistant human leukemic cells, Cancer Res. 47:5455–5460.PubMedGoogle Scholar
  7. Beck, W. T., Cirtain, M. C., Glover, C. J., Felsted, R. L., and Safa, A. R., 1988a, Effects of indole alkaloids on multidrug resistance and labeling of P-glycoprotein by a photoaffinity analog of vinblastine, Biochem. Biophys. Res. Commun. 153:959–966.CrossRefGoogle Scholar
  8. Beck, W. T., Cirtain, M. C., Wolverton, J. S., Safa, A. R., and Felsted, R. L., 1988b, Collateral sensitivity of human multidrug resistant (MDR) leukemic cell lines to verapamil, Proc. Am. Assoc. Cancer Res. 29:307.Google Scholar
  9. Bhalla, K., Hindenburg, A., Taub, R. N., and Grant, S., 1985, Isolation and characterization of an anthracyline-resistant human leukemic cell line, Cancer Res. 45:3657–3662.PubMedGoogle Scholar
  10. Biedler, J. L., Meyers, M. B., and Spengler, B. A., 1988, Collateral sensitivity of multidrug-resistant Chinese hamster cells to calcium channel blockers: Correlation with P-glycoprotein content, Proc. Am. Assoc. Cancer Res. 29:295.Google Scholar
  11. Bleyer, W. A., Frisby, S. A., and Oliverio, V. T., 1975, Uptake and binding of vincristine by murine leukemia cells, Biochem. Pharmacol. 24:633–639.PubMedCrossRefGoogle Scholar
  12. Bradley, G., Juranka, P. F., and Ling, V., 1988, Mechanism of multidrug resistance, Biochim. Biophys. Acta 948:87–128.PubMedGoogle Scholar
  13. Broxterman, H. J., Pinedo, H. M., Kuiper, C. M., Kaptein, L. C. M., Schuurhuis, G. J., and Lankelma, J., 1988, Induction by verapamil of a rapid increase in ATP consumption in multidrug-resistant tumor cells, FASEB J. 2:2278–2282.PubMedGoogle Scholar
  14. Broxterman, H. J., Pinedo, H. M., Kuiper, C.M., Schuurhuis, G. J., and Lankelma, J., 1989, Glycolysis in P-glycoprotein-overexpressing human tumor cell lines. Effects of resistance-modifying agents, FEBS Lett. 247:405–410.PubMedCrossRefGoogle Scholar
  15. Cano-Gauci, D. F., and Riordan, J. R., 1987, Action of calcium antagonists on multidrug resistant cells, Biochem. Pharmacol. 36:2115–2123.PubMedCrossRefGoogle Scholar
  16. Center, M. S., 1985, Mechanisms regulating cell resistance to adriamycin. Evidence that drug accumulation is modulated by phosphorylation of a plasma membrane glycoprotein, Biochem. Pharmacol. 34:1471–1476.PubMedCrossRefGoogle Scholar
  17. Chen, C-J., Chin, J. E., Ueda, K., Clark, D. P., Pastan, I., Gottesman, M. M., and Roninson, I. B., 1986, Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells, Cell 47:381–389.PubMedCrossRefGoogle Scholar
  18. Choi, K., Chen, C-J., Kriegler, M., and Roninson, I. G., 1988, An altered pattern of cross-resistance in multidrug-resistant human cells results from spontaneous mutations in the mdr1 (P-glycoprotein) gene, Cell 53:519–529.PubMedCrossRefGoogle Scholar
  19. Cornwell, M. M., Gottesman, M. M., and Pastan, I. H., 1986, Increased vinblastine binding to membrane vesicles from multidrug-resistant KB cells, J. Biol. Chem. 281:7921–7928.Google Scholar
  20. Corn well, M. M., Tsuruo, T, Gottesman, M. M., and Pastan, I., 1987, ATP-binding properties of P glycoprotein from multidrug-resistant KB cells, FASEB J. 1:51–54.Google Scholar
  21. Croop, J. M., Raymond, M., Haber, D., Devault, A., Arceci, R. J., Gros, P., and Housman, D. E., 1989, The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues, Mol. Cell Biol. 9:1346–1350.PubMedGoogle Scholar
  22. Dalmark, M., and Hoffman, E. K., 1983, Doxorubicin (adriamycin) transport in Ehrlich ascites tumor cells: Comparison with transport in human red blood cells, Scand. J. Clin. Lab. Invest. 43:241–248.PubMedCrossRefGoogle Scholar
  23. Danks, M. K., Yalowich, J. C., and Beck, W. T., 1987, Atypical multiple drug resistance in a human leukemic cell line selected for resistance to teniposide (VM-26), Cancer Res. 47:1297–1301.PubMedGoogle Scholar
  24. Danks, M. K., Schmidt, C. A., Cirtain, M. C., Suttle, D. P., and Beck, W. T., 1988, Altered catalytic activity of and DNA cleavage by DNA topoisomerase II from human leukemic cells selected for resistance to VM-26, Biochemistry 27:8861–8869.PubMedCrossRefGoogle Scholar
  25. Danks, M. K., Schmidt, C. A., Deneka, D. A., and Beck, W. T., 1989, Increased ATP requirement for activity of and complex formation by DNA topoisomerase II from human leukemic CCRF-CEM cells selected for resistance to VM-26, Cancer Commun., 1:101–109.PubMedGoogle Scholar
  26. Danø, K., 1973, Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells, Biochim. Biophys. Acta 323:466–483.PubMedCrossRefGoogle Scholar
  27. Endicott, J. A., and Ling, V., 1989, The biochemistry of P-glycoprotein-mediated multidrug resistance, Annu. Rev. Biochem. 58:137–171.PubMedCrossRefGoogle Scholar
  28. Ferguson, P., Phillips, J. R., Seiner, M., and Cass, C. E., 1984, Differential activity of vincristine and vinblastine against cultured cells, Cancer Res. 44:3307–3312.PubMedGoogle Scholar
  29. Fojo, A., Akiyama, S-I., Gottesman, M. M., and Pastan, I., 1985, Reduced drug accumulation in multiply drug-resistant human KB carcinoma cell lines, Cancer Res. 45:3002–3007.PubMedGoogle Scholar
  30. Ford, J. M., and Hait, W. N., 1989, Further characterization of the thioxanthene class of multidrug resistance antagonists, Proc. Am. Assoc. Cancer Res. 30:570.Google Scholar
  31. Ford, J. M., Prozialeck, W. C., and Hait, W. N., 1989, Structural features determining activity of phenothiazines and related drugs for inhibition of cell growth and reversal of multidrug resistance, Mol. Pharmacol. 35:105–115.PubMedGoogle Scholar
  32. Gerlach, J. H., Endicott, J. A., Juranka, P. F., Henderson, G., Sarangi, F., Deuchars, K. L., and Ling, V., 1986, Homology between P-glycoprotein and a bacterial haemolysin transport protein suggests a model for multidrug resistance, Nature 324:485–489.PubMedCrossRefGoogle Scholar
  33. Gottesman, M. M., and Pastan, I., 1988, The multidrug transporter, a double-edged sword, J. Biol. Chem. 263:12163–12166.Google Scholar
  34. Greenberger, L. M., Williams, S. S., and Horwitz, S. B., 1987, Biosynthesis of heterogeneous forms of multidrug resistance-associated glycoproteins, J. Biol. Chem. 262:13685–13689.PubMedGoogle Scholar
  35. Greenberger, L. M., Lothstein, L., Williams, S. S., and Horwitz, S. B., 1988, Distinct P-glycoprotein precursors are overproduced in independently isolated drug-resistant cell lines, Proc. Natl. Acad. Sci. USA 85:3762–3766.PubMedCrossRefGoogle Scholar
  36. Gros, P., Croop, J., and Housman, D., 1986, Mammalian multidrug resistance gene: Complete cDNA sequence indicates strong homology to bacterial transport proteins, Cell 47:371–380.PubMedCrossRefGoogle Scholar
  37. Hamada, H., and Tsuruo, T., 1988a, Purification of the 170- to 180-kilodalton membrane glycoprotein associated with multidrug resistance. 170- to 180-kilodalton membrane glycoprotein is an ATPase, J. Biol. Chem. 263:1454–1458.Google Scholar
  38. Hamada, H., and Tsuruo, T., 1988b, Characterization of the ATPase activity of the M r 170,000 to 180,000 membrane glycoprotein (P-glycoprotein) associated with multidrug resistance in K562/ADM cells, Cancer Res. 48:4926–4932.Google Scholar
  39. Hamada, H., Hagiwara, K.-I., Nakajima, T., and Tsuruo, T., 1987, Phosphorylation of the M r 170,000 to 180,000 glycoprotein specific to multidrug-resistant tumor cells: Effects of verapamil, trifluoperazine, and phorbol esters, Cancer Res. 47:2860–2865.PubMedGoogle Scholar
  40. Horio, M., Gottesman, M. M., and Pastan, I., 1988, ATP-dependent transport of vinblastine in vesicles from human multidrug-resistant cells, Proc. Natl. Acad. Sci. USA 85:3580–3584.PubMedCrossRefGoogle Scholar
  41. Howell, S. B., Hom, D., Sanga, R., Vick, J. S., and Abramson, I. S., 1989, Comparison of the synergistic potentiation of etoposide, doxorubicin, and vinblastine cytotoxicity by dipyridamole, Cancer Res. 49:3178–3183.PubMedGoogle Scholar
  42. Inaba, M., Watanabe, T., and Sugiyama, Y., 1987, Kinetic analysis of active efflux of vincristine from multidrug-resistant P388 leukemia cells, Jpn. J. Cancer Res. 78:397–404.PubMedGoogle Scholar
  43. Kamiwatari, M., Nagata, Y., Kikuchi, H., Yoshimura, A., Sumizawa, T., Shudo, N., Sakoda, R., Seto, K., and Akiyama, S-I., 1989, Correlation between reversing of multidrug resistance and inhibiting of [3H]azidopine photolabeling of P-glycoprotein by newly synthesized dihydropyridine analogues in a human cell line, Cancer Res. 49:3190–3195.PubMedGoogle Scholar
  44. Keizer, H. G., and Joenje, H., 1989, Increased cytosolic pH in multidrug-resistant human lung tumor cells: Effect of verapamil, J. Natl. Cancer Inst. 81:706–709.PubMedCrossRefGoogle Scholar
  45. Lee, S. C., Deutsch, C., and Beck, W. T., 1988, Comparison of ion channels in multidrug-resistant and -sensitive human leukemic cells, Proc. Natl. Acad. Sci. USA 85:2019–2023.PubMedCrossRefGoogle Scholar
  46. Ling, V., and Thompson, L. H., 1974, Reduced permeability in CHO cells as a mechanism of resistance to colchicine, J. Cell Physiol. 83:103–116.PubMedCrossRefGoogle Scholar
  47. Marsh, W., Sicheri, D., and Center, M. S., 1986, Isolation and characterization of adriamycin-resistant HL-60 cells which are not defective in the initial intracellular accumulation of drug, Cancer Res. 46:4053–4057.PubMedGoogle Scholar
  48. McGrath, J. P., and Varshavsky, A., 1989, The yeast STE6 gene encodes a homologue of the mammalian multidrug resistance P-glycoprotein, Nature 340:400–404.PubMedCrossRefGoogle Scholar
  49. McGrath, T., and Center, M. S., 1987, Adriamycin resistance in HL60 cells in the absence of detectable P-glycoprotein, Biochem. Biophys. Res. Commun. 145:1171–1176.PubMedCrossRefGoogle Scholar
  50. McGrath, T., Latoud, C., Arnold, S. T., Safa, A. R., Felsted, R. L., and Center, M. S., 1989, Mechanisms of multidrug resistance in HL60 cells; Analysis of resistance associated membrane proteins and levels of mdr gene expression, Biochem. Pharmacol, 38:3611–3619.PubMedCrossRefGoogle Scholar
  51. Moscow, J. A., and Cowan, K. H., 1988, Multidrug resistance, J. Natl. Cancer Inst. 80:14–20.PubMedCrossRefGoogle Scholar
  52. Naito, M., and Tsuruo, T., 1989, Competitive inhibition by verapamil of ATP-dependent high affinity vincristine binding to the plasma membrane of multidrug-resistant K562 cells without calcium ion involvement, Cancer Res. 49:1452–1455.PubMedGoogle Scholar
  53. Naito, M., Hamada, H., and Tsuruo, T., 1988, ATP/Mg2 + -dependent binding of vincristine to the plasma membrane of multidrug-resistant K562 cells, J. Biol. Chem. 263:11887–11891.PubMedGoogle Scholar
  54. Ng, W. F., Sarangi, F., Zastawny, R. L., Vienot-Drebot, L., and Ling, V., 1989, Identification of members of the P-glycoprotein multigene family, Mol. Cell. Biol. 9:1224–1232.PubMedGoogle Scholar
  55. Nogae, I., Kohno, K., Kikuchi, J., Kuwano, M., Akiyama, S.-I., Kiue, A., Suzuki, K.-I., Yoshida, Y., Cornwell, M. M., Pastan, I., and Gottesman, M. M., 1989, Analysis of structural features of dihydropyridine analogs needed to reverse multidrug resistance and to inhibit photoaffinity labeling of P-glycoprotein, Biochem. Pharmacol. 38:519–527.PubMedCrossRefGoogle Scholar
  56. Pastan, I., and Gottesman, M., 1987, Multiple-drug resistance in human cancer, N. Engl. J. Med. 316:1388–1393.Google Scholar
  57. Pastan, I. H., and Gottesman, M. M., 1988, Molecular biology of multidrug resistance in human cells, Important Adv. Oncol. 1988:3–16.Google Scholar
  58. Pearce, H. L., Safa, A. R., Bach, N. J., Winter, M. A., Cirtain, M. C., and W. T. Beck, 1989, Essential features of the P-glycoprotein pharmacophore as defined by a series of reserpine analogs that modulate multidrug resistance, Proc. Natl Acad. Sci. USA 86:5128–5132.PubMedCrossRefGoogle Scholar
  59. Peterson, R. H. F., Beutler, W. J., and Biedler, J. L., 1979, Ganglioside composition of malignant and actinomycin D-resistant nonmalignant Chinese hamster cells, Biochem. Pharmacol. 28:579–582.PubMedCrossRefGoogle Scholar
  60. Qian, X., and Beck, W. T., 1990, Binding an optically pure photoaffinity analogue of verapamil, LU-49888, to P-glycoprotein from multidrug-resistant human leukemic cell lines, Cancer Res. 50:1132–1137.PubMedGoogle Scholar
  61. Ramu, N., and Ramu, A., 1989, Circumvention of adriamycin resistance by dipyridamole analogues: A structure-activity relationship study, Int. J. Cancer 43:487–491.PubMedCrossRefGoogle Scholar
  62. Riehm, H., and Biedler, J. L., 1972, Potentiation of drug effect by Tween 80 in Chinese hamster cells resistant to actinomycin D and daunomycin, Cancer Res. 32:1195–1200.Google Scholar
  63. Rintoul, D. A., and Center, M. S., 1984, Involvement of plasma membrane lipid structural order in adriamycin resistance in Chinese hamster lung cells, Cancer Res. 44:4978–4980.PubMedGoogle Scholar
  64. Riordan, J. R., Deuchars, K., Kartner, N., Alon, N., Trent, J., and Ling, V., 1985, Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines, Nature 316:817–819.PubMedCrossRefGoogle Scholar
  65. Safa, A. R., 1988, Photoaffinity labeling of the multidrug-resistance-related P-glycoprotein with photoactive analogs of verapamil, Proc. Natl. Acad. Sci. USA 85:7178–7191.CrossRefGoogle Scholar
  66. Safa, A. R., Glover, C. J., Meyers, M. B., Biedler, J. L., and Felsted, R. L., 1986, Vinblastine photoaffinity labeling of a high molecular weight surface membrane glycoprotein specific for multidrug-resistant cells, J. Biol. Chem. 261:6137–6140.PubMedGoogle Scholar
  67. See, Y. P., Carlsen, S.A., Till, J. E., and Ling, V., 1974, Increased drug permeability in Chinese hamster ovary cells in the presence of cyanide, Biochim. Biophys. Acta 373:242–252.PubMedCrossRefGoogle Scholar
  68. Sehested, M., Skovsgaard, T., van Deurs, B., and Winther-Nielsen, H., 1987a, Increase in nonspecific adsorptive endocytosis in anthracycline- and vinca alkaloid-resistant Ehrlich ascites tumor cell lines, J. Natl. Cancer Inst. 78:171–179.Google Scholar
  69. Sehested, M., Skovsgaard, T., van Deurs, B., and Winther-Nielsen, H., 1987b, Increased plasma membrane traffic in daunorubicin resistant P388 leukaemic cells. Effect of daunorubicin and verapamil, Br. J. Cancer 56:747–751.CrossRefGoogle Scholar
  70. Siegfried, J.M., Kennedy, K. A., Sartorelli, A. C., and Tritton, T. R., 1983, The role of membranes in the mechanism of action of the antineoplastic agent adriamycin, J. Biol. Chem. 258:339–343.PubMedGoogle Scholar
  71. Sirotnak, F. M., Yang, C.-H., Mines, L. S., Oribe, E., and Biedler, J. L., 1986, Markedly altered membrane transport and intracellular binding of vincristine in multidrug-resistant Chinese hamster cells selected for resistance to Vinca alkaloids, J. Cell. Physiol. 126:266–274.PubMedCrossRefGoogle Scholar
  72. Skovsgaard, T., 1978a, Mechanisms of resistance to daunorubicin in Ehrlich ascites tumor cells, Cancer Res. 38:1785–1791.Google Scholar
  73. Skovsgaard, T., 1978b, Carrier-mediated transport of daunorubicin, adriamycin, and rubidazone in Ehrlich ascites tumour cells, Biochem. Pharmacol. 27:1221–1227.CrossRefGoogle Scholar
  74. Tsuruo, T., Iida, H., Tsukagoshi, S., and Sakurai, Y., 1981, Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil, Cancer Res. 41:1967–1972.PubMedGoogle Scholar
  75. van der Bliek, A. M., and Borst, P., 1989, Multidrug resistance, Adv. Cancer Res. 52:165–203.PubMedCrossRefGoogle Scholar
  76. Warr, J. R., Brewer, F., Anderson, M., and Fergusson, J., 1986, Verapamil hypersensitivity of vincristine resistant Chinese hamster ovary cell lines, Cell Biol. Int. Rep. 10:389–399.PubMedCrossRefGoogle Scholar
  77. Wheeler, C., Rader, R., and Kessel, D., 1982, Membrane alterations associated with progressive adriamycin resistance, Biochem. Pharmacol. 31:2691–2693.PubMedCrossRefGoogle Scholar
  78. Yamashita, N., Hamada, H., Tsuruo, T., and Ogata, E., 1987, Enhancement of voltage-gated Na+ channel current associated with multidrug resistance in human leukemia cells, Cancer Res. 47:3736–3741.PubMedGoogle Scholar
  79. Yusa, K., and Tsuruo, T., 1989, Reversal mechanism of multidrug resistance by verapamil: Direct binding of verapamil to P-glycoprotein on specific sites and transport of verapamil outward across the plasma membrane of K562/ADM cells, Cancer Res. 49:5002–5006.PubMedGoogle Scholar
  80. Zamora, J. M., Pearce, H. L., and Beck, W. T., 1988a, Physical-chemical properties shared by compounds that modulate multidrug resistance in human leukemic cells, Mol. Pharmacol. 33:454–462.Google Scholar
  81. Zamora, J. M., Wells, M. R. Wolverton, J. S., Cirtain, M. C., Edwards, H., and Beck, W. T., 1988b, Hypersensitivity of human leukemic multidrug resistant (MDR) cells to intracellular (IC) alkalinization by ouabain, Proc. Am. Assoc. Cancer Res. 29:293.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • William T. Beck
    • 1
  1. 1.Department of Biochemical and Clinical PharmacologySt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations