Skip to main content

Intestinal Microcirculation

Implications for the Pathogenesis of Gastrointestinal Disease

  • Chapter
Modern Concepts in Gastroenterology

Part of the book series: Topics in Gastroenterology ((TGEN))

  • 67 Accesses

Abstract

This chapter considers the major anatomical and physiological properties of the intestinal microcirculation, with emphasis on the homeostatic function of blood and lymphatic capillaries. In considering the implications of deranged microcirculatory function in the pathogenesis of gastrointestinal disease, certain conditions in which such a dysfunction is recognized to be important are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perry MA, Ardell JL, Barrowman JA, Kvietys PR. Physiology of the splanchnic circulation. In: Pathophysiology of the Splanchnic Circulation (Kvietys PR, Barrowman JA, Granger DN, eds Boca Raton, FL: CRC Press, 1987.

    Google Scholar 

  2. Kvietys PR, Granger DN. The physiology, pharmacology and pathophysiology of the colonic circulation. In: Physiology of the Intestinal Circulation (Sheppard AP, Granger DN, eds). New York: Raven Press, 1984.

    Google Scholar 

  3. Casley-Smith JR. The identification of chylomicra and lipoproteins in tissue sections and their passage into jejunal lacteals. J Cell Biol 1962; 15: 259–277.

    Article  PubMed  CAS  Google Scholar 

  4. Jodal M, Hallback D-A, Lundgren O. Tissue osmolality in intestinal villi during luminal perfu-sion with isotonic electrolyte solutions. Acta Physiol Scand 1978; 102: 94–107.

    Article  PubMed  CAS  Google Scholar 

  5. Bohlen HG. Na+ induced intestinal interstitial hyperosmolality and vascular responses during absorptive hyperemia. Am J Physiol 1982; 242: H785–H789.

    PubMed  CAS  Google Scholar 

  6. Granger DN, Kvietys PR, Perry MA, Barrowman JA. The microcirculation and intestinal transport. In: Physiology of the Gastrointestinal Tract 2 nd ed. (Johnson LR, ed). New York: Raven Press, 1987.

    Google Scholar 

  7. Granger DN, Perry MA, Kvietys PR, Taylor AE. Permeability of intestinal capillaries: effects of fat absorption and gastrointestinal hormones. Am J Physiol 1982; 242: G194-G201.

    Google Scholar 

  8. Granger DN, Cross R, Barrowman JA. Effects of various secretagogues and human carcinoid serum on lymph flow in the cat ileum. Gastroenterology 1982; 83: 896–901.

    PubMed  CAS  Google Scholar 

  9. Lee JS, Silverberg JW. Effect of cholera toxin on fluid absorption and villus lymph pressure in dog jejunal mucosa. Gastroenterology 1973; 62: 993–1000.

    Google Scholar 

  10. Yablonski ME, Lifson N. Mechanism of production of intestinal secretion by elevated venous pressure. J Clin Invest 1976; 57: 904–915.

    Article  PubMed  CAS  Google Scholar 

  11. Granger DN, Parker RE, Quillen EW, et al. Lymph flow transients. In: Lymphology (Malek P, Bartos V, Weissleder H, Witte, MH, eds). Stuttgart: G. Thieme, 1977.

    Google Scholar 

  12. Sherwin R, Joshi P, Hendler R, Felix P, Conn, HO. Hyperglucagonemia in Laennec’s cirrhosis. The role of portal-systemic shunting. N Engl J Med 1974; 290: 239–242.

    Article  PubMed  CAS  Google Scholar 

  13. Kitano S, Koyanagi N, Sugimachi K, et al. Mucosal blood flow and modified vascular responses to norepinephrine in the stomach of rats with liver cirrhosis. Eur Surg Res 1982; 14: 221–230.

    Article  PubMed  CAS  Google Scholar 

  14. Witte CL, Witte MH. Splanchnic circulatory and tissue fluid dynamics in portal hypertension. FedProc 1983; 42: 1685–1689.

    CAS  Google Scholar 

  15. Duhac J, Jarmolych J. Histology of the intestinal peritoneum in patients with cirrhosis of the liver and ascites. Am J Dig Dis 1968; 23: 417–422.

    Google Scholar 

  16. Norman DA, Atkins JA, Sielig LI, et al. Water and electrolyte movement and mucosal morphology in the jejunum of patients with portal hypertension. Gastroenterology 1980; 79: 707–715.

    PubMed  CAS  Google Scholar 

  17. Lifson N. Fluid secretion and hydrostatic pressure relationships in the small intestine. In: Mechanisms of Intestinal Secretion (Binder HJ, ed). New York: Alan R. Liss, 1970.

    Google Scholar 

  18. Barrowman JA, Granger DN. Effects of experimental cirrhois on splanchnic micro vascular fluid and solute exchange in the rat. Gastroenterology 1984; 87: 165–172.

    PubMed  CAS  Google Scholar 

  19. Parks DA, Jacobson ED. Intestinal ischemia. In: Pathophysiology of the Splanchnic Circulation (Kvietys PR, Barrowman JA, Granger DN, eds). Boca Raton, FL: CRC Press, 1987.

    Google Scholar 

  20. Lundgren 0. Studies on blood flow distribution and counter current exchange in the small intestine. Acta Physiol Scand 1967; 303 (Suppl):l–42.

    Google Scholar 

  21. Granger DN, Rutili G, McCord JM. Superoxide radicals in feline intestinal ischemia. Gastroenterology 1981; 81: 22–29.

    PubMed  CAS  Google Scholar 

  22. Hernandez LA, Grisham MB, Twohig B, et al. Role of neutrophils in ischemia-reperfusion-induced microvascular injury. Am J Physiol 1987; 253: H699–H703.

    PubMed  CAS  Google Scholar 

  23. Bailey RW, Bulkley GB. Role of the circulation in neonatal necrotizing enterocolitis. In: Pathophysiology of the Splanchnic Circulation (Kvietys PR, Barrowman JA, Granger DN, eds). Boca Raton, FL: CRC Press, 1987.

    Google Scholar 

  24. Korthuis RJ, Pitts VH, Granger DN. Intestinal capillary filtration in experimental diabetes mellitis. Am J Physiol 1987; 253: G20–G25.

    PubMed  CAS  Google Scholar 

  25. Korthuis RJ, Benoit JN, Kvietys PR, et al. Intestinal hyperemia in experimental diabetes mellitus. Am J Physiol 1987; 253: G26–G32.

    PubMed  CAS  Google Scholar 

  26. Yrle LF, Smith JK, Benoit JN, et al. Role of glucagon in intestinal hyperemia associated with early experimental diabetes mellitus. Am J Physiol 1988; 255: G542–G546.

    PubMed  CAS  Google Scholar 

  27. Hulten L, Lindhagen J, Lundgren O, et al. Regional intestinal blood flow in ulcerative colitis and Crohn’s disease. Gasteroenterology 1977; 72: 388–396.

    CAS  Google Scholar 

  28. Williams TJ, Morley J. Prostaglandins as potentiators of increased vascular permeability in inflammation. Nature 1973; 246: 215–217.

    Article  PubMed  CAS  Google Scholar 

  29. Kalima TV. The structure and function of intestinal lymphatics and the influence of impaired lymph flow on the ileum of rats. Scand J Gastroenterol 1971; 6 (Suppl 10): 1–87.

    Article  Google Scholar 

  30. Fairburn RA. On the aetiology of ulcerative colitis. A vascular hypothesis. Lancet 1973; 1: 697–699.

    Article  PubMed  CAS  Google Scholar 

  31. Beck IT. The role of splanchnic circulatory and mucosal microvascular changes in ethanol-induced acute small bowel injury. In: Pathophysiology of the Splanchnic Circulation (Kvietys PR, Barrowman JA, Granger DN, eds), Boca Raton, FL: CRC Press, 1987.

    Google Scholar 

  32. Kvietys PR, Patterson WG, Russell JM, et al. Role of the microcirculation in ethanol-induced mucosal injury in the dog. Gastroenterology 1984; 87: 562–571.

    PubMed  CAS  Google Scholar 

  33. Eriksson B. Microangiopathic pattern in the small intestine of the cat after irradiation. Scand J Gastroenterology 1982; 17: 887–895.

    Article  CAS  Google Scholar 

  34. Eriksson B, Johnson L. Capillary filtration in the small intestine after irradiation. Scand J Gastroenterology 1983; 18: 209–215.

    Article  CAS  Google Scholar 

  35. Eriksson B, Johnson L, Lundqvist P-G. Ultrastructural aspects of capillary function in irradiated bowel. Scand J Gastroenterol 1983; 18: 473–480.

    Article  PubMed  CAS  Google Scholar 

  36. Spanner R. Nerve befunde uber die blutwege der darmward und ihre funktionelle bedeutung. Morph Jb 1932; 69: 394–454.

    Google Scholar 

  37. Granger DN. Intestinal microcirculation and transmucosal fluid transport. Am J Physiol 1981; 240: G343–G349.

    PubMed  CAS  Google Scholar 

  38. Granger DN, Barrowman JA. Microcirculation of the alimentary tract. I. Physiology of transcapillary fluid and solute exchange. Gastroenterology 1983; 84: 846–868.

    PubMed  CAS  Google Scholar 

  39. Marshak RH, Khilnani M, Eliasoph J, Wolf B-S. Intestinal edema. Am J Roentgenol 1967; 101: 379–387.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barrowman, J.A., Kvietys, P.R., Granger, D.N. (1992). Intestinal Microcirculation. In: Thomson, A.B.R., Shaffer, E. (eds) Modern Concepts in Gastroenterology. Topics in Gastroenterology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3314-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3314-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6459-7

  • Online ISBN: 978-1-4615-3314-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics