Skip to main content

Microwave Excitation Technology

  • Chapter
Plasma Technology

Abstract

Application field of microwave produced plasmas is widely expanding. Microwave plasmas can be considered as species sources and the developed products are ion sources, photon sources (lasers, lamps) and neutral sources (surface treatment downstream the discharge). Microwave plasmas are also used for deposition and etching (with or without magnetic field). Hence, choice of a microwave excitation structure is obviously depending on the application (either in the plasma bulk or downstream the discharge) and the reactor type (pressure range, dimensions of the reaction chamber). Several excitation structures are able to solve a specific problem. However, the determination of the optimized structure requires a good knowledge of struc ture characteristics. Therefore, this paper is divided in three parts. We first recall basic principles of microwave discharges production (energy transfer, discharge sustaining conditions, stability, role of magnetic field). Secondly, we review the main types of excitation structures. Thirdly, we present some typical reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. D. MacDonald and S. J. Tetenbaum, “Microwave Breakdown in Gaseous Electronics”, M. N. Hirsch and J. K. Oskam eds, Vol 1, Academic press New York (1978).

    Google Scholar 

  2. J. Marec, E. Bloyet, M. Chaker, P. Leprince and P. Nghiem, Part B, Micro wave discharges in “Electrical Breakdown and Discharges in Gases” E. E. Kunhardt and L. Luessen eds,Plenum Publ. Corp., New York (1983).

    Google Scholar 

  3. W. P. Allis, S. J. Buchsbaum and A. Bers, Electromagnetic propagation in isotropic plasmas, in “Waves in anisotropic plasmas”, MIT Press Cambridge (1963).

    Google Scholar 

  4. C. Boisse-Laporte, A. Granier, E. Dervisevic, P. Leprince and J. Marec, Microwave discharges produced by surface wave in argon gas, J. Phys. D: Appl; Phvs. 20: 204 (1987).

    Article  ADS  Google Scholar 

  5. W. M. Glaude, M. Moisan, R. Pantel, P. Leprince and J. Marec, Axial elec tron density and wave distribution along a plasma column sustained by the propagation of a microwave surface wave, J. Appl. Phys. 51: 5693 (1980).

    Article  ADS  Google Scholar 

  6. C. Boisse-Laporte, A. Granier, E. Bloyet, P. Leprince and J. Marec, Influence of the excitation frequency on surface wave argon discharges. Study of the light emission, J. Appl. Phys. 61:1740 (1987).

    Article  ADS  Google Scholar 

  7. C. Boisse-Laporte, Etude du transfert d’énergie d’une onde à un plasma, Thèse Université Paris-Sud, Orsay (1989).

    Google Scholar 

  8. S. Pasquiers, C. Boisse-Laporte, A. Granier, E. Bloyet, P. Leprince and J. Marec,Action of a static magnetic field on an argon discharge pro duced by a travelling wave, J. Appl. Phys. 65:1465 (1989).

    Article  ADS  Google Scholar 

  9. J. Asmussen, Electron cyclotron resonance microwave discharges for etch ing and thin film depsition, J. Vac. Sci. Tech. A 7:883 (1989).

    Article  ADS  Google Scholar 

  10. H. Rau and B. Trafford, Rotationnaly symmetrical electric fields and el ectron density distributions in a microwave plasma used in optical fibre production, J. Phvs. D: Appl. Phys. 22:1613 (1990).

    Article  ADS  Google Scholar 

  11. H. Rau and B. Trafford, A microwave plasma bell reactor experiment and simulation, J. Phvs. D: Appl. Phys. 23:1637 (1990).

    Article  ADS  Google Scholar 

  12. M. Geisler, J. Kieser, E. Rauchle and R. Wilhem, Elongated microwave ECRH plasma source, J. Vac. Sci. Tech. A to be published.

    Google Scholar 

  13. K. Suzuki, S. Okudaira, N. Sukudo and I. Kanomata, Microwave plasma etching, Jap. J. Appl. Phys. 16:1979 (1977).

    Article  ADS  Google Scholar 

  14. M. Pichot, A. Durandet, J. Pelletier, Y. Arnal and L. Vallier, Microwave multipolar plasma excited by distributed electron cyclotron reson ance: concept and performances, Rev. Sci. Instrum. 59:1072 (1988).

    Article  ADS  Google Scholar 

  15. J. Hopwood, D. K. Reinhard and J. Asmussen, Charged particles densities and energy distributions in a multipolar electron cyclotron resonance plasma etching source, J. Vac. Sci. Tech. A 8:3103 (1990).

    Article  ADS  Google Scholar 

  16. B. Andries, S. Saada and P. Parrens, A surface wave reactor of large diameter with localized ECR effect, CIPG, 146 (1991).

    Google Scholar 

  17. R. Safari, C. Boisse-Laporte, A. Granier, M. Lefebvre and M. Pealat, Investigation of flowing microwave oxygen discharge by CARS, ESCAMPIG, 258 (1990).

    Google Scholar 

  18. C. Chave, C. Boisse-Laporte, J. Marec and P. Leprince, Nitrogen microwa ve discharge for metallic surface nitriding, ICSPE, 151 (1990).

    Google Scholar 

  19. F. Normand, A. Granier, J. Marec and P. Leprince, Surface treatment of Polypropylen by oxygen microwave dischargge, ICSPE, 17 (1990).

    Google Scholar 

  20. L. Mahoney and J. Asmussen, A compact resonant cavity, five centimeters multiscup, ECR broad-beam ion source, Rev. Sci. Instrum. 61:285 (1990).

    Article  ADS  Google Scholar 

  21. R. Messier, From diamond-like carbon to diamond coatings, Thin Solid film, 153:1 (1987).

    Article  ADS  Google Scholar 

  22. W. Schreffer, U. V. Curable materials response and its relationship to power level and lamp spectra, Radtech. Conf., 29 (1990).

    Google Scholar 

  23. C. P. Christiensen, C. Gordon, C. Moutoulas and B. J. Feldman, High repetition rate XeCl waveguide laser without gas flow, Opt. Letters, 12:169 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leprince, P., Marec, J. (1992). Microwave Excitation Technology. In: Capitelli, M., Gorse, C. (eds) Plasma Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3400-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3400-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6502-0

  • Online ISBN: 978-1-4615-3400-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics