Skip to main content

Receptor-Mediated Low Density Lipoprotein Metabolism

  • Chapter
Atherosclerosis

Part of the book series: Altschul Symposia Series ((ALSS,volume 1))

Abstract

The concept of receptor-mediated metabolism of lipoproteins emerged 17 years ago from studies on human skin fibroblasts grown in culture1. These experiments were designed to elucidate the normal function of low density lipoprotein (LDL), about which little was known at that time. Biochemical studies showed that a specific cell surface receptor, the LDL receptor, mediates the binding, uptake and degradation of LDL, thus supplying almost all cells in the body with cholesterol. Detailed insight into the molecular mechanisms underlying this complex process was obtained from studies with fibroblasts derived from patients with the phenotype of homozygous familial hypercholesterolemia (FH). As in many other biological systems, the expression of a disease state in a defined cellular system was essential to the discovery of the causal factor: FH is now one of the best characterized genetic diseases at the molecular level. As will be outlined below, several groups of mutations occur naturally in the structural gene for the LDL receptor which disrupt its normal function and lead to severe hypercholesterolemia, myocardial infarctions and premature atherosclerosis. Thus, the important role of lipoprotein receptors in normal physiology is underscored by the dramatic consequences of their functional absence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, M.S. and Goldstein, J.L. 1974. Familial hypercholesterolemia-defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Proc. Natl. Acad. Sci. 71: 788.

    Article  PubMed  CAS  Google Scholar 

  2. Goldstein, J.L. and Brown, M.S. 1990. Regulation of the mevalonate pathway. Nature 343: 425.

    Article  PubMed  CAS  Google Scholar 

  3. Goldstein, J.L., Dana, S.E. and Brown, M.S. 1974. Esterification of low density lipoprotein cholesterol in human fibroblasts and its absence in homozygous familial hypercholesterolemia. Proc. Natl. Acad. Sci. USA 71: 4288.

    Article  PubMed  CAS  Google Scholar 

  4. Brown, M.S. and Goldstein, J.L. 1975. Regulation of activity of low density lipoprotein receptor in human fibroblasts. Cell 6: 307.

    Article  PubMed  CAS  Google Scholar 

  5. Brown, M.S. and Goldstein, J.L. 1976. Receptor-mediated control of cholesterol metabolism. Science 191: 150.

    Article  PubMed  CAS  Google Scholar 

  6. Goldstein, J.L. and Brown, M.S. 1976. LDL pathway in human fibroblasts. Receptor-mediated mechanisms for regulation of cholesterol metabolism. Curr. Topics Cell Reg. 11: 147.

    CAS  Google Scholar 

  7. Goldstein, J.L. and Brown, M.S. 1977. Low density lipoprotein pathway and its relation to atherosclerosis. Ann. Rev. Biochem. 46: 897.

    Article  PubMed  CAS  Google Scholar 

  8. Goldstein, J.L. and Brown, M.S. 1974. Binding and degradation of low-density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J. Biol. Chem. 249: 5153.

    PubMed  CAS  Google Scholar 

  9. Fredrickson, D.S., Goldstein, J.L. and Brown, M.S. 1978. The familial hypercholesterolemias. In: The Metabolic Basis of Inherited Disease. Wyngaarden, J.B. and Fredrickson, D.S. (eds), McGraw-Hill, New York.

    Google Scholar 

  10. Goldstein, J.L. and Brown, M.S. 1978. Hypercholesterolemia. Pathogenesis of a receptor disease. John Hopkins Med. 143: 8.

    CAS  Google Scholar 

  11. Khachadurian, A.K. 1964. Inheritance of essential familial hypercholesterolemia. Am. J. Med. 37: 402.

    Article  PubMed  CAS  Google Scholar 

  12. Goldstein, J.L., Dana, S.E., Brunschede, G.Y. and Brown, M.S. 1975. Genetic heterogeneity in familial hypercholesterolemia. Evidence for 2 different mutations affecting function of low density lipoprotein receptor. Proc. Natl. Acad. Sci. USA 72: 1092.

    Article  PubMed  CAS  Google Scholar 

  13. Tolleshaug, H., Goldstein, J.L., Schneider, W.J. and Brown, M.S. 1982 Posttranslational processing of the LDL receptor and its genetic disruption in familial hypercholesterolemia. Cell 30: 715.

    Article  PubMed  CAS  Google Scholar 

  14. Tolleshaug, H., Hobgood, K.K., Brown, M.S. and Goldstein, J.L. 1983. The LDL receptor locus in familial hypercholesterolemia. Multiple mutations disrupt transport and processing of membrane receptor. Cell 32: 941.

    Article  PubMed  CAS  Google Scholar 

  15. Goldstein, J.L. and Brown, M.S. 1983. Familial hypercholesterolemia. In: The Metabolic Basis of Inherited Disease. Stanbury, J.B., Wyngaardon, J.B., Fredrickson, D.S., et al. (eds), McGraw-Hill, New York.

    Google Scholar 

  16. Slack, J. and Nevin, N.C. 1968. Hyperlipidemic xanthomatosis. I. Increased risk of death from ischemic heart disease in first degree relatives of 53 patients with essential hyperlipidemia and xanthomatosis. J. Med. Genet. 5: 4.

    Article  PubMed  CAS  Google Scholar 

  17. Stone, N.J., Levy, R.I., Fredrickson, D.S. and Verber, J. 1974. Coronary artery disease in 116 kindred with familial type II hyperlipoproteinemia. Circulation 49: 476.

    Article  PubMed  CAS  Google Scholar 

  18. Yamamoto, T., Davis, C.G., Brown, M.S., Schneider, W.J., Casey, M.L., Goldstein, J.L. and Russell, D.W. 1984. The human LDL receptor. A cysteine-rich protein with multiple ALU sequences in its messenger RNA. Cell 39: 27.

    Article  PubMed  CAS  Google Scholar 

  19. Russell, D.W., Schneider, W.J., Yamamoto, T., Luskey, K.L., Brown, M.S. and Goldstein, J.L. 1984. Domain map of the LDL receptor. Sequence homology with the epidermal growth factor precursor. Cell 37: 577.

    Article  PubMed  CAS  Google Scholar 

  20. Sudhof, T.C., Goldstein, J.L., Brown, M.S. and Russell, D.W. 1985. Cassette of 8 exons shared by genes for LDL receptor and EGF precursor. Science 228: 815.

    Article  PubMed  CAS  Google Scholar 

  21. Innerarity, T.L., Weisgraber, K.H., Arnold, K.S., Rail, S.C. Jr. and Mahley, R.W. 1984. Normalization of receptor binding of apolipoprotein E2. Evidence for modulation of the binding site conformation. J. Biol. Chem. 259: 7261.

    PubMed  CAS  Google Scholar 

  22. Knott, T.J., Rall, S.C. Jr., Innerarity, T.L., Jacobson, S.F., Urdena, M.S., Levy-Wilson, B., Powell, L.M., Pease, R.J., Eddy, R., Nakai, H., Byers, M., Priestly, L.M., Robertson, E., Rall, L.B., Betsholtz, C., Shows, T.B., Mahley, R.W. and Scott, J. 1985. Human apolipoprotein B. Structure of carboxyl terminal domains, sites of gene expression, and chromosomal location. Science 230: 37.

    Article  PubMed  CAS  Google Scholar 

  23. Goldstein, J.L., Brown, M.S., Anderson, R.G.W., Russell, D.W. and Schneider, W.J. 1985. Receptor-mediated endocytosis. Concepts emerging from the LDL receptor system. Ann. Rev. Cell Biol. 1: 1.

    Article  PubMed  CAS  Google Scholar 

  24. Mahley, R.W. and Innerarity, T.L. 1983. Lipoprotein receptors and cholesterol homeostasis. Biochim. Biohvs. Acta 737: 197.

    Article  CAS  Google Scholar 

  25. Innerarity, T.L. and Mahley, R.W. 1978. Enhanced binding by cultured human fibroblasts of Apo-E containing lipoproteins as compared with low density lipoproteins. Biochemistry 7: 1440.

    Article  Google Scholar 

  26. Pitas, R.E., Innerarity, T.L. and Mahley, R.W. 1980. Cell surface receptor binding of phospholipid-protein complexes containing different ratios of receptor-active and receptor-inactive E apolipoprotein. J. Biol. Chem. 255: 5454.

    PubMed  CAS  Google Scholar 

  27. Basu, S.K., Goldstein, J.L., Anderson, R.G.W. and Brown, M.S. 1976. Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts. Proc. Natl. Acad. Sci. USA 73: 3178.

    Article  PubMed  CAS  Google Scholar 

  28. Schneider, W.J., Beisiegel, U., Goldstein, J.L. and Brown, M.S. 1982. Purification of the low density lipoprotein receptor. An acidic glycoprotein in 164,000 molecular weight. J. Biol. Chem. 257: 2664.

    PubMed  CAS  Google Scholar 

  29. Scott, J., Urdea, M., Quiroga, M., Sanchez-Pescador, R., Fong, N., Selby, M., Rutter, W.J. and Bell G.I. 1983. Structure of a mouse submaxillary messenger RNA encoding epidermal growth factor and seven related proteins. Science 221: 236.

    Article  PubMed  CAS  Google Scholar 

  30. Gray, A., Dull, T.J. and Ullrich, A. 1983. Nucleotide sequence of epidermal growth factor cDNA predicts a 128,000 molecular weight protein precursor. Nature 303: 722.

    Article  PubMed  CAS  Google Scholar 

  31. Doolittle, R.F., Feng, D.-F. and Johnston, M.S. 1984. Computer-based characterization of epidermal growth factor precursor. Nature 307: 558.

    Article  PubMed  CAS  Google Scholar 

  32. Cummings, R.D., Kornfeld, S., Schneider, W.J., Hobgood, K.K., Tolleshaug, H., Brown, M.S. and Goldstein, J.L. 1983. Biosynthesis of N-linked and O-linked oligosaccharides of the low density lipoprotein receptor. J. Biol. Chem. 258: 15261.

    PubMed  CAS  Google Scholar 

  33. Davis, C.G., Elhammer, A., Russell, D.W., Schneider, W.J., Kornfeld, S., Brown, M.S. and Goldstein, J.L. 1986. Deletion of clustered O-linked carbohydrates does not impair function of low density lipoprotein receptor in transfected fibroblasts. J. Biol. Chem. 261: 2828.

    PubMed  CAS  Google Scholar 

  34. Beisiegel, U., Schneider, W.J., Goldstein J.L., Anderson, R.G.W. and Brown, M.S. 1981. Monoclonal antibodies to the low density lipoprotein receptor as probes for the study of receptor mediated endocytosis and the genetics of familial hypercholesterolemia. J. Biol. Chem. 256: 11923.

    PubMed  CAS  Google Scholar 

  35. Schneider, W.J., Goldstein, J.W. and Brown, M.S. 1985. Purification of the LDL receptor. Methods Enzvmol. 109: 405.

    Article  CAS  Google Scholar 

  36. Schneider, W.J., Brown, M.S. and Goldstein, J.L. 1983. Kinetic defects in the processing of low density lipoprotein receptor in fibroblasts from WHHL rabbits and a family with familial hypercholesterolemia. Mol. Biol. Med. 1L353.

    Google Scholar 

  37. Lehrman, M.A., Goldstein, J.L., Brown, M.S., Russell, D.W. and Schneider, W.J. 1985. Internalization-defective LDL receptors produced by genes with nonsense and frameshift mutations that truncate the cytoplasmic domain. Cell 41: 735.

    Article  PubMed  CAS  Google Scholar 

  38. Schneider, W.J. 1989. The low density lipoprotein receptor, Biochim. Biophvs. Acta 988: 303.

    Article  CAS  Google Scholar 

  39. Goldstein J.L., Brown, M.S. and Stone, N.J. 1977. Genetics of LDL receptor. Evidence that mutations affecting binding and internalization are allelic. Cell 12: 629.

    Article  PubMed  CAS  Google Scholar 

  40. Davis, C.G., Lehrman, M.A., Russell, D.W., Anderson, R.G.W., Brown, M.S. and Goldstein J.L. 1986. The JD mutation in familial hypercholesterolemia. Amino acid substitution in cytoplasmic domain impedes internalization of LDL receptors. Cell 45: 15.

    Article  PubMed  CAS  Google Scholar 

  41. Lehrman, M.A., Schneider, W.J., Sudhoff, T., Brown, M.S., Goldstein, J.L. and Russell, D.W. 1985. Mutations in LDL receptor. ALU-ALU recombination deletes exon encoding transmembrane and cytoplasmic domains. Science 227: 140.

    Article  PubMed  CAS  Google Scholar 

  42. Miyake, Y., Tajima, S., Yamamura, T. and Yamamoto, A. 1981. Homozygous familial hypercholesterolemia mutant with a defect in internalization of low density lipoprotein. Proc. Natl. Acad. Sci. USA 78: 5151.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schneider, W.J. (1991). Receptor-Mediated Low Density Lipoprotein Metabolism. In: Gotlieb, A.I., Langille, B.L., Fedoroff, S. (eds) Atherosclerosis. Altschul Symposia Series, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3754-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3754-0_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6672-0

  • Online ISBN: 978-1-4615-3754-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics