Skip to main content

The role of fibroblast growth factors and related oncogenes in tumor growth

  • Chapter
Oncogenes and Tumor Suppressor Genes in Human Malignancies

Part of the book series: Cancer Treatment and Research ((CTAR,volume 63))

Abstract

The fibroblast growth factors (FGF) constitute a family of seven mitogenic and structurally homologous polypeptides found in a variety of cells and tissues [for reviews see 19]. The FGF family includes acidic FGF (aFGF), basic FGF (bFGF), int-2, hst/K-fgf, FGF-5, FGF-6, and keratinocyte growth factor (KFGF) (Table 1). A simplified nomenclature has been proposed in which the FGF family members are named FGF-1, FGF-2, FGF-3, FGF-4, FGF-5, FGF-6, and FGF-7, respectively. Structurally, the homologies between the seven FGF family members is 35–45%, with the homologies being greatest in the internal regions of these proteins. Their molecular weights range from 18 to 30kDa. They all share with aFGF and bFGF the 3 exon-2 intron structure and the conservation of two cysteine residues. An important structural difference between the FGF family members is that, unlike the others, aFGF and bFGF lack signal peptide sequences and are not secreted proteins. Members of the FGF family, in particular bFGF [10], are also characterized by their strong affinity for heparin. The affinity of bFGF for heparin is manifested in its ability to bind to cell surface heparan sulfate proteoglycan (HSPG), an activity that is required for binding to high-affinity FGF receptors [9]. A schematic representation of the FGF family members portraying domains of sequence homology and signal peptides is shown in Fig. 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkman J, Klagsbrun M: Angiogenic factors. Science 235:442–447, 1987.

    Article  PubMed  CAS  Google Scholar 

  2. Rifkin DB, Moscatelli D: Recent developments in the cell biology of basic fibroblast growth factor. J Cell Biol 109:1–6, 1989.

    Article  PubMed  CAS  Google Scholar 

  3. D’Amore PA: Modes of FGF release in vivo and in vitro. Cancer Met Rev 9:227–238, 1990.

    Article  CAS  Google Scholar 

  4. Klagsbrun M, Folkman J: Angiogenesis In: Sporn MB, Roberts AB (eds): Handbook of Experimental Pharmacology, Peptide Growth Factors and their Receptors, Part II, Vol. 95. Springer-Verlag, Berlin, 1990, pp 549–586.

    Chapter  Google Scholar 

  5. Folkman J: The angiogenic activity of FGF and its possible clinical applications. In: Sara VR, Hall K, Low H (eds): Karolinska Institute Nobel Conference Series on Growth Factors, Growth Factors: From Genes to Clinical Application. Karolinska Institute Nobel Conference Series. Raven Press, New York, 1990, pp 201–216.

    Google Scholar 

  6. Klagsbrun M: The fibroblast growth factor family: Structural and biological properties. Progr Growth Factor Res 1:207–235, 1989.

    Article  CAS  Google Scholar 

  7. Klagsbrun M, D’Amore PA: Regulators of angiogenesis. Annu Rev Physiol 53:217–239, 1991.

    Article  PubMed  CAS  Google Scholar 

  8. Klagsbrun M: The affinity of fibroblast growth factors (FGF’s) for heparin; FGF-heparan sulfate interactions in cells and extracellular matrix. Curr Opin Cell Biol 2:857–863, 1990.

    Article  PubMed  CAS  Google Scholar 

  9. Klagsbrun M, Baird A: A dual receptor system is required for basic fibroblast growth factor activity. Cell 67:229–231, 1991.

    Article  PubMed  CAS  Google Scholar 

  10. Shing Y, Folkman J, Sullivan R, Butterfield C, Murray J, Klagsbrun M: Heparin affinity: Purification of a tumor-derived capillary endothelial cell growth factor. Science 223:1296–1299, 1984.

    Article  PubMed  CAS  Google Scholar 

  11. Esch F, Baird A, Ling N, Ueno N, Hill F, Denoroy L, Klepper R, Gospodarowicz D, Bohlen P, Guillemin R: Primary structure of bovine pituitary basic fibroblast growth factor (FGF) and comparison with the amino-terminal sequence of bovine brain acidic FGF. Proc Natl Acad Sci USA 82:6507–6511, 1985.

    Article  PubMed  CAS  Google Scholar 

  12. Jaye M, Howk R, Burgess W, Ricca GA, Chiu I-M, Ravera MW, O’Brien SJ, Modi WS, Maciag T, Drohan WN: Human endothelial cell growth factor: Cloning, nucleotide sequence, and chromosome localization. Science 233:541–545, 1986.

    Article  PubMed  CAS  Google Scholar 

  13. Abraham JA, Mergia A, Whang JL, Tumolo A, Friedman J, Hjerrild KA, Gospodarowicz D, Fiddes JC: Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science 233:545, 1986.

    Article  PubMed  CAS  Google Scholar 

  14. Thomas KA, Rios-Candelore M, Fitzpatrick S: Purification and characterization of acidic fibroblast growth factor from bovine brain. Proc Natl Acad Sci USA 81:357–361, 1984.

    Article  PubMed  CAS  Google Scholar 

  15. Burgess W, Maciag T: The heparin-binding (fibroblast) growth factor family of proteins. Ann Rev Biochem 58:575–606, 1989.

    Article  PubMed  CAS  Google Scholar 

  16. Gospodarowicz D: Fibroblast growth factor. In: Pimentai E, Perucho M (eds): Critical Reviews in Oncogenesis. CRC Press: Boca Raton, FL, 1989, pp 1–26.

    Google Scholar 

  17. Moscatelli D, Joseph-Silverstein J, Manejias R, Rifkin DB: Mr 25,000 heparin-binding protein from guinea pig brain is a high molecular weight form of basic fibroblast growth factor. Proc Natl Acad Sci USA 84:5778–5782, 1987.

    Article  PubMed  CAS  Google Scholar 

  18. Prats H, Kaghad M, Prats AC, Klagsbrun M, Lelias JM, Liauzun P, Chalon P, Tauber JP, Amalric F, Smith JA, Caput D: High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG codons. Proc Natl Acad Sci USA 86:1836–1840, 1989.

    Article  PubMed  CAS  Google Scholar 

  19. Florkiewicz RZ, Sommer A: Human basic fibroblast growth factor gene encodes four polypeptides: Three initiate translation from non-AUG codons. Proc Natl Acad Sci USA 86:3978–3981, 1989.

    Article  PubMed  CAS  Google Scholar 

  20. Klagsbrun M, Shing Y: Heparin affinity of anionic and cationic capillary endothelial cell growth factors: Analysis of hypothalamus-derived growth factors and fibroblast growth factors. Proc Natl Acad Sci USA 82:805–809, 1985.

    Article  PubMed  CAS  Google Scholar 

  21. Gospodarowicz D, Cheng J: Heparin protects basic and acidic FGF from inactivation. J Cell Physiol 128:475–484, 1986.

    Article  PubMed  CAS  Google Scholar 

  22. Sommer A, Rifkin DB: Interaction of heparin with human basic fibroblast growth factor: Protection of the angiogenic protein from proteolytic degradation by a glycosaminoglycan. J Cell Physiol 138:215–220, 1989.

    Article  PubMed  CAS  Google Scholar 

  23. Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavsky I: Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28:1737–1743, 1989.

    Article  PubMed  CAS  Google Scholar 

  24. Vlodavsky I, Folkman J, Sullivan R, Fridman R, Ishai-Michaeli R, Sasse J, Klagsbrun M: Endothelial cell-derived basic fibroblast growth factor: Synthesis and deposition into subendothelial extracellular matrix. Proc Natl Acad Sci USA 84:2292–2296, 1987.

    Article  PubMed  CAS  Google Scholar 

  25. Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I: A heparin-binding and angiogenic protein — basic fibroblast growth factor — is stored within basement membrane. Am J Pathol 130:393–400, 1988.

    PubMed  CAS  Google Scholar 

  26. Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM: Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64:841–848, 1991.

    Article  PubMed  CAS  Google Scholar 

  27. Shing Y, Folkman J, Weisz PB, Joullie MM, Ewing WR: Affinity of fibroblast growth factors for beta-cyclodextrin tetradecasulfate. Anal Biochem 185:108–111, 1990.

    Article  CAS  Google Scholar 

  28. Stokes CL, Rupnick MA, Williams SK, Lauffenburger DA: Chemotaxis of human microvessel endothelial cells in response to acidic fibroblast growth factor. Lab Invest 63:657–668, 1990.

    PubMed  CAS  Google Scholar 

  29. Schweigerer L, Neufeld G, Friedman J, Abraham JA, Fiddes JC, Gospodarowicz D: Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth. Nature 325:257–259, 1987.

    Article  PubMed  CAS  Google Scholar 

  30. Gross JL, Moscatelli D, Rifkin DB: Increased capillary endothelial cell protease activity in response to angiogenic stimuli in vitro. Proc Natl Acad Sci USA 80:2623–2627, 1983.

    Article  PubMed  CAS  Google Scholar 

  31. Mignatti P, Tsuboi R, Robbins E, Rifkin DB: In vitro angiogenesis on the human amniotic membrane: Requirement for basic fibroblast growth factor-induced proteinases. J Cell Biol 108:671–682, 1989.

    Article  PubMed  CAS  Google Scholar 

  32. Presta M, Maier JA, Rusnati M, Moscatelli D, Ragnotti G: Modulation of plasminogen activator activity in human endometrial adenocarcinoma cells by basic fibroblast growth factor and transforming growth factor beta. Cancer Res 48:6383–6389, 1988.

    Google Scholar 

  33. Montesano R, Vassalli J-D, Baird A, Guillemin R, Orci L: Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci USA 83:7297–7301, 1986.

    Article  PubMed  CAS  Google Scholar 

  34. Gospodarowicz D: Localization of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature 249:123–129, 1974.

    Article  PubMed  CAS  Google Scholar 

  35. Weich HA, Iberg N, Klagsbrun M, Folkman J: Expression of acidic and basic fibroblast growth factors in human and bovine vascular smooth muscle cells. Growth Factors 2:313–320, 1990.

    PubMed  CAS  Google Scholar 

  36. Gospodarowicz D, III CR, Birdwell CR: Effects of fibroblast and epidermal growth factors on ovarian cell proliferation in vitro.I. Characterization of the response of granulosa cells to FGF and EGF. Endocrinology 100:1108–1120, 1977.

    CAS  Google Scholar 

  37. Rodan SB, Wesolowski G, Thomas K, Rodan GA: Growth stimulation of rat calvaria osteoblastic cells by acidic fibroblast growth factor. Endocrinology 121:1917–1923, 1987.

    Article  PubMed  CAS  Google Scholar 

  38. Gospodarowicz D, Plouet J, Fujii DK: Ovarian germinal epithelial cells respond to basic fibroblast growth factor and express its gene: Implications for early folliculogenesis. Int J Dev Neuro 7:401–409, 1989. Endocrinology 125:1266–1276, 1989.

    Article  Google Scholar 

  39. Besnard F, Perraud F, Sensenbrenner M, Labourdette G: Effects of acidic and basic fibroblast growth factors on proliferation and maturation of cultured rat oligodendrocytes.

    Google Scholar 

  40. Shipley GD, Keeble WW, Hendrickson JE, Coffey RJ Jr., Pittelkow MR: Growth of normal human keratinocytes and fibroblasts in serum-free medium is stimulated by acidic and basic fibroblast growth factor. J Cell Physiol 138:511–518, 1989.

    Article  PubMed  CAS  Google Scholar 

  41. Davidson JM, Klagsbrun M, Hill KE, Buckley A, Sullivan R, Brewer PS, Woodward SC: Accelerated wound repair, cell proliferation, and collagen accumulation are produced by a cartilage-derived growth factor. J Cell Biol 100:1219–1227, 1985.

    Article  PubMed  CAS  Google Scholar 

  42. McGee GS, Davidson JM, Buckley A, Sommer A, Woodward SC, Aquino AM, Barbour R, Demetriou AA: Recombinant basic fibroblast growth factor accelerates wound healing. J Surg Res 45:145–153, 1988.

    Article  PubMed  CAS  Google Scholar 

  43. Hebda PA, Klingbeil CK, Abraham JA, Fiddes JC: Basic fibroblast growth factor stimulation of epidermal wound healing in pigs. J Invest Dermatol 95:626–631, 1990.

    Article  PubMed  CAS  Google Scholar 

  44. Broadley KN, Aquino AM, Woodward SC, Buckley-Sturrock A, Sato Y, Rifkin DB, Davidson JM: Monospecific antibodies implicate basic fibroblast growth factor in normal wound repair. Lab Invest 61:571–575, 1989.

    PubMed  CAS  Google Scholar 

  45. Folkman J, Szabo S, Stovroff M, McNeil P, Li W, Shing Y: Duodenal ulcer: Discovery of a new mechanism and development of angiogenic therapy that accelerates healing. Ann Surg 214:414–427, 1991.

    Article  PubMed  CAS  Google Scholar 

  46. Thompson JA, Haudenschild C, Anderson KD, DiPietro JM, Anderson WF, Maciag T: Heparin-binding growth factor 1 induces the formation of organoid neovascular structures in vivo. Proc Natl Acad Sci USA 86:7928–7923, 1989.

    Article  PubMed  CAS  Google Scholar 

  47. Klingbeil CK, Cesar LB, Fiddes JC: Basic fibroblast growth factor accelerates tissue repair in models of impaired wound healing. In Barbul A, Caldwell MD, Eaglstein WH, Hunt TK, Marshall D, Pines E, Skover G (eds): Clinical and Experimental Approaches to Dermal and Epidermal Repair: Normal and Chronic Wounds. Wiley-Liss, New York, 1991, pp 443–458.

    Google Scholar 

  48. Greehalgh DG, Sprugel KH, Murray MJ, Ross R: PDGF and FGF stimulate wound healing in the genetically diabetic mouse. Am J Pathol 136:1235–1246, 1990.

    Google Scholar 

  49. Steinberg BD, Phillips LG, Hokanson JA, et al.: Effect of bFGF on the inhibition of contraction caused by bacteria. J Surg Res 50:47–50, 1991.

    Article  Google Scholar 

  50. Abe K, Takayanagi M, Saito H: Effects of recombinant human basic fibroblast growth factor and its modified protein CS23 on survival of primary cultured neurons from various regions of fetal rat brain. Jpn J Pharmacol 53:221–227, 1990.

    Article  PubMed  CAS  Google Scholar 

  51. Otto D, Frotscher M, Unsicker K: Basic fibroblast growth factor and nerve growth factor administered in gel foam rescue medial septal neurons after fimbria fornix transection. J Neurosci Res 22:83–91, 1989.

    Article  PubMed  CAS  Google Scholar 

  52. Peters G, Brookes S, Smith R, Placzek M, Dickson C: The mouse homolog of the hst/k-FGF gene is adjacent to int-2 and is activated by proviral insertion in some virally induced mammary tumors. Proc Natl Acad Sci USA 86:5678–5682, 1989.

    Article  PubMed  CAS  Google Scholar 

  53. Dickson C, Smith R, Brookes S, Peters G: Tumorigenesis by mouse mammary tumor virus: Proviral activation of a cellular gene in the common integration region int-2. Cell 37:529–536, 1984.

    Article  PubMed  CAS  Google Scholar 

  54. Dickson C, Acland P, Smith R, Dixon M, Deed R, MacAllan D, Walther W, Fuller-Pace F, Kiefer P, Peters G: Characterization of int-2: A member of the fibroblast growth factor family. J Cell Sci 13(Suppl.):87–96, 1990.

    Google Scholar 

  55. Muller WJ, Lee FS, Dickson C, Peters G, Pattengale P, Leder P: The int-2 gene product acts as an epithelial growth factor in transgenic mice. EMBO J 9:907–913, 1990.

    PubMed  CAS  Google Scholar 

  56. Jakobovits A, Shackleford GM, Varmus HE, Martin GR: Two proto-oncogenes implicated in mammary carcinogenesis, int-1 and int-2, are independently regulated during mouse development. Proc Natl Acad Sci USA 83:7806–7810, 1986.

    Article  PubMed  CAS  Google Scholar 

  57. Wilkinson DG, Peters G, Dickson C, McMahon AP: Expression of the FGF-related proto-oncogene int-2 during gastrulation and neurulation in the mouse. EMBO J 7:691–695, 1986.

    Google Scholar 

  58. Wilkinson DG, Bhatt S, McMahon AP: Expression pattern of the FGF-related proto-oncogene int-2 suggests multiple roles in fetal development. Development 105:131–136, 1989.

    PubMed  CAS  Google Scholar 

  59. Paterno GD, Gillespie LL, Dixon MS, Slack JM, Heath JK: Mesoderm-inducing properties of INT-2 and kFGF: Two oncogene-encoded growth factors related to FGF. Development 106:79–83, 1989.

    PubMed  CAS  Google Scholar 

  60. Dickson C, Peters G: Potential oncogene product related to growth factors. Nature 326:833, 1987.

    Article  PubMed  CAS  Google Scholar 

  61. Dixon M, Deed R, Acland P, Moore R, Whyte A, Peters G, Dickson C: Detection and characterization of the fibroblast growth factor-related oncoprotein INT-2. Mol Cell Biol 9:4896–4902, 1989.

    PubMed  CAS  Google Scholar 

  62. Ornitz DM, Moreadith RW, Leder P: Binary system for regulating transgene expression in mice: Targeting int-2 gene expression with yeast GAL4/UAS control elements. Proc Natl Acad Sci USA 88:698–702, 1991.

    Article  PubMed  CAS  Google Scholar 

  63. Tsuda H, Hirohashi S, Shimosato Y, Hirota T, Tsugane S, Yamamoto H, Miyajima N, Toyoshima K, Yamamoto T, Yokota J, Yoshida T, Sakamoto H, Terada M, Sugimura T: Correlation between long-term survival in breast cancer patients and amplification of two putative oncogene-coamplification units: hst-1/int-2 and c-erbB-2/ear-l. Cancer Res 49:3104–3108, 1989.

    PubMed  CAS  Google Scholar 

  64. Meyers SL, O’Brien MT, Smith T, Dudley JP: Analysis of the int-1, int-2, c-myc, and neu oncogenes in human breast carcinomas. Cancer Res 50:5911–5918, 1990.

    PubMed  CAS  Google Scholar 

  65. Machotka SV, Garrett CT, Schwartz AM, Callahan R: Amplification of the proto-oncogenes int-2, c-erb B-2 and c-myc in human breast cancer. Clin Chim Acta 184:207–218, 1989.

    Article  PubMed  CAS  Google Scholar 

  66. Zhou DJ, Casey G, Cline MJ: Amplification of human int-2 in breast cancers and squamous carcinomas. Oncogene 2:279–282, 1988.

    PubMed  CAS  Google Scholar 

  67. Merritt WD, Weissler MC, Turk BF, Gilmer TM: Oncogene amplification in squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg 116:1394–1398,1990.

    Article  PubMed  CAS  Google Scholar 

  68. Kitagawa Y, Ueda M, Ando N, Shinozawa Y, Shimizu N, Abe O: Significance of int-2/hst-l coamplification as a prognostic factor in patients with esophageal squamous carcinoma. Cancer Res 51:1504–1508, 1991.

    PubMed  CAS  Google Scholar 

  69. Somers KD, Cartwright SL, Schechter GL: Amplification of the int-2 gene in human head and neck squamous cell carcinomas. Oncogene 5:915–920, 1990.

    PubMed  CAS  Google Scholar 

  70. Adelaide J, Mattei M-G, Maries I, Raybaud F, Planche J, De Lapeyriere O, Birnbaum D: Chromosomal localization of the hst oncogene and its co-amplification with the int-2 oncogene in a human melanoma. Oncogene 2:413–416, 1988.

    PubMed  CAS  Google Scholar 

  71. Ranzani GN, Pellegata NS, Previdere C, Saragoni A, Vio A, Maltoni M, Amadori D: Heterogeneous protooncogene amplification correlates with tumor progression and presence of metastases in gastric cancer patients. Cancer Res 50:7811–7814, 1990.

    PubMed  CAS  Google Scholar 

  72. Tahara E: Growth factors and oncogenes in human gastrointestinal carcinomas. J Cancer Res Clin Oncol 116:121–131, 1990.

    Article  PubMed  CAS  Google Scholar 

  73. Hiyama E, Hiyama K, Yokoyama T, Ishii T: Immunohistochemical analysis of N-myc protein expression in neuroblastoma: Correlation with prognosis of patients. J Pediat Surg 26:838–843, 1991.

    Article  PubMed  CAS  Google Scholar 

  74. Delli-Bovi P, Curatola AM, Kern FG, Greco A, Ittman M, Basilico C: An oncogene isolated by transfection of Kaposi’s sarcoma DNA encodes a growth factor that is a member of the FGF family. Cell 50:729–737, 1987.

    Article  PubMed  CAS  Google Scholar 

  75. Delli-Bovi P, Curatola AM, Newman KM, Sato Y, Moscatelli D, Hewick RM, Rifkin DB, Basilico C: Processing, secretion, and biological properties of a novel growth factor of the fibroblast growth family with oncogenic potential. Mol Cell Biol 8:2933–2941, 1988.

    PubMed  CAS  Google Scholar 

  76. Yoshida T, Miyagawa K, Odagiri H, Sakamoto H, Little PFR, Terada M, Sugimura T: Genomic sequence of hst, a transforming gene encoding a protein homologous to fibroblast growth factors and the int-2-encoded protein. Proc Natl Acad Sci USA 84:7305–7309, 1987.

    Article  PubMed  CAS  Google Scholar 

  77. Yoshida MC, Wada M, Satoh H, Yoshida T, Sakamoto H, Miyagawa K, Yokota J, Koda T, Kakinuma M, Sugimura T, Terada M: Human HST1 (HSTF1) gene maps to chromosome band Ilql3 and coamplifies with the INT2 gene in human cancer. Proc Natl Acad Sci USA 85:4861–4864, 1988.

    Article  PubMed  CAS  Google Scholar 

  78. Koda T, Sasaki A, Matsushima S, Kakinuma M: A transforming gene, hst, found in NIH 3T3 cells transformed with DNA from three stomach cancers and a colon cancer. Jpn J Cancer Res 78:325–328, 1987.

    PubMed  CAS  Google Scholar 

  79. Delli-Bovi P, Mansukhani A, Ziff EB, Basilico C: Expression of the K-fgf protooncogene is repressed during differentiation of F9 cells. Oncogene Res 5:31–37, 1989.

    PubMed  Google Scholar 

  80. Strohmeyer T, Peter S, Hartmann M, Munemitsu S, Ackermann R, Ullrich A, Slamon DJ: Expression of the hst-l and c-kit protooncogenes in human testicular germ cell tumors. Cancer Res 51:1811–1816, 1991.

    PubMed  CAS  Google Scholar 

  81. Tsuda T, Nakatani H, Matsumura T, Yoshida K, Tahara E, Nishihira T, Sakamoto H, Yoshida T, Terada M, Sugimura T: Amplification of the hst-l gene in human esophageal carcinomas. Jpn J Cancer Res 79:584–588, 1988.

    Article  PubMed  CAS  Google Scholar 

  82. Sakamoto H, Mori M, Taira M, Yoshida T, Matsukawa S, Shimizu K, Sekiguchi M, Terada M, Sugimura T: Transforming gene from human stomach cancers and a noncancerous portion of stomach mucosa. Proc Natl Acad Sci USA 83:3997–4001, 1986.

    Article  PubMed  CAS  Google Scholar 

  83. Theillet C, Le Roy X, De Lapeyriere O, Grosgeorges J, Adnane J, Raynaud SD, Simony-Lafontaine J, Goldfarb M, Escot C, Birnbaum D, Gaudray P: Amplification of FGF-related genes in human tumors: Possible involvement of HST in breast carcinomas. Oncogene 4:915–922, 1989.

    PubMed  CAS  Google Scholar 

  84. Ensoli B, Nakamura S, Salahuddin SZ, Biberfeld P, Larsson L, Beaver B, Wong-Staal F, Gallo RC: AIDS-Kaposi’s sarcoma-derived cells express cytokines with autocrine and paracrine growth effects. Science 243:223–226, 1989.

    Article  PubMed  CAS  Google Scholar 

  85. Basilico C, Newman KM, Curatola AM, Talarico D, Mansukhani A, Velcich A, Delli-Bovi P: Expression and activation of the K-fgf oncogene. Ann NY Acad Sci 567:95–103, 1989.

    Article  PubMed  CAS  Google Scholar 

  86. Zhan X, Culpepper A, Reddy M, Loveless J, Goldfarb M: Human oncogenes detected by a defined medium culture assay. Oncogene 1:369–376, 1987.

    PubMed  CAS  Google Scholar 

  87. Zhan X, Bates B, Hu X, Goldfarb M: The human FGF-5 oncogene encodes a novel protein related to fibroblast growth factors. Mol Cell Biol 8:3487–3495, 1988.

    PubMed  CAS  Google Scholar 

  88. Dionne CA, Kaplan R, Seuranez H, O’Brien SJ, Jaye M: Chromosome assignment by polymerase chain reaction techniques: Assignment of the oncogene FGF-5 to human chromosome 4. Biotechniques 8:190–194, 1990.

    Article  PubMed  CAS  Google Scholar 

  89. Bates B, Hardin J, Zhan X, Drickamer K, Goldfarb M: Biosynthesis of human fibroblast growth factor-5. Mol Cell Biol 11:1840–1845, 1991.

    PubMed  CAS  Google Scholar 

  90. Hébert JM, Basilico C, Goldfarb M, Haub O, Martin GR: Isolation of cDNAs encoding four mouse FGF family members and characterization of their expression during embryogenesis. Dev Biol 138:454–463, 1990.

    Article  PubMed  Google Scholar 

  91. Haub O, Drucker B, Goldfarb M: Expression of the murine fibroblast growth factor 5 gene in the adult central nervous system. Proc Natl Acad Sci USA 87:8022–8026, 1990.

    Article  PubMed  CAS  Google Scholar 

  92. Maries I, Adelaide J, Raybaud F, Mattei M-G, Coulier F, Planche J, de Lapeyreire O, Birnbaum D: Characterization of the HST-related FGF-6 gene, a new member of the fibroblast growth gene family. Oncogene 4:335–340.

    Google Scholar 

  93. de Lapeyriere O, Rosnet O, Benharroch, Raybaud F, Marchetto S, Planche J, Galland F, Mattei M-G, Copeland NG, Jenkins NA, Coulier F, Birnbaum D: Structure, chromosome mapping and expression of the murine FGF-6 gene. Oncogene 5:823–831, 1990.

    PubMed  Google Scholar 

  94. Finch PW, Rubin JS, Miki T, Ron D, Aaronson SA: Human KGF is FGF-related with properties of a paracrine effector of epithelial cell growth. Science 245:752–755, 1989.

    Article  PubMed  CAS  Google Scholar 

  95. Vlodavsky I, Fridman R, Sullivan R, Sasse J, Klagsbrun M: Aortic endothelial cells synthesize basic fibroblast growth factor which remains cell associated and platelet-derived growth factor-like protein which is secreted. J Cell Physiol 131:402–408, 1987.

    Article  PubMed  CAS  Google Scholar 

  96. Rogelj S, Weinberg RA, Fanning P, Klagsbrun M: Basic fibroblast growth factor fused to a signal peptide transforms cells. Nature 331:173–175, 1988.

    Article  PubMed  CAS  Google Scholar 

  97. Blam SB, Tischer E, Abraham JA, Aaronson S: Expression of acidic fibroblast growth factor in NIH/3T3 cells with and without the addition of a secretion signal sequence. J Cell Biochem (Suppl. 13b):152, 1989.

    Google Scholar 

  98. Rogelj S, Klagsbrun M: Oncogenic transformation by basic fibroblast growth factor. In: Krey LC, Gulyas BJ, McCracken JA (eds): Autocrine and Paracrine Mechanisms in Reproductive Endocrinology. Plenum, New York, 1989, pp 19–27.

    Google Scholar 

  99. D’Amore PA, Klagsbrun M: Angiogenesis: Factors and mechanisms. In: Sirica AE (ed): The Pathobiology of Neoplasia. Plenum, New York, 1989, pp 513–531.

    Chapter  Google Scholar 

  100. Folkman J: What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6, 1990.

    Article  PubMed  CAS  Google Scholar 

  101. Folkman J: Successful treatment of an angiogenic disease. N Engl J Med 320:1211–1212, 1989.

    Article  PubMed  CAS  Google Scholar 

  102. Folkman J, Waston K, Ingber D, Hanahan D: Induction of angiogenesis during the transition from hyperplasia to enoplasia. Nature 339:58–61, 1989.

    Article  PubMed  CAS  Google Scholar 

  103. Paku S, Paweletz N: First steps of tumor-related angiogenesis. Lab Invest 65:334–346, 1991.

    PubMed  CAS  Google Scholar 

  104. Brem H, Guerin C, Tamargo R, Brem S, Brem H: Brain tumor angiogenesis. In: Kornblith PL (ed): Advances in Neuro-oncology. Futura, Mount Kisco, NY, 1988, pp 89–101.

    Google Scholar 

  105. Blood CH, Zetter BR: Tumor interactions with the vasculature: Angiogenesis and tumor metastasis. Biochem Biophys Res Acta 1032:89–118, 1990.

    CAS  Google Scholar 

  106. Zetter BR: Angiogenesis: State of the art. Chest 93:159S–166S, 1988.

    PubMed  CAS  Google Scholar 

  107. Moses MA, Langer R: A metalloproteinase inhibitor of neovascularization. J Cell Biochem 47:1–6, 1991.

    Article  Google Scholar 

  108. Zagzag D, Brem S, Robert F. Neovascularization and tumor growth in the brain: A model for experimental studies of angiogenesis and the blood-brain barrier. Am J Pathol 131:361–372, 1988.

    PubMed  CAS  Google Scholar 

  109. Bouck N: Tumor angiogenesis: The role of oncogenes and tumor suppressor genes. Cancer Cells 2:179–184, 1990.

    PubMed  CAS  Google Scholar 

  110. Weidner N, Semple JP, Welch WR, Folkman J: Tumor angiogenesis and metastasis — correlation in invasive breast carcinoma. N Engl J Med 324:1–8, 1991.

    Article  PubMed  CAS  Google Scholar 

  111. Levy AP, Tamargo R, Brem H, Nathans D: An endothelial cell growth factor from the mouse neuroblastoma cell line NB41. Growth Factors 2:9–19, 1989.

    Article  PubMed  CAS  Google Scholar 

  112. Conn SC, Kamen R: Amino acid and cDNA sequences of a vascular endothelial cell mitogen that is homologous to platelet-derived growth factor. Proc Natl Acad Sci USA 87:2628–2632, 1990.

    Article  PubMed  CAS  Google Scholar 

  113. Connolly DT, Heuvelman DM, Nelson R, Olander JV, Eppley BL, et al.: Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest 84:1478–1489, 1989.

    Article  Google Scholar 

  114. Rosenthal RA, Megyesi JF, Henzel WJ, Ferrara N, Folkman J: Conditioned medium from mouse sarcoma 180 cells contains vascular endothelial growth factor. Growth Factors 4:53–59, 1990.

    Article  PubMed  CAS  Google Scholar 

  115. Shing Y, Folkman J, Haudenschild C, Lund D, Crum R, Klagsbrun M: Angiogenesis is stimulated by a tumor-derived endothelial cell growth factor. J Cell Biochem 29:275–287, 1985.

    Article  PubMed  CAS  Google Scholar 

  116. Lobb RR, Alderman EM, Fett JW: Induction of angiogenesis by bovine brain derived class I heparin-binding growth factor. Biochemistry 24:4969–4973, 1985.

    Article  PubMed  CAS  Google Scholar 

  117. Klagsbrun M, Vlodavsky I: Biosynthesis and storage of basic fibroblast growth factor (BFGF) by endothelial cells: Implication for the mechanism of action of angiogenesis. In: Barbul A, Pines E, Caldwell M, Hunt TK (eds): Progress in Clinical and Biological Research; Growth Factors and Other Aspects of Wound Healing.

    Google Scholar 

  118. Ishai-Michaeli R, Eldor A, Vlodavsky I: Heparanase activity expressed by platelets, neutrophils, and lymphoma cells releases active fibroblast growth factor from extracellular matrix. Cel Regul 1:833–842, 1990.

    CAS  Google Scholar 

  119. Voldavsky I, Fuks Z, Ishai-Michaeli R, Bashkin P, Levi E, Korner G, Bar-Shavit, Klagsbrun M: Extracellular matrix-resident basic fibroblast growth factor: Implication for the control of angiogenesis. J Cell Biochem 45:167–176, 1991.

    Article  Google Scholar 

  120. Presta M, Maier JAM, Rusnati M, Ragnotti G: Basic fibroblast growth factor is released from endothelial extracellular matrix in a biologically active form. J Cell Physiol 140:68–74, 1989.

    Article  PubMed  CAS  Google Scholar 

  121. Gross JL, Herblin WF, Dusak BA, Czerniak P, Diamond M, Dexter DL: Modulation of solid tumor growth in vivo by bFGF. Proc Am Assoc Cancer Res, 31:79, 1990.

    Google Scholar 

  122. Tanaka A, Matsumoto K, Nishizawa Y, Lu J, Yamanishi H, Maeyama M, Nonomura N, Uchida N, Sato B: Growth stimulation by androgens, glucocorticoids or fibroblast growth factors and the blocking of the stimulated growth by antibody against basic fibroblast growth factor in protein-free culture of shionogi carcinoma 115 cells. J Steroid Biochem Mol Biol 37:23–29, 1990.

    Article  PubMed  CAS  Google Scholar 

  123. Hori A, Sasada R, Matsutani E, Naito K, Sakura Y, Fujita T, Kozai Y: Suppression of solid tumor growth by immunoneutralizing monoclonal antibody against human basic fibroblast growth factor. Cancer Res 51:6180–6184, 1991.

    PubMed  CAS  Google Scholar 

  124. Kandel J, Bossy-Wetzel E, Radvanyi F, Klagsbrun M, Folkman J, Hanahan D: Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 66:1095–1104, 1991.

    Article  PubMed  CAS  Google Scholar 

  125. Becker D, Meier CB, Herlyn M: Proliferation of human malignant melanomas is inhibited by antisense oligodeoxynucleotides targeted against basic fibroblast growth factor. EMBO J 8:3685–3691, 1989.

    PubMed  CAS  Google Scholar 

  126. Yayon A, Klagsbrun M: Autocrine transformation by chimeric signal peptide-basic fibroblast growth factor: Reversal by suramin. Proc Natl Acad Sci USA 87:5346–5350, 1990.

    Article  PubMed  CAS  Google Scholar 

  127. Moscatelli D, Quarto N: Transformation of NIH 3T3 cells with basic fibroblast growth factor or the hst/K-fgf oncogene causes downregulation of the fibroblast growth factor receptor: Reversal of morphological transformation and restoration of receptor number by suramin. J Cell Biol 109:2519–2527, 1989.

    Article  PubMed  CAS  Google Scholar 

  128. Rapraeger AC, Krufka A, Olwin BB: Requirement of heparan sulfate for bFGF mediated fibroblast growth and myoblast differentiation. Science 252:1705–1708, 1991.

    Article  PubMed  CAS  Google Scholar 

  129. Sakamoto N, Iwahana M, Tanaka NG, Osada Y: Inhibition of angiogenesis and tumor growth by a synthetic laminin peptide, CDPGYIGSR-NH2. Cancer Res 51:903–906, 1991.

    PubMed  CAS  Google Scholar 

  130. Ingber D, Fujita T, Koshitmoto S, Sudo K, Kanamaru T, Brem H, Folkman J: Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumor growth. Nature 348:555–557, 1990.

    Article  PubMed  CAS  Google Scholar 

  131. Kusaka M, Sudo K, Fujita T, Marui S, Itoh F, Ingber D, Folman J: Potent anti-angiogenic action of AGM-1470: Comparison to the fumagillin parent. Biochem Biophys Res Commun 174:1070–1076, 1991.

    Article  PubMed  CAS  Google Scholar 

  132. Brem H, Ingber D, Blood C, Bradley BS, Urioste S, Folkman J: Suppression of tumor metastasis by angiogenesis inhibition. Surg Forum 17:439–441, 1991.

    Google Scholar 

  133. Brem H, Tsakayannis D, Folkman J: Time dependent suppression of wound healing with the angiogenesis inhibitor, AGM 1470. J Cell Biol 115:403, 1991.

    Google Scholar 

  134. Tamargo RJ, Bok RA, Brem H: Angiogenesis inhibition by minocycline. Cancer Res 51:672–675, 1991.

    PubMed  CAS  Google Scholar 

  135. Bagavandoss P, Wilks JW: Specific inhibition of endothelial cell proliferation by thrombospondin. Biochem Biophys Res Comm 170:867–972, 1990.

    Article  PubMed  CAS  Google Scholar 

  136. Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA, Bouck NP: A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 87:6624–6628, 1990.

    Article  PubMed  CAS  Google Scholar 

  137. Moses M, Sudhalter J, Langer R: Identification of an inhibitor of neovascularization from cartilage. Science 248:1408–1410, 1990.

    Article  PubMed  CAS  Google Scholar 

  138. Matsubara T, Saura R, Hirohata K, Ziff M: Inhibition of human endothelial cell proliferation in vitro and neovascularization in vivo by D-penicillamine. J Clin Invest 83:158–167, 1989.

    Article  PubMed  CAS  Google Scholar 

  139. Brem SS, Zagzag D, Tsanaclis AMC, Gately S, Elkouby M-P, Brien SE: Inhibition of angiogenesis and tumor growth in the brain: Suppression of endothelial cell turnover by penicillamine and the depletion of copper, an angiogenic cofactor. Am J Pathol 137:1121–1142, 1990.

    PubMed  CAS  Google Scholar 

  140. Maione TE, Gray GS, Hunt AJ, Sharpe RJ: Inhibition of tumor growth in mice by an analogue of platelet factor 4 that lacks affinity for heparin and retains potent angiostatic activity. Cancer Res 51:2077–2083, 1991.

    PubMed  CAS  Google Scholar 

  141. Ingber D, Folkman J: Inhibition of angiogenesis through modulation of collagen metabolism. Lab Invest 59:44–51.

    Google Scholar 

  142. Crum R, Szabo S, Folkman J: A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 230:1375–1378, 1985.

    Article  PubMed  CAS  Google Scholar 

  143. Tamargo RJ, Leong KW, Brem H: Growth inhibition of the 9L glioma using polymers to release heparin and cortisone acetate. J Neurol Oncol 9:131–138, 1990.

    Article  CAS  Google Scholar 

  144. Folkman J, Weisz PB, Joullie MM, Li WW, Ewing WR: Control of angiogenesis with synthetic heparin substitutes. Science 243:1490–1493, 1989.

    Article  PubMed  CAS  Google Scholar 

  145. Sano H, Forough R, Maier JAM, Case JP, Jackson A, Engleka K, Maciag T, Wilder RL: Detection of high levels of heparin binding growth factor-1 (acidic fibroblast growth factor) in inflammatory arthritic joints. J Cell Biol 110:1417–1426, 1990.

    Article  PubMed  CAS  Google Scholar 

  146. Sivalingam A, Kenney J, Brown GC, Benson WE, Donoso L: Basic fibroblast growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Ophthalmol 108:869–872, 1990.

    Article  PubMed  CAS  Google Scholar 

  147. Chodak GW, Hospelhorn V, Judge SM, et al.: Increased levels of fibroblast growth factor-like activity in urine from patients with bladder or kidney cancer. Cancer Res 48:2083–2088, 1988.

    PubMed  CAS  Google Scholar 

  148. Watanabe H, Hori A, Seno M, Kozai Y, Igarashi K, Ichimori Y, Kondo K: A sensitive enzyme immunoassay for human basic fibroblast growth factor. Biochem Biophys Res Commun 175:229–235, 1991.

    Article  PubMed  CAS  Google Scholar 

  149. Fujimoto K, Ichimori Y, Kakizoe T, Okajima E, Sakamoto H, Sugimura T, Terada M: Increased serum levels of basic fibroblast growth factor in patients with renal cell carcinoma. Biochem Biophys Res Commun 180:386–392, 1991.

    Article  PubMed  CAS  Google Scholar 

  150. Murphy PR, Myal Y, Sato Y, Sato R, West M, Friesen HG: Elevated expression of basic fibroblast growth factor messenger ribonucleic acid in acoustic neuromas. Mol Endocrinol 3:225–231, 1989.

    Article  PubMed  CAS  Google Scholar 

  151. Silverlight JJ, Prysor-Jones RA, Jenkins JS: Basic fibroblast growth factor in human pituitary tumors. Clin Endocrinol 32:669–676, 1990.

    Article  CAS  Google Scholar 

  152. Donovan-Peluso M, Contento AM, Tobon H, Ripepi B, Locker J: Oncogene amplification in breast cancer. Am J Pathol 138:835–845, 1991.

    PubMed  CAS  Google Scholar 

  153. Roux-Dosseto M, Martin PM: A paradigm for oncogene complementation in human breast cancer. Res Virol 140:571–591, 1989.

    Article  PubMed  CAS  Google Scholar 

  154. Tang R, Kacinski B, Validire P, Beuvon F, Sastre X, Benoit P, dela Rochefordiere A, Mosseri V, Pouillart P, Scholl S: Oncogene amplification correlates with dense lymphocyte infiltration in human breast cancers: A role for hematopoietic growth factor release by tumor cells? J Cell Biochem 44:189–198, 1990.

    Article  PubMed  CAS  Google Scholar 

  155. Theillet C, Adnane J, Szepetowski P, Simon M-P, Jeanteur P, Birnbaum D, Gaudray P: BCL-l participates in the 1lql3 amplification found in breast cancer. Oncogene 5:147–149, 1990.

    PubMed  CAS  Google Scholar 

  156. Matsuzaki K, Yoshitake Y, Miyagiwa M, et al.: Production of basic fibroblast growth factor-like factor by cultured human cholangiocellular carcinoma cells. Jpn Cancer Res 81:345–354, 1990.

    Article  CAS  Google Scholar 

  157. Tiesman J, Rizzino A: Expression and developmental regulation of the k-FGF oncogene in human and murine embryonal carcinoma cells. In Vitro Cell Dev Biol 25:1193–1198, 1989.

    Article  PubMed  CAS  Google Scholar 

  158. Wagata T, Ishizaki K, Imamura M, Shimada Y, Ikenaga M, Tobe T: Deletion of 17p and amplification of the int-2 gene in esophageal carcinomas. Cancer Res 51:2113–2117, 1991.

    PubMed  CAS  Google Scholar 

  159. Tsuda T, Tahara E, Kajiyama G, Sakamoto H, Terada M, Sugimura T: High incidence of coamplification of hst-1 and int-2 genes in human esophageal carcinomas. Cancer Res 49:5505–5508, 1989.

    PubMed  CAS  Google Scholar 

  160. Moscatelli D, Presta M, Joseph-Silverstein J, Rifkin DB: Both normal and tumor cells produce basic fibroblast growth factor. J Cell Physiol 129:273–276, 1986.

    Article  PubMed  CAS  Google Scholar 

  161. Presta M, Moscatelli D, Silverstein JJ, Rifkin DB: Purification from a human hepatoma cell line of a basic fibroblast growth factor-like molecule that stimulates capillary endothelial cell plasminogen activator production, DNA synthesis and migration. Molec Cell Biol 6:4060–4066, 1986.

    PubMed  CAS  Google Scholar 

  162. Klagsbrun M, Sasse J, Sullivan R, Smith JA: Human tumor cells synthesize an endothelial cell growth factor that is structurally related to basic fibroblast growth factor. Proc Natl Acad Sci USA 83:2448–2452, 1986.

    Article  PubMed  CAS  Google Scholar 

  163. Miller WH Jr., Moy D, Li A, Grippo JF, Dmitrovsky E: Retinoic acid induces down-regulation of several growth factors and proto-oncogenes in a human embryonal cancer cell line. Oncogene 5:511–517, 1990.

    PubMed  CAS  Google Scholar 

  164. Schulze-Osthoff K, Goerdt S, Sorg C: Expression of basic fibroblast growth factor (bFGF) in Kaposi’s sarcoma: An immunohistologic study. J Invest Dermatol 95:238–240, 1990.

    Article  PubMed  CAS  Google Scholar 

  165. Huang SS, Tsai CC, Adams SP, Huang JS: Neuron localization and neuroblastoma cell expression of brain-derived growth factor. Biochem Biophys Res Commun 144:81–87, 1987.

    Article  PubMed  CAS  Google Scholar 

  166. Sasano H, Garrett CT, Wilkinson DS, Silverberg S, Comerford J, Hyde J: Protooncogene amplification and tumor ploidy in human ovarian neoplasms. Human Pathol 21:382–391, 1990.

    Article  CAS  Google Scholar 

  167. Beauchamp RD, Lyons RM, Yang EY, Coffey RJ, Jr., Moses HL: Expression of and response to growth regulatory peptides by two human pancreatic carcinoma cell lines. Pancreas 5:369–380, 1990.

    Article  PubMed  CAS  Google Scholar 

  168. Nakamoto T, Usui A, Oshima K, Ikemoto H, Mitani S, Usui T: Analysis of growth factors in renal cell carcinoma. Biochem Biophys Res Commun 153:818–824, 1988.

    Article  PubMed  CAS  Google Scholar 

  169. Adnane J, Gaudray P, Dionne CA, Crumley G, Jaye M, Schlessinger J, Jeanteur P, Birnbaum D, Theillet C: BEK and FLG, two receptors to members of the FGF family, are amplified in subsets of human breast cancers. Oncogene 6:659–663, 1991.

    PubMed  CAS  Google Scholar 

  170. Paulus W, Grothe C, Sensenbrenner M, Janet T, Baur I, Graf M, Roggendorf W: Localization of basic fibroblast growth factor, a mitogen and angiogenic factor, in human brain tumors. Acta Neuropathol 79:418–423, 1990.

    Article  PubMed  CAS  Google Scholar 

  171. Takahashi JA, Mori H, Fukumoto M, Igarashi K, Jaye M, Oda Y, Kikuchi H, Hatanaka M: Gene expression of fibroblast growth factors in human gliomas and meningiomas: Demonstration of cellular source of basic fibroblast growth factor mRNA and peptide in tumor tissues. Proc Natl Acad Sci USA 87:5710–5714, 1990.

    Article  PubMed  CAS  Google Scholar 

  172. Megyesi JF, Klagsbrun M, Folkman J, Rosenthal RA, Brigstock DR: 18.4kDa basic fibroblast growth factor (bFGF) alone is in the conditioned medium from human glioblastoma cells that synthesize four bFGF isoforms: Evidence for autocrine stimulation by bFGF. J Cell Biol 115:419a, 1991.

    Google Scholar 

  173. Morrison RS, Gross JL, Herblin WF, Reilly TM, LaSala PA, Alterman RL, Moskal JR, Kornblith PL, Dexter DL: Basic fibroblast growth factor-like activity and receptors are expressed in a human glioma cell line. Cancer Res 50:2524–2529, 1990.

    PubMed  CAS  Google Scholar 

  174. Sato Y, Murphy PR, Sato R, Friesen HG: Fibroblast growth factor release by bovine endothelial cells and human astrocytoma cells in culture is density dependent. Mol Endocrinol 3:744–748, 1989.

    Article  PubMed  CAS  Google Scholar 

  175. Corin SJ, Chen LC, Hamburger AW: Enhancement of anchorage-independent growth of a human adrenal carcinoma cell line by endogenously produced basic fibroblast growth factor. Int J Cancer 46:516–521, 1990.

    Article  PubMed  CAS  Google Scholar 

  176. Brookes S, Smith R, Casey G, Dickson C, Peters G: Sequence organization of the human int-2 gene and its expression in teratocarcinoma cells. Oncogene 4:429–436, 1989.

    PubMed  CAS  Google Scholar 

  177. Osthoff-Schulze K, Risau W, Vollmer E, Sorg C: In situ detection of basic fibroblast growth factor by highly specific antibodies. Am J Pathol 137:85–92, 1990.

    Google Scholar 

  178. Lobb RR, Rybak SM, St. Clair DK, Fett JW: Lysates of two established human tumor lines contain heparin-binding growth factors related to bovine acidic brain fibroblast growth factor. Biochem Biophys Res Commun 139:861–867, 1986.

    Article  PubMed  CAS  Google Scholar 

  179. Matsuura N, Seo M, Murata A, Ohmachi Y, Morikawa Y, Kakudo K: Immunohistochemical analysis of basic fibroblast growth factor in the human gastrointestinal cancer (abstracts). J Cell Biol 115:420, 1991.

    Google Scholar 

  180. Schweigerer L, Neufeld G, Mergia A, Abraham JA, Fiddes JC, Gospodarowicz D: Basic fibroblast growth factor in human rhabdomyosarcoma cells: Implications for the proliferation and neovascularization of myoblast-derived tumors. Proc Natl Acad Sci USA 84:842–846, 1987.

    Article  PubMed  CAS  Google Scholar 

  181. Xerri L, Hassoun J, Planche J, Guigou V, Grob J-J, Parc P, Birnbaum D, deLapeyriere O: Fibroblast growth factor gene expression in AIDS-Kaposi’s sarcoma detected by in situ hybridization. Am J Pathol 138:9–15, 1991.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brem, H., Klagsbrun, M. (1993). The role of fibroblast growth factors and related oncogenes in tumor growth. In: Benz, C.C., Liu, E.T. (eds) Oncogenes and Tumor Suppressor Genes in Human Malignancies. Cancer Treatment and Research, vol 63. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3088-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3088-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6349-1

  • Online ISBN: 978-1-4615-3088-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics