Skip to main content

Plasma Deposition: Processes and Diagnostics

  • Chapter
Plasma Technology
  • 268 Accesses

Abstract

This paper focuses an application of plasmas for the deposition of materials. Firstly, a concise review of deposition techniques for thin films is given. Direct current (DC), radio frequency (RF) and electron cyclotron resonance (ECR) heated plasmas are operated in a low pressure (below 10 Pa) environment. In addition arc deposition methods are discussed. High-velocity steady-state plasma flows are used at pressures up to atmospheric pressure. During plasma spraying micron-sized particulates are injected into the plasma flow. The quality of the deposited film for a specific application must be reproducible and controllable. Therefore the interaction of the material to be coated with the plasma and the substrate surface must be investigated. Real time measurements by optical techniques will also be discussed in the last part.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. F. Bunshah, The activated reactive evaporation process, U. S. Patent No. 3 791 852, (Feb. 1974).

    Google Scholar 

  2. D. M. Mattox, Fundamentals of ion plating, J. Vac. Sci. Technol. 10:47 (1973).

    Article  ADS  Google Scholar 

  3. B. A. Banks, and S. K. Rutledge, Ion beam sputter-deposited diamondlike films, J. Vac. Sci. Technol. 21:807 (1982).

    Article  ADS  Google Scholar 

  4. M. Matsuoka, and K. Ono, New high rate sputtering-type electron cyclotron resonance microwave plasma using an electric mirror, Appl. Phys. Lett. 54:1645 (1989).

    Article  ADS  Google Scholar 

  5. S. M. Gorbatkin, L. A. Berry, and J. B. Roberto, Behaviour of Ar plasmas formed in a mirror field electron cyclotron resonance microwave ion source, J. Vac. Sci. Technol. A8:2893 (1990).

    ADS  Google Scholar 

  6. A. von Engel, “Electric plasmas: Their Nature and Uses”, Taylor & Francis Ltd, London, (1983).

    Google Scholar 

  7. D. Bohm, in: “The Characteristics of Electrical Discharges in Magnetic Fields”, A. Guthrie and R. K. Wakerling, ed., McGraw Hill, New York, (1949).

    Google Scholar 

  8. B. Chapman, “Glow Discharge Processes”, John Wiley & Sons, New York, (1980).

    Google Scholar 

  9. J. W. Coburn and E. Kay, Positive-ion bombardment of substrates in rf glow discharge sputtering, J. Appl. Phys. 43:4965 (1972).

    Article  ADS  Google Scholar 

  10. O. A. Popov, and H. Waldron, Electron cyclotron resonance plasma stream for plasma enhanced chemical vapor deposition, J. Vac. Sci. Technol. A7:914 (1989).

    ADS  Google Scholar 

  11. O. A Popov, Characteristics of electron cyclotron resonance plasma sources, J. Vac. Sci. Technol. A7:894 (1989).

    ADS  Google Scholar 

  12. C. C. Tsai, L. A. Berry, S. A. Gorbatkin, H. H. Haselton, J. B. Roberto, and W. L. Stirling, Potential applications of an electron cyclotron resonance multicusp plasma source, J. Vac. Sci. Technol. A8:2900 (1990).

    ADS  Google Scholar 

  13. H. Enrich, B. Hasse, M. Mausbach, and K. G. Müller, Plasma deposition of thin films utilizing the anode vacuum arc, IEEE Trans. Plasma Sci. 18:895 (1990).

    Article  ADS  Google Scholar 

  14. H. Maecker, Fortschritte in der Bogenphysik, Proc. Int. Conf. on Phenomena in Ionized Gases (ICPIG V), Munich, H. Maecker ed., 2:1793 (1961).

    Google Scholar 

  15. G. M. W. Kroesen, C. J. Timmermans, and D. C. Schram, Expanding plasma used for plasma deposition, Pure & Appl. Chem. 60:795 (1988).

    Article  Google Scholar 

  16. F. Paschen, Ann. Phvs. 50:901 (1916).

    Article  ADS  Google Scholar 

  17. B. Singh, O. R. Mesker, A. W. Levine, and Y. Arie, Hollow cathode plasma assisted chemical vapor deposition of diamond, Appl. Phys. Lett. 52:1658 (1988).

    Article  ADS  Google Scholar 

  18. E. Pfender, Thermal plasma processing in the nineties, Pure & Appl. Chem. 60:591, (1988).

    Article  Google Scholar 

  19. A. W. Koch, Verfahren und Vorrichtung zum Beschichten von Werkstücken durch Plasmaspritzen, DE Patent No. P4036857. 2, (Nov. 1990).

    Google Scholar 

  20. Y. H. Lee, J. E. Heidenreich III, and G. Fortuno, Plasma characterization of an electron cyclotron resonance-radio frequency hybrid plasma reactor, J. Vac. Sci. Technol. A7:903 (1989).

    ADS  Google Scholar 

  21. R. F. Bunshah, Critical issues in plasma assisted vapor deposition processes, IEEE Trans. Plasma Sci. 18:846 (1990).

    Article  ADS  Google Scholar 

  22. A. W. Koch, W. Renz, D. Boutard, V. Dose, W. Jacob, W. Möller, J. Perchermeier, and R. Wilhelm, Metallic tube coating by means of moving coil ECR, Proc. Intern. Symp. Plasma Chemistry, (ISPC-9) Pugnochiuso, R. dďAgostino, ed., 3:1826 (1989).

    Google Scholar 

  23. M. Geisler, J. Kieser, E. Räuchle, and R. Wilhelm, Elongated microwave electron cyclotron resonance heating plasma source, J. Vac. Sci. Technol. A8:908 (1990).

    ADS  Google Scholar 

  24. J. Perchermeier, A. Koch, W. Möller and R. Wilhelm, Development of an Anti-Multipactor Coating for the JET Lower Hybrid Launcher, IPP-JET-Report No. 34, (Oct. 1990).

    Google Scholar 

  25. K. Behringer, (private communication).

    Google Scholar 

  26. W. Mayr, Measurement of particle velocity and size distribution in a plasma by means of laser doppler velocimetry Proc. Int. Conf. on Phenomena in Ionized Gases (ICPIG XVI), Düsseldorf, W. Bötticher, ed., 3:412 (1983).

    Google Scholar 

  27. A. W. Koch, K. D. Landes, and G. Seeger, Laser diagnostics of an argon plasma jet, Proc. Int. Conf. on Phenomena in Ionized Gases (ICPIG XVIII), Swansea, W. T. Williams, ed., 2:456 (1987).

    Google Scholar 

  28. A. W. Koch, K. D. Landes, and G. Seeger, Local drift in recombining plasma jets, Proc. Int. Conf. on Phenomena in Ionized Gases (ICPIG XIX), Belgrade, J. M. Labat, ed., 4:770 (1989).

    Google Scholar 

  29. A. W. Koch, Simultaneous measurement of local drift velocities and electron densities of plasma jets, J. Phys. D 23:504 (1990).

    Article  ADS  Google Scholar 

  30. A. W. Koch, G. K. Forster, K. D. Landes, and G. Seeger, Double pulse laser spectroscopy of plasma velocities (contribution to this conference).

    Google Scholar 

  31. F. Durst, A. Melling, and J. H. Whitelaw, “Principles and practice of laser doppler anemometry”, Academic Press, London (1976).

    Google Scholar 

  32. H. C. van de Hulst, “Light Scattering by Small Particles, Wiley & Sons, New York, (1957).

    Google Scholar 

  33. A. W. Koch, Verfahren und Vorrichtung zur Laserstrahl-Diagnostik, DE Patent No. P3815214. 2, (May 1988), and CH Patent No. 1694/89 (May 1989).

    Google Scholar 

  34. A. W. Koch, Laser diagnostics of densities and temperature of an argon plasma jet, Intern. Inst. of Welding, IIW-Document, Vienna, No. 212-705-88 (1988).

    Google Scholar 

  35. A. W. Koch, Verfahren und Vorrichtung zur Messung lokaler Schichtdicken und-Strukturen, DE Patent No. P4036857. 2, (Nov. 1990).

    Google Scholar 

  36. R. M. A. Azzam, and N. M. Bashara, “Ellipsometry and polarized light”, North-Holland, Amsterdam (1977).

    Google Scholar 

  37. R. W. Collins, Automated rotating element ellipsometers: Calibration, operation, and real-time applications, Rev. Sci. Instr. 61:2029 (1990).

    Article  ADS  Google Scholar 

  38. A. Koch, M. Engelhard, W. Jacob, W. Möller, and R. Wilhelm, In situ plasma and surface diagnostics of C:H deposition from ECR plasmas, Proc. NATO-Advanced Study Institute on Diamond and Diamond-Like Films and Coatings, R-E. Clausing, L. L. Horton, J. C. Angus, and P. Koidl, eds., NATO-ASI Series B: Physics, Vol. 266, Plenum, New York (1991).

    Google Scholar 

  39. A. W. Koch, (to be published).

    Google Scholar 

  40. M. Born and E. Wolf, “Principle of Optics”, Pergamon, Oxford, (1975)

    Google Scholar 

  41. A. W. Koch, Dual beam laser interferometry for film parameter monitoring during plasma processing (contribution to this conference).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Koch, A.W. (1992). Plasma Deposition: Processes and Diagnostics. In: Capitelli, M., Gorse, C. (eds) Plasma Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3400-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3400-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6502-0

  • Online ISBN: 978-1-4615-3400-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics