Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 95 / 2))

Abstract

“Angiogenesis” is currently used to describe the growth of new capillary blood vessels by sprouting from established vessels to produce “neovascularization.” “Vasculogenesis” denotes the development of blood vessels in the embryo (Risau and Lemmon 1988; Feinberg and Beebe 1983). There is as yet no adequate term to describe the growth of larger vessels such as coronary artery collaterals where actual proliferation of vascular endothelium and smooth muscle lead to enlargement of the lumenal diameter (Schaper 1981; Pasyk et al. 1982; D’amore and Thompson 1987). Nor is there a description of endothelial proliferation in the capillaries of hypertrophic heart muscle in the apparent absence of sprouting (Hudlicka and Tyler 1986). However, the term “non- sprouting angiogenesis” is useful (Folkman 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel MH (1985) Prostanoids and menstruation. In: Baird DT, Michie EA (eds) Mechanism of menstrual bleeding. Raven, New York, pp 139–156

    Google Scholar 

  • Abraham JA, Mergia A, Whang JL, Tumolo A, Friedman J, Hjerrild KA, Gospodarowicz D, Fiddes JC (1986) Nucleotide sequence of a bovine clone encoding the angiogenic protein, basic fibroblast growth factor. Science 233: 545–548

    PubMed  CAS  Google Scholar 

  • Algire GH (1943) Microscopic studies of the early growth of a transplantable melanoma of the mouse, using the transparent-chamber technique. JNCI 4: 13–20

    Google Scholar 

  • Anzano MA, Roberts AB, Smith JM, Sporn MB, DeLarco JE (1983) Sarcoma growth factor from conditioned medium of virally transformed cells is composed of both type a and type ß transforming growth factors. Proc Natl Acad Sci USA 80: 6264–6268

    PubMed  CAS  Google Scholar 

  • Anzano MA, Roberts AB, Sporn MB (1986) Anchorage independent growth of primary rat embryo cells is induced by platelet-derived growth factor and inhibited by type-ß transforming growth factor. J Cell Physiol 126: 312–318

    PubMed  CAS  Google Scholar 

  • Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB (1983) Transforming growth factor-beta in human platelets. J Biol Chem 258: 7155–7160

    PubMed  CAS  Google Scholar 

  • Auerbach R (1981) Angiogenesis-inducing factors: a review. In: Pick E (ed) Lympho-kines. Academic, London, pp 69–88

    Google Scholar 

  • Auerbach R, Kubai L, Knighton D, Folkman J (1974) A simple procedure for the long- term cultivation of chicken embryos. Dev Biol 41: 391–394

    PubMed  CAS  Google Scholar 

  • Ausprunk DH, Folkman J (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14: 53–65

    PubMed  CAS  Google Scholar 

  • Ausprunk DH, Knighton DR, Folkman J (1974) Differentiation of vascular endothelium in the chick chorioallantois: a structural and autoradiographic study. Dev Biol 38: 237–248

    PubMed  CAS  Google Scholar 

  • Azizkhan R, Azizkhan J, Zetter B, Folkman J (1980) Mast cell heparin stimulates migration of capillary endothelial cells in vitro. J Exp Med 152: 931–944

    PubMed  CAS  Google Scholar 

  • Azizkhan JC, Sullivan R, Azizkhan R, Zetter B, Klagsbrun M (1983) The stimulation of capillary endothelial cell migration by chondrosarcoma-derived growth factors. Cancer Res 43: 3281–3286

    PubMed  CAS  Google Scholar 

  • Baird A, Durkin T (1986) Inhibition of endothelial cell proliferation by type-beta transforming growth factor: interactions with acidic and basic fibroblast growth factors. Biochem Biophys Res Commun 138: 476–482

    PubMed  CAS  Google Scholar 

  • Baird A, Ling N (1987) Fibroblast growth factors are present in the extracellular matrix produced by endothelial cells in vitro: implications for a role of heparinase-like enzymes in the neovascular response. Biochem Biophys Res Commun 142: 428–435

    PubMed  CAS  Google Scholar 

  • Baird A, Mormede P, Bohlen P (1985) Immunoreactive fibroblast growth factor in cells of peritoneal exudate suggests its identity with macrophage-derived growth factor. Biochem Biophys Res Commun 126: 358–364

    PubMed  CAS  Google Scholar 

  • Baird A, Esch F, Mormede P, Ueno N, Ling N, Bohlen P, Ying SY, Wehrenberg W, Guillemin R (1986) Molecular characterization of fibroblast growth factor: distribution and biological activities in various tissues. In. Greep RO (ed) Recent progress in hormone research, vol 42. Academic, New York, pp 143: 205

    Google Scholar 

  • Banda MJ, Knighton DR, Hunt TK, Werb Z (1982) Isolation of a nonmitogenic angiogenesis factor from wound fluid. Proc Natl Acad Sci USA 79: 7773–7777

    PubMed  CAS  Google Scholar 

  • Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavsky I (1989) Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparanase and heparin-like molecules. Biochemistry 28: 1737–1743

    PubMed  CAS  Google Scholar 

  • Basset D (1943) The changes in the vascular pattern of the ovary of the albino rat during the estrous cycle. Am J Anat 73: 251–291

    Google Scholar 

  • Ben Ezra D (1978) Neovasculogenic ability of prostaglandins, growth factors and synthetic chemoattractants. Am J Ophthalmol 86: 455–461

    Google Scholar 

  • Beutler B, Cerami A (1986) Cachetin and tumour necrosis factor as two sides of the same biological coin. Nature 320: 584–588

    PubMed  CAS  Google Scholar 

  • Beutler B, Mahoney J, LeTrang N, Pekala P, Cerami A (1985) Purification of cachectin, a lipoprotein lipase suppressing hormone secreted by endotoxin-induced RAW 264.7 cells. J Exp Med 161: 984–995

    PubMed  CAS  Google Scholar 

  • Bevilacqua MP, Pober JS, Wheeler ME, Cotran RS, Gimbrone MA Jr (1985) Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines. J Clin Invest 76: 2003–2011

    PubMed  CAS  Google Scholar 

  • Bicknell R, Vallee BL (1988) Angiogenin activates endothelial cell phospholipase C. Proc Natl Acad Sci USA 85: 5961–5965

    PubMed  CAS  Google Scholar 

  • Bohlen P, Baird A, Esch F, Ling N, Gospodarowicz D (1984) Isolation and partial molecular characterization of pituitary fibroblast growth factor. Proc Natl Acad Sci USA 81: 5364–5368

    PubMed  CAS  Google Scholar 

  • Bond MD, Vallee BL (1988) Isolation of bovine angiogenin using a placental ribonuclease inhibitor binding assay. Biochemistry 27: 6282

    PubMed  CAS  Google Scholar 

  • Brem S, Folkman J (1975) Inhibition of tumor angiogenesis mediated by cartilage. J Exp Med 141: 427–438

    PubMed  CAS  Google Scholar 

  • Brem S, Cotran R, Folkman J (1972) Tumor angiogenesis: a quantitative method for histologic grading. JNCI 48: 347–356

    PubMed  CAS  Google Scholar 

  • Brown RA, Weis JB, Tomlinson IW, Philipps P, Kumar S (1980) Angiogenic factor from synovial fluid resembling that from tumors. Lancet 8170: 682–685

    Google Scholar 

  • Burger PC, Chandler DB, Klintworth GK (1983) Corneal neovascularization as studied by scanning electron microscopy of vascular casts. Lab Invest 48: 169–180

    PubMed  CAS  Google Scholar 

  • Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin- nduced serum factor that causes tumor necrosis. Proc Natl Acad Sci USA 72: 3666–3670

    PubMed  CAS  Google Scholar 

  • Castellot JJ, Karnovsky MJ, Spiegelman BM (1980) Potent stimulation of vascular endothelial cell growth by differentiated 3T3 adipocytes. Proc Natl Acad Sci USA 77: 6007–6011

    PubMed  CAS  Google Scholar 

  • Castellot JJ Jr, Karnovsky MJ, Spiegelman BM (1982) Differentiation-dependent stimulation of neovascularization and endothelial cell chemotaxis by 3T3 adipo-cytes. Proc Natl Acad Sci USA 79: 5597–5601

    PubMed  Google Scholar 

  • Cavallo T, Sade R, Folkman J, Cotran RS (1972) Tumor angiogenesis: rapid induction of endothelial mitoses demonstrated by autoradiography. J Cell Biol 54: 408–420

    PubMed  CAS  Google Scholar 

  • Choay J, Petitou M, Lormeau JC, Sinay P, Casu B, Gatti G (1983) Structureactivity relationship of heparin: a synthetic pentasaccharide with high affinity for antithrombin III and eliciting high anti-factor Xa activity. Biochem Biophys Res Commun 116: 492–499

    PubMed  CAS  Google Scholar 

  • Colburn P, Buonassissi V (1978) Estrogen-binding sites in endothelial cell cultures. Science 201: 817–819

    PubMed  CAS  Google Scholar 

  • Conn G, Hatcher VB (1984) The isolation and purification of two anionic endothelial cell growth factors from human brain. Biochem Biophys Res Commun 124: 262–268

    PubMed  CAS  Google Scholar 

  • Connolly DT, Stoddard BL, Harakas NK, Feder J (1987) Human fibroblast-derived growth factor is a mitogen and chemoattractant for endothelial cells. Biochem Biophys Res Commun 144: 705–712

    PubMed  CAS  Google Scholar 

  • Courty J, Loret C, Moenner M, Chevallier B, Lagente O, Courtois Y, Barritault D (1985) Bovine retina contains three growth factor activities with different affinity for heparin: eye-derived growth factor I, II, and III. Biochimie 67: 265–269

    PubMed  CAS  Google Scholar 

  • Crisp A, Chapman CM, Kirkham SE, Schiller AL, Krane SM (1984) Articular mastrocytosis in rheumatoid arthritis. Arthritis Rheum 27: 845–851

    PubMed  CAS  Google Scholar 

  • Crum R, Szabo S, Folkman J (1985) A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 230: 1375–1378

    PubMed  CAS  Google Scholar 

  • Cutherbertson RA, Mandel TE (1986) Anatomy of the mouse retina. Endothelial cellpericyte ratio and capillary distribution. Invest Ophthalmol Vis Sci 26: 68–73

    Google Scholar 

  • D’Amore PA, Klagsbrun M (1984) Endothelial cell mitogens derived from retina and hypothalamus: biochemical and biological similarities. J Cell Biol 99: 1545–1549

    PubMed  Google Scholar 

  • D’Amore PA, Thompson RW (1987) Collateralization in peripheral vascular disease. In: Strandness D, Didsheim P, Clowes A, Watson J (eds) Vascular diseases. Grune and Stratton, Orlando, pp 319–333

    Google Scholar 

  • Davidson JM, Klagsbrun M, Hill KE, Buckley A, Sullivan R, Brewer S, Woodward SC (1985) Accelerated wound repair, cell proliferation, and collagen accumulation are produced by a cartilage-derived growth factor. J Cell Biol 100: 1219–1227

    PubMed  CAS  Google Scholar 

  • Delli Bovi PD, Basilico C (1987) Homology between fibroblast growth factor and a transforming gene from Kaposi’s sarcoma. Proc Natl Acad Sci USA 84: 5660–5664

    CAS  Google Scholar 

  • Delli Bovi P, Curatola AM, Newman KM, Sato Y, Moscatelli D, Hewick RM, Rifkin DB, Basilico C (1988) Processing, secretion and biological properties of a novel growth factor of the fibroblast growth family with oncogenic potential. Mol Cell Biol 8: 2933–2941

    CAS  Google Scholar 

  • Denekamp J (1984) Vasculature as a target for tumour therapy. In: Hammersen F, Hudlicka O (eds) Progress in applied microcirculation. Karger, Basel, pp 28–38

    Google Scholar 

  • Derynck R, Roberts AB, Winkler ME, Chen EY, Goeddel DV (1984) Human transforming growth factor-a: precursor structure and expression in Ecoli. Cell 38: 287–297

    PubMed  CAS  Google Scholar 

  • Derynck R, Roberts AB, Eaton DH, Winkler ME, Goeddel DV (1985) Human transforming growth factor-alpha: precursor sequence, gene structure and heterologous expression. In: Feramisco J, Ozanne B, Stiles C (eds) Cancer cells, vol 3. Growth factors and transformation. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 79–86

    Google Scholar 

  • Dickson C, Peters G (1987) Potential oncogene product related to growth factors. Nature 326: 833

    PubMed  CAS  Google Scholar 

  • DiZerega G, HodgenG (1980) Fluorescence localization of luteinizing hormone/human chorionic gonadotropin uptake in the primate ovary. II. Changing distribution during selection of dominant follicle. J Clin Endocrinol Metab 51: 903–907

    Google Scholar 

  • Dobson DE, Castellot JJ, Spiegelman BM (1985) Angiogenesis stimulated by 3T3-adipocytes is mediated by prostanoid lipids. J Cell Biol 101: 109a

    Google Scholar 

  • D’Oliveira F (1966) Pericytes and diabetic retinopathy. Br J Ophthalmol 50: 134–143

    Google Scholar 

  • Dugan JD Jr, Roberts AB, Sporn MB, Glaser BM (1988) Transforming growth factor beta (TGFß) inhibits neovascularization in vivo. J Cell Biol 107:579 a

    Google Scholar 

  • Dusseau JW, Hutchins PM, Malbasa DS (1986) Stimulation of angiogenesis by adenosine on the chick chorioallantoic membrane. Circ Res 59: 163–170

    PubMed  CAS  Google Scholar 

  • Duthu GS, Smith JR (1980) In vitro proliferation and lifespan of bovine aorta endothelial cells: effect of culture conditions and fibroblast growth factor. J Cell Physiol 103: 385–392

    PubMed  CAS  Google Scholar 

  • Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315: 1650–1659

    PubMed  CAS  Google Scholar 

  • Edwards RG (1980) Conception in the human female. Academic, London

    Google Scholar 

  • Ehrmann RL, Knoth M (1968) Choriocarcinoma: transfilter stimulation of vasopro liferation in the hamster cheek pouch - studied by light and electron microscopy. JNCI 41: 1329–1341

    Google Scholar 

  • Eisenstein R, Sorgente N, Soble L, Miller A, Kuettner KE (1973) The resistance of certain tissues to invasion: penetrability of explanted tissues by vascularized mesenchyme. Am J Pathol 73: 765–774

    PubMed  CAS  Google Scholar 

  • Emerman JT, Pitelka DR (1977) Maintenance and induction of morphological differentiation in dissociated mammary epithelium of floating collagen membranes. In Vitro 13: 316–328

    Google Scholar 

  • Engerman RL, Pfaffenbach D, Davis MD (1967) Cell turnover of capillaries. Lab Invest 17: 738–743

    PubMed  CAS  Google Scholar 

  • Esch F, Baird A, Ling N, Ueno N, Hill F, Denoroy L, Klepper R, Gospodarowicz D, Bohlen P, Guillemin R ( 1985 a) Primary structure of bovine pituitary basic fibro-blast growth factor ( FGF) and comparison with the amino-terminal sequence of bovine acidic FGF. Proc Natl Acad Sci USA 82: 6507–6511

    Google Scholar 

  • Esch F, Ueno N, Baird A, Hill F, Denoroy L, Ling N, Gospodarowicz D, Guillemin R ( 1985 b) Primary structure of bovine brain acidic fibroblast growth factor ( FGF ). Biochem Biophys Res Commun 133: 554–562

    CAS  Google Scholar 

  • Feinberg RN, Beebe DC (1983) Hyaluronate in vasculogenesis. Science 220: 1177–1179

    PubMed  CAS  Google Scholar 

  • Fenselau A, Watt S, Mello RJ (1981) Tumor angiogenic factor: purification from the Walker 256 rat tumor. J Biol Chem 256: 9605–9611

    PubMed  CAS  Google Scholar 

  • Ferenczy A, Bertrand G, Gelfand MM (1979) Proliferation kinetics of human endometrium during the normal menstrual cycle. Am J Obstet Gynecol 133: 859–867

    PubMed  CAS  Google Scholar 

  • Fett JW, Strydom DJ, Lobb RF, Alderman EM, Bethune JL, Riordan JF, Vallee BL (1985) Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 24: 480–5486

    Google Scholar 

  • Findlay JK (1986) Angiogenesis in reproductive tissues. J Endocrinol 111: 357–366

    PubMed  CAS  Google Scholar 

  • Foley MF, Griffin BD, Zuzel M, Aparicio SR, Bradbury K, Bird CC, Clayton JK, Jenkins DM, Scott JS, Rajah CM, McNicol GP (1978) Heparin-like activity in uterine fluid. Br Med J 11: 322–324

    Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285: 1182–1186

    PubMed  CAS  Google Scholar 

  • Folkman J (1972) Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175: 409–416

    PubMed  CAS  Google Scholar 

  • Folkman J (1974 a) Tumor angiogenesis factor. Cancer Res 34:2109–2113

    Google Scholar 

  • Folkman J (1974b) Tumor angiogenesis. Adv Cancer Res 19: 331–358

    PubMed  CAS  Google Scholar 

  • Folkman J (1984) Angiogenesis. In: Jaffe EA (ed) Biology of endothelial cells. Martinus Nijhoff, Boston, pp 412–28

    Google Scholar 

  • Folkman J ( 1985 a) Angiogenesis and its inhibitors. In: DeVita VT Jr, Hellman S, Rosenberg SA (eds) Important advances in onoclogy. Lippincott, Philadelphia, pp 42–62

    Google Scholar 

  • Folkman J ( 1985 b) Tumor angiogenesis. In: Klein G, Weinhouse S Advances in Cancer Research. Academic, New York, pp 175–203

    Google Scholar 

  • Folkman J (1986) How is blood vessel growth regulated in normal and neoplastic tissue? G.H.A. Clowes Memorial Award Lecture. Cancer Res 46: 467–473

    PubMed  CAS  Google Scholar 

  • Folkman J (1987) Angiogenesis. In: Verstraete M, Vermylen J, Lijnan R, Arnout J (eds) Thrombosis and haemostasis. Leuven University Press, Leuven, pp 583–596

    Google Scholar 

  • Folkman J, Haudenschild C (1980) Angiogenesis in vitro. Nature 288: 551–556

    PubMed  CAS  Google Scholar 

  • Folkman J, Hochberg M (1973) Self-regulation of growth in three dimensions. J Exp Med 138: 745–753

    PubMed  CAS  Google Scholar 

  • Folkman J, Ingber DE (1987) Angiostatic steroids: method of discovery and mechanism of action. Ann Surg 206: 374–384

    PubMed  CAS  Google Scholar 

  • c

    CAS  Google Scholar 

  • Folkman J, Klagsbrun M (1987 b) A family of angiogenic peptides. Nature 329: 671–672

    Google Scholar 

  • Folkman J, Moscona A (1978) Role of cell shape in growth control. Nature 273: 346–349

    Google Scholar 

  • Folkman J, Merler E, Abernathy C, Williams C (1971) Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133: 275–288

    PubMed  CAS  Google Scholar 

  • Folkman J, Knighton D, Klagsbrun M (1976) Tumor angiogenesis activity in cells grown in tissue culture. Cancer Res 36: 110–114

    PubMed  Google Scholar 

  • Folkman J, Haudenschild C, Zetter BR (1979) Long-term culture of capillary endothelial cells. Proc Natl Acad Sci USA 76: 5217–5221

    PubMed  CAS  Google Scholar 

  • Folkman J, Langer R, Linhardt R, Haudenschild C, Taylor S (1983) Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone. Science 221: 719–725

    PubMed  CAS  Google Scholar 

  • Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I (1988) Heparin-binding angiogenic protein - basic fibroblast growth factor - is stored within basement membrane. Am J Pathol 130: 393–400

    PubMed  CAS  Google Scholar 

  • Folkman J, Weisz P, Joullie M, Li W, Ewing W (1989 a) Control of angiogenesis with synthetic heparin substitutes. Science 243: 1490–1493

    CAS  Google Scholar 

  • Folkman J, Watson K, Ingber D, Hanahan D (1989) Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339: 58–61

    PubMed  CAS  Google Scholar 

  • Form DM, Auerbach R (1983) PGE2 and angiogenesis. Proc Soc Exp Biol Med 172: 214–218

    PubMed  CAS  Google Scholar 

  • Fräser RA, Ellis M, Stalker AL (1979) Experimental angiogenesis in the chorioal-lantoic membrane. In: Lewis DH (ed) Current advances in basic and clinical micro- circulatory research. Karger, Basel, p 25

    Google Scholar 

  • Frater-Schroder M, Muller G, Birchmeier W, Bohlen P (1986) Transforming growth factor-beta inhibits endothelial cell proliferation. Biochem Biophys Res Commun 137: 295–302

    PubMed  CAS  Google Scholar 

  • Frater-Schroder M, Risau W, Hallmann R, Gautschi R, Bohlen P (1987) Tumor necrosis factor type-a, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc Natl Acad Sci USA 84: 5277–5281

    PubMed  CAS  Google Scholar 

  • Frederick JL, Shimanuki T, DiZerega GS (1984) Initiation of angiogenesis by human follicular fluid. Science 224: 389–390

    PubMed  CAS  Google Scholar 

  • Frolik CA, Dart LL, Meyers CA, Smith DM, Sporn MB (1983) Purification and initial characterization of a type beta transforming growth factor from human placenta. Proc Natl Acad Sci USA 80: 3676–3680

    PubMed  CAS  Google Scholar 

  • Garner A (1986) Ocular angiogenesis. Int J Exp Pathol 28: 249–309

    CAS  Google Scholar 

  • Gimbrone MA Jr, Leapman S, Cotran RS, Folkman J (1972) Tumor dormancy in vivo by prevention of neovascularization. J Exp Med 136: 261–276

    PubMed  Google Scholar 

  • Gimbrone MA Jr, Cotran RS, Folkman J ( 1973 a) Endothelial regeneration and turnover. Studies with human endothelial cell cultures. Ser Haematol 6: 453–455

    Google Scholar 

  • Gimbrone MA Jr, Leapman S, Cotran R, Folkman J (1973 b) Tumor angiogenesis: iris neovascularization at a distance from experimental intraocular tumors. JNCI 50: 219–228

    Google Scholar 

  • Gimbrone MA Jr, Cotran RS, Folkman J (1974) Tumor growth neovascularization: an experimental model using rabbit cornea. JNCI 52: 413–427

    PubMed  Google Scholar 

  • Gimenez-Gallego G, Conn G, Hatcher VB, Thomas KA (1986) Human brain-derived acidic and basic fibroblast growth factors: amino terminal sequences and specific mitogenic activities. Biochem Biophys Res Commun 135: 541–548

    Google Scholar 

  • Glaser BM, D’Amore PA, Seppa H, Seppa S, Schiffmann E (1980) Adult tissues contain chemoattractants for vascular endothelial cells. Nature 288: 483–484

    PubMed  CAS  Google Scholar 

  • Goldsmith HS, Griffith AL, Kupferman A, Catsimpoolas N (1984) Lipid angiogenic factor from omentum. JAMA 252: 2034–2036

    PubMed  CAS  Google Scholar 

  • Gospodarowicz D (1974) Localization of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature 249: 123–129

    PubMed  CAS  Google Scholar 

  • Gospodarowicz D (1975) Purification of a fibroblast growth factor from bovine pituitary. J Biol Chem 250: 2515–2520

    PubMed  CAS  Google Scholar 

  • Gospodarowicz D, Cheng J (1986) Heparin protects basic and acidic FGF from inactivation. J Cell Physiol 128: 475–484

    PubMed  CAS  Google Scholar 

  • Gospodarowicz D, Thakral K (1978) Production of a corpus luteum angiogenic factor responsible for proliferation of capillaries and neovascularization of the corpus luteum. Proc Natl Acad Sci USA 75: 847–851

    PubMed  CAS  Google Scholar 

  • Gospodarowicz D, Moran J, Braun D, Birdwell CR (1976) Clonal growth of bovine endothelial cells in culture: fibroblast growth factor as a survival factor. Proc Natl Acad Sci USA 73: 4120–4124

    PubMed  CAS  Google Scholar 

  • Gospodarowicz D, Cheng J, Lui GM, Baird A, Bohlen P (1984) Isolation by heparin- Sepharose affinity chromatography of brain fibroblast growth factor: identity with pituitary fibroblast growth factor. Proc Natl Acad Sci USA 81: 6963–6967

    PubMed  CAS  Google Scholar 

  • Gospodarowicz D, Cheng J, Lui G, Baird A, Esch F, Bohlen P (1985) Corpus luteum angiogenic factor is related to fibroblast growth factor. Endocrinology 117: 2383–2391

    PubMed  CAS  Google Scholar 

  • Gray PW, Aggarwal BB, Benten CV, Bringman TS, Henzel WJ, Jarrett JA, Leung DW, Moffat B, Ng P, Sverdersky LP, Palladino MA, Nedwin GE (1984) Cloning and expression of cDNA for human lymphotoxin, a lymphokine with tumor necrosis activity. Nature 320: 584–588

    Google Scholar 

  • Greenblatt M, Shubik P (1968) Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique. JNCI 41: 111–124

    PubMed  CAS  Google Scholar 

  • Gross JL, Moscatelli D, Jaffe EA, Rifkin DB (1982) Plasminogen activator and collagenase production by cultured capillary endothelial cells. J Cell Biol 95: 974–981

    PubMed  CAS  Google Scholar 

  • Gross JL, Moscatelli D, Rifkin DB (1983) Increased capillary endothelial cell protease activity in response to angiogenic stimuli in vitro. Proc Natl Acad Sci USA 80: 2623–2627

    PubMed  CAS  Google Scholar 

  • Haranaka KE, Carswell A, Williamson BD, Prendergast JS, Satomi N, Old LJ (1986) Purification, characterization, and antitumor activity of nonrecombinant mouse tumor necrosis factor. Proc Natl Acad Sci USA 83: 3949–3953

    PubMed  CAS  Google Scholar 

  • Harris AK, Wild P, Stopak D (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208: 177–179

    PubMed  CAS  Google Scholar 

  • Haudenschild CC (1980) Growth control of endothelial cells in atherogenesis and tumor angiogenesis. In: Altura BM, Davis E, Harders H (eds) Vascular endothelium and basement membranes. Karger, Basel, pp 226–251 (Advances in microcirculation, vol 9 )

    Google Scholar 

  • Haudenschild CC, Zahniser D, Folkman J, Klagsbrun M (1976) Human endothelial cells in culture. Lack of response to serum growth factors. Exp Cell Res 98: 175–183

    Google Scholar 

  • Hauschka PV, Iafrati TA, Doleman SD, Klagsbrun M (1986) Growth factors in bone matrix: isolation of multiple types by affinity chromatography on heparin-Sepha- rose. J Biol Chem 261:12 665–12 674

    Google Scholar 

  • Heimark RL, Twardzik DR, Schwartz SM (1986) Inhibition of endothelial regeneration by type-beta transforming growth factor from platelets. Science 233: 1078–1080

    PubMed  CAS  Google Scholar 

  • Herman IM, D’Amore PA (1985) Microvascular pericytes contain muscle and non-muscle actin. J Cell Biol 101: 43–52

    PubMed  CAS  Google Scholar 

  • Hobbs JF, Cliff WJ (1971) Observations on tissue grafts established in rabbit ear chambers. A combined light and electron microscopy study. J Exp Med 134: 963–971

    PubMed  CAS  Google Scholar 

  • Hockel M, Sasse J, Wissler JH (1987) Purified monocyte-derived angiogenic substance (angiotropin) stimulates migration, phenotypic changes, and “tube formation” but not proliferation of capillary endothelial cells in vitro. J Cell Physiol 133: 1–13

    PubMed  CAS  Google Scholar 

  • Hockel M, Jung W, Vaupel P, Rabes H, Khaledpour C, Wissler JH (1988) Purified monocyte-derived angiogenic substance (angiotropin) induces controlled angiogenesis associated with regulated tissue proliferation in rabbit skin. J Clin Invest 82: 1075–1090

    PubMed  CAS  Google Scholar 

  • Hudlicka O, Tyler KR (1986) Angiogenesis: the growth of the vascular system. Academic press, London, pp 101–120

    Google Scholar 

  • Hunt TK (1980) Wound healing and wound infection: theory and surgical practice. Appleton-Century-Crofts, New York

    Google Scholar 

  • Iberg N, Rogelt S, Fanning P, Klagsbrun M (1989) Purification of 18- and 22 kDa forms of basic fibroblast growth factor from rat cells transformed by the ras oncogene. J Biol Chem 264: 19951–19955

    Google Scholar 

  • Ignotz R, Massague J (1986) Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem 261: 4337–4345

    PubMed  CAS  Google Scholar 

  • Ingber DE, Folkman J (1988) Inhibition of angiogenesis through modulation of collagen metabolism. Lab Invest 59: 44–51

    PubMed  CAS  Google Scholar 

  • Ingber DE, Jamieson JD (1985) Cell as tensegrity structures: architectural regulation of histodifferentiation by physical forces transduced over basement membrane. In: Anderson LC, Gahmberg CG, Ekblom P (eds) Gene expression during normal and malignant differentiation. Academic, Orlando, pp 13–32

    Google Scholar 

  • Ingber DE, Madri J A, Folkman J (1986) A possible mechanism for inhibition of angiogenesis by angiostatic steroids: induction of capillary basement membrane dissolution. Endocrinology 119: 1768–1775

    PubMed  CAS  Google Scholar 

  • Ingber DE, Madri J A, Folkman J (1987) Endothelial growth factors and extracellular matrix regulate DNA synthesis through modulation of cell and nuclear expansion. In Vitro Cell Dev Biol 23: 387–394

    Google Scholar 

  • Ishikawa F, Miyazono K, Hellman U, Wernstedt C, Hagiwara K, Usuki K, Takaku F, Heldin CH (1989) Identification of angiogenic activity and the cloning and expression of platelet-derived endothelial cell growth factor. Nature 338: 557–562

    PubMed  CAS  Google Scholar 

  • Jaffe EA, Nachman RL, Becker CG, Minick CR (1972) Culture of human endothelial cells derived from umbilical veins: identification by morphologic and immunologic criteria. J Clin Invest 52: 2745–2756

    Google Scholar 

  • Jakob W, Jentzsch KD, Mauersberger B, Oehme P (1977) Demonstration of angiogenesis activity in the corpus luteum of cattle. Exp Pathol 13: 231–236

    CAS  Google Scholar 

  • Kadish JL, Butterfield CE, Folkman J (1979) The effect of fibrin on cultured vascular endothelial cells. Tissue Cell 11: 99–108

    PubMed  CAS  Google Scholar 

  • Kalebic T, Garbisa S, Glaser B, Liotta LA (1983) Basement membrane collagen: degradation by migrating endothelial cells. Science 221: 281–283

    PubMed  CAS  Google Scholar 

  • Keski-Oja J, Lyons RM, Moses HL (1987) Inactive secreted form(s) of transforming growth factor-beta: activation by proteolysis. J Cell Biochem [Suppl] 11 a: 60

    Google Scholar 

  • Kessler D, Langer R, Pless N, Folkman J (1976) Mast cells and tumor angiogenesis. Int J Cane 18: 703–709

    CAS  Google Scholar 

  • Kissun RD, Hill CR, Garner A, Phillips P, Kumar S, Weiss JB (1982) A low-molecular-weight angiogenic factor in cat retina. Br J Ophthalmol 66: 165–169

    PubMed  CAS  Google Scholar 

  • Klagsbrun M, Shing Y (1985) Heparin affinity of anionic and cationic capillary endothelial cell growth factors: analysis of hypothalamus-derived growth factors and fibroblast growth factors. Proc Natl Acad Sci USA 82: 805–809

    PubMed  CAS  Google Scholar 

  • Klagsbrun M, Knighton D, Folkman J (1976) Tumor angiogenesis in cells grown in tissue culture. Cancer Res 36: 110–114

    PubMed  CAS  Google Scholar 

  • Klagsbrun M, Sasse J, Sullivan R, Smith JA (1986) Human tumor cells synthesize an endothelial cell growth factor that is structurally related to basic fibroblast growth factor. Proc Natl Acad Sci USA 83: 2448–2452

    PubMed  CAS  Google Scholar 

  • Knighton DR, Hunt TK, Scheuenstahl H, Halliday BJ, Werb Z, Banda MJ (1983) Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science 221: 1283–1285

    PubMed  CAS  Google Scholar 

  • Knighton D, Schumerth S, Fiegel V (1987) Environmental regulation of macrophage angiogenesis. In: Rifkin DB, Klagsbrun M (eds) Current communications in molecular biology. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 150–154

    Google Scholar 

  • Koch AE, Polverini PJ, Leibovich SJ (1986) Stimulation of neovascularization by human rheumatoid synovial tissue macrophages, Arthritis Rheum 29: 471–479

    PubMed  CAS  Google Scholar 

  • Koos R, Lemaire W (1983) Evidence for an angiogenic factor from rat follicles. In: Greenwald GS, Terranova PF (eds) Factors regulating ovarian function. Raven, New York, pp 191–195

    Google Scholar 

  • Kramer P (1971) Heparan-sulfates of cultured cells: I. Membrane-associated in cellsap species in Chinese hamster cells. Biochemistry 10: 1443–1445

    Google Scholar 

  • Kramer RH, Vogel GL, Nicolson GL (1982) Solubilization and degradation of subendothelial matrix glycoproteins and proteoglycans by metastatic tumor cells. J Biol Chem 257: 2678–2686

    PubMed  CAS  Google Scholar 

  • Kreisle RA, Ershler WB (1988) Investigation of tumor angiogenesis in an Id mouse model: role of host-tumor interactions. JNCI 80: 849–854

    PubMed  CAS  Google Scholar 

  • Kuli FC Jr, Brent DA, Parikh I, Cuatrecasas P (1987) Chemical identification of a tumor-derived angiogenic factor. Science 236: 843–845

    Google Scholar 

  • Kurachi K, Davie EW, Strydom DJ, Riordan JF, Yallee BL (1985) Sequence of the cDNA and gene for angiogenin, a human angiogenesis factor. Biochemistry 24: 5494–5499

    PubMed  CAS  Google Scholar 

  • Langer R, Folkman J (1976) Polymers for the sustained release of proteins and other macromolecules. Nature 263: 797–800

    PubMed  CAS  Google Scholar 

  • Langer RS, Conn H, Vacanti JP, Haudenschild C, Folkman J (1980) Control of tumor growth in animals by infusion of an angiogenesis inhibitor. Proc Natl Acad Sci USA 77: 4431–4335

    Google Scholar 

  • Lawrence DA, Pircher R, Kryceve-Martinerie C, Jullien P (1984) Normal embryo fibroblasts release transforming growth factors in a latent form. J Cell Physiol 121: 184–188

    PubMed  CAS  Google Scholar 

  • Lawrence DA, Pircher R, Jullien P (1985) Conversion of a high molecular weight latent beta-TGF from chicken embryo fibroblasts into a low molecular weight active beta- TGF under acidic conditions. Biochem Biophys Res Commun 133: 1026–1034

    PubMed  CAS  Google Scholar 

  • Leibovich SJ, Ross R (1975) The role of macrophages in wound repair: a study with hydrocortisone and antimacrophage serum. Am J Pathol 78: 71–100

    PubMed  CAS  Google Scholar 

  • Leibovich SJ, Polverini PJ, Shepard HM, Wiseman DM, Shively V, NuScir N (1987) Macrophage-induced angiogenesis is mediated by tumour necrosis factor-a. Nature 329: 630–632

    PubMed  CAS  Google Scholar 

  • Lemmon SK, Bradshaw R (1983) Purification and partial characterization of bovine pituitary fibroblast growth factor. J Cell Biochem 21: 195–208

    PubMed  CAS  Google Scholar 

  • Linhardt RJ, Grant A, Coonery CL, Langer R (1982) Differential anticoagulant activity of heparin fragments prepared using microbial heparinase. J Biol Chem 257: 7310–7313

    PubMed  CAS  Google Scholar 

  • Lobb RR, Fett JW (1984) Purification of two distinct growth factors from bovine neural tissue by heparin affinity chromatography. Biochemistry 23: 6295–6299

    PubMed  CAS  Google Scholar 

  • Lobb RR, Sasse J, Shing Y, D’Amore PA, Sullivan R, Jacobs J, Klagsbrun M (1986) Purification and characterization of heparin-binding growth factors. J Biol Chem 261: 1924–1928

    PubMed  CAS  Google Scholar 

  • Maciag T, Hoover GA, Stemerman MB, Weinstein R (1981) Serial propagation of endothelial cells in vitro. J Cell Biol 91: 420–426

    PubMed  CAS  Google Scholar 

  • Maciag T, Hoover GA, van der Spek J, Stemerman MB, Weinstein R ( 1982 a) Growth and differentiation of human umbilical-vein endothelial cells in culture. In: Book A, Sato GH, Pardee AB, Sirbasku DA Growth of cells in hormonally defined media. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 525–538

    Google Scholar 

  • Maciag T, Kadish J, Wilkins L, Stemerman MB, Weinstein R (1982 b) Organization behavior of human umbilical vein endothelial cells. J Cell Biol 94: 511–520

    Google Scholar 

  • Maciag T, Mehlman T, Friesel R, Schreiber AB (1984) Heparin binds endothelial cell growth factor, the principal cell mitogen in bovine brain. Science 225: 932–935

    PubMed  CAS  Google Scholar 

  • Madri J, Williams SK (1983) Capillary endothelial cell cultures: phenotypic modulation by matrix components. J Cell Biol 97: 153–165

    PubMed  CAS  Google Scholar 

  • Madtes DK, Raines EW, Sakariassen KS, Assoian RK, Sporn MB, Bell GI, Ross R (1988) Induction of transforming growth factor-a in activated human alveolar macrophages. Cell 53: 285–293

    PubMed  CAS  Google Scholar 

  • Makris A, Ryan KJ, Yasumizu T, Hill CL, Zetter BR (1984) The non-luteal porcine ovary as a source of angiogenic activity. Endocrinology 15: 1672–1677

    Google Scholar 

  • Marks RM, Roche WR, Czerniecki M, Penny R, Nelson DS (1986) Mast cell granules cause proliferation of human microvascular endothelial cells. Lab Invest 55: 289–294

    PubMed  CAS  Google Scholar 

  • Marquardt H, Hunkapiller MW, Hood LE, Todaro GJ (1984) Rat transforming growth factor type I: structure and relationship to epidermal growth factor. Science 223: 1079–1082

    PubMed  CAS  Google Scholar 

  • Matsubara T, Ziff M (1987) Inhibition of human endothelial cell proliferation by gold compounds. J Clin Invest 79: 1440–1446

    PubMed  CAS  Google Scholar 

  • Mazanet R, Franzini-Armstrong C (1982) Scanning electron microscopy of pericytes in rat red muscle. Microvasc Res 23: 361–369

    PubMed  CAS  Google Scholar 

  • Miyazono K, Okabe T, Urabe A, Takaku F, Heldin C-H (1987) Purification and properties of an endothelial cell growth factor from human platelets. J Biol Chem 262: 4098–4103

    PubMed  CAS  Google Scholar 

  • Montesano R, Orci L, Vassalli P (1983) In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J Cell Biol 97: 1648–1652

    PubMed  CAS  Google Scholar 

  • Montesano R, Vassali JD, Baird A, Guillemin R, Orci L (1986) Basic fibroblast growth factor induces angiogenesis in vitro. Proc Natl Acad Sci USA 83: 7297–7301

    PubMed  CAS  Google Scholar 

  • Mormede P, Baird A, Pigeon P (1985) Immunoreactive fibroblast growth factor (FGF) in rat tissues: molecular weight forms and the effects of hypophysectomy. Biochem Biophys Res Commun 120: 1108–1113

    Google Scholar 

  • Moscatelli D, Silverstein J, Manejias R, Rifkin DB (1987) Mr 25000 heparin binding protein from guinea pig brain is a high molecular weight form of basic fibroblast growth factor. Proc Natl Acad Sci USA 84: 5778–5782

    PubMed  CAS  Google Scholar 

  • Moses HL, Tucker RF, Leof EB, Coffey RJ, Halper J, Shipley GD (1985) Type beta transforming growth factor is a growth stimulator and a growth inhibitor. Cancer Cells (Cold Spring Harbor) 3: 65–71

    CAS  Google Scholar 

  • Moses MA, Sudhalter J, Langer R (1988) A Cartilage-derived Collagenase inhibitor of capillary all proliferation. Invest opth 29: 95

    Google Scholar 

  • Muller G, Behrens J, Nussbaumer U, Bohlen P, Birchmeier W (1987) Inhibitory action of transforming growth factor-ß on endothelial cells. Proc Natl Acad Sci USA 84: 5600–5604

    PubMed  CAS  Google Scholar 

  • Muthukkarauppan VR, Auerbach R (1979) Angiogenesis in the mouse cornea. Science 205: 1416–1417

    Google Scholar 

  • Nicosia RF, Tchao R, Leighton J (1982) Histotypic angiogenesis in vitro: light microscopic, ultrastructural and radioautographic. In Vitro 18: 538–549

    Google Scholar 

  • Odedra R, Weiss JB (1987) A synergistic effect on micro vessel cell proliferation between basic fibroblast growth factor (FGFb) and endothelial cell stimulating angiogenesis factor ( ESAF ). Biochem Biophys Res Commun 143: 947–953

    Google Scholar 

  • Orlidge A, D’Amore P (1986) Pericyte and smooth muscle cell modulation of endothelial cell proliferation. J Cell Biol 103:471 a

    Google Scholar 

  • Orlidge A, D’Amore P (1988) Endothelial cell-pericyte cocultures produce activated TGF-ß which inhibits endothelial cell growth. Invest Ophthalmol Vis Sci 29: 109

    Google Scholar 

  • Pasyk S, Schaper W, Schaper J, Pasyk K, Miskiewicz G, StrinScifer B (1982) DNA synthesis in coronary collaterals after coronary occlusion in the conscious dog. Am J Physiol 242 (Heart Circ Physiol 11): H1031–H1037

    PubMed  CAS  Google Scholar 

  • Pledger WJ, Stiles CD, Antoniades HN, Scher CD (1978) An ordered sequence of events is required before BALB/c-3T3 cells become committed to DNA synthesis. Proc Natl Acad Sci USA 75: 2839–2843

    PubMed  CAS  Google Scholar 

  • Pober JS, Bevilacqua MP, Mendrick DL, LaPierre LA, Fiers W, Gimbrone MA Jr (1986 a) Two distinct monokines, interleukin 1 and tumor necrosis factor, each independently induce biosynthesis and transient expression of the same antigen on the surface of cultured human vascular endothelial cells. J Immunol 137: 1680–1687

    Google Scholar 

  • Pober JS, Gimbrone MA Jr, LaPierre LA, Mendrick DL, Fiers W, Rothlein R, Springer TA (1986 b) Overlapping patterns of activation of human endothelial cells by interleukin 1, tumor necrosis factor, and immune interferon. J Immunol 137: 1893–1896

    Google Scholar 

  • Pober JS, LaPierre LA, Stophen AH, Brock TA, Springer TA, Fiers W, Bevilacqua MP, Mendrick DL, Gimbrone MA Jr (1987) Activation of cultured human endothelial cells by recombinant lymphotoxin: comparison with tumor necrosis factor and interleukin 1 species. J Immunol 138: 3319–3324

    PubMed  CAS  Google Scholar 

  • Polverini P, Cotran R, Gimbrone M Jr, Unanue E (1977) Activated macrophages induce vascular proliferation. Nature 269: 804–806

    PubMed  CAS  Google Scholar 

  • Polverini P, Leibovich S (1984) Induction of neovascularization in vivo and endothelial proliferation in vitro by tumor-associated macrophages. Lab Invest 51: 635–642

    PubMed  CAS  Google Scholar 

  • Potts M, Dopplet S, Taylor S, Folkman J, Neer R, Potts JT Jr (1984) Protamine: a powerful in vivo inhibitor of bone resorption. Calcif Tissue Int 36: 189–193

    PubMed  CAS  Google Scholar 

  • Prats H, Kaghad M, Prats AC, Klagsbrun M, Lelias JM, Liauzun P, Chalon P, Tauber JP, Amalric F, Smith JA, Caput D (1989) High molecular weight forms of basic fibroblast growth factor are initiated by alternative CUG codons. Proc Natl Acad Sci USA (86: 1836 - 1840 )

    Google Scholar 

  • Presta M, Moscatelli D, Silverstein JJ, Rifkin DB (1986) Purification from a human hepatoma cell line of a basic FGF like molecule that stimulates capillary endothelial cell plasminogen activator production, DNA synthesis and migration. Mol Cell Biol 6:4060–4066

    Google Scholar 

  • Presta M, Rusnati M, Maier JAM, Ragnotti G (1988) Purification of basic fibroblast growth factor from rat brain: identification of a Mr 22,000 immunoreactive form. Biochem Biophys Res Commun 155: 1161

    PubMed  CAS  Google Scholar 

  • Proia AD, Chandler MB, Haynes WL, Smith CS, Suvarnamani C, Erkel F, Klintworth GK (1988) Quantitation of corneal neovascularization using computerized image analysis. Lab Invest 58: 473–479

    PubMed  CAS  Google Scholar 

  • Rastinejad F, Polverini PJ and Bouck NP (1989) Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. CELL 56: 345–355

    PubMed  CAS  Google Scholar 

  • Rifkin DB, Gross JL, Moscatelli D, Jaffe E (1982) Proteases and angiogenesis: production of plasminogen activator and collagenase by endothelial cells. In: Nossel H, Vogel HJ (eds) Pathobiology of the endothelial cell. Academic, New York, pp 191–197

    Google Scholar 

  • Riordan JF, Vallee BL (1988) Human angiogenin, an organogenic protein. Br J Cancer 57: 587–590

    PubMed  CAS  Google Scholar 

  • Risau W, Lemmon V (1988) Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev Biol 125: 441–450

    PubMed  CAS  Google Scholar 

  • Roberts AB, Anzano MA, Lamb LC, Smith JM, Sporn MB (1981) New class of transforming growth factors potentiated by epidermal growth factor: isolation from non-neoplastic tissues. Proc Natl Acad Sci USA 78: 5339–5343

    PubMed  CAS  Google Scholar 

  • Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH, Fauci AS (1986) Transforming growth factor type-beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83: 4167–171

    PubMed  CAS  Google Scholar 

  • Rogelj S, Weinberg RA, Fanning P, Klagsbrun M (1988) Basic fibroblast growth factor fused to a signal peptide transforms cells. Nature 331: 173–175

    PubMed  CAS  Google Scholar 

  • Ryan T (1970) Factors influencing the growth of vascular endothelium in the skin. Br J Dermatol 82: 99–111

    CAS  Google Scholar 

  • Ryan TJ, Barnhill RL (1983) Physical factors and angiogenesis. Ciba Found Symp: 80–94

    Google Scholar 

  • Ryan TJ, Stockley AT (1980) Mechanical versus biochemical factors in angiogenesis. Microvasc Res 20: 258–259

    Google Scholar 

  • Rybak SM, Vallee BL (1988) Base cleavage specificity of angiogenin with Saccharomyces cerevisiae and Escherichia coli 5S RNA’s. Biochemistry 27: 2288–2294

    PubMed  CAS  Google Scholar 

  • Rybak SM, Fett JW, Yao QZ, Vallee BL (1987) Angiogenin mRNA in human tumor and normal cells. Biochem Biophys Res Commun 146: 1240–1248

    PubMed  CAS  Google Scholar 

  • Sakamoto H, Mori M, Taira M, Yoshida T, Matsukawa S, Shimizu K, Sekiguchi M, Terada M, Sugimura T (1986) Transforming gene from human stomach cancers and a non-cancerous portion of stomach mucosa. Proc Natl Acad Sci USA 83: 3997–4001

    PubMed  CAS  Google Scholar 

  • Saksela O, Moscatelli D, Sommer A, Rifkin DB (1988) Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. J Cell Biol 107: 743–751

    PubMed  CAS  Google Scholar 

  • Schaper W (1981) The collateral circulation of the heart. American Elsevier, New York

    Google Scholar 

  • Schaper W, DeBrabander M, Lewi P (1971) DNA synthesis and mitoses in coronary collateral vessels of the dog. Circ Res 28: 671–679

    PubMed  CAS  Google Scholar 

  • Schor AM, Schor SL, Kumar S (1979) Importance of a collagen substratum for stimulation of capillary endothelial cell proliferation by tumor angiogenesis factor. Int J Cancer 24: 225–234

    PubMed  CAS  Google Scholar 

  • Schreiber AB, Kenney J, Kowalski WJ, Friesel R, Mehlman T, Maciag T (1985) Interaction of endothelial cell growth factor with heparin: characterization of receptor and antibody recognition. Proc Natl Acad Sci USA 82: 6138–6142

    PubMed  CAS  Google Scholar 

  • Schreiber AB, Winkler ME, Derynck R (1986) Transforming growth factor-alpha: a more potent angiogenic mediator than epidermal growth factor. Science 232: 1250–1253

    PubMed  CAS  Google Scholar 

  • Schweigerer L, Malerstein B, Gospodarowicz D (1987 a) Tumor necrosis factor inhibits the proliferation of cultured capillary endothelial cells. Biochem Biophys Res Commun 143: 997–1004

    CAS  Google Scholar 

  • Schweigerer L, Neufeld G, Friedman J, Abrahan JA, Fiddes JC, Gospodarowicz D (1987 b) Capillary endothelial cells express basic fibroblast growth factor. Nature 325: 257–259

    Google Scholar 

  • Selye H (1965) The mast cells. Butterworth, Washington, p 293

    Google Scholar 

  • Senger DR, Galli SJ, Dvorak AM, Perrujzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985

    Google Scholar 

  • Seyedin SM, Thomas TC, Thompson AY, Rosen DM, Piez KA (1985) Purification and characterization of two cartilage-inducing factors from bovine demineralized bone. Proc Natl Acad Sci USA 82: 2267–2271

    PubMed  CAS  Google Scholar 

  • Seyedin SM, Thompson AY, Bentz H, Rosen DM, McPherson JM, Conti A, Siegel NR, Galluppi GR, Piez KA (1986) Cartilage-inducing factor-A. J Biol Chem 261: 5693–5695

    PubMed  CAS  Google Scholar 

  • Shapiro R, Vallee BL (1987) Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activities of angiogenin. Proc Natl Acad Sci USA 84: 2238–2241

    PubMed  CAS  Google Scholar 

  • Shapiro R, Riordan JF, Vallee BL (1986) Characteristic ribonucleolytic activity of human angiogenin. Biochemistry 25: 3527–3532

    PubMed  CAS  Google Scholar 

  • Shapiro R, Strydom DJ, Olson KA, Vallee BL (1987 a) Isolation of angiogenin from normal human plasma. Biochemistry 26: 5141–5146

    CAS  Google Scholar 

  • Shapiro R, Weremowicz S, Riordan JF, Vallee BL (1987 b) Ribonucleolytic activity of angiogenin: essential histidine, lysine, and arginine residues. Proc Natl Acad Sci USA 84: 8783–8787

    Google Scholar 

  • Sherry B, Cerami A (1988) Cachectin/tumor necrosis factor exerts endocrine, paracrine, and autocrine control of inflammatory responses. J Cell Biol 107: 1269–1277

    PubMed  CAS  Google Scholar 

  • Shing Y, Folkman J, Sullivan R, Butterfleld C, Murray J, Klagsbrun M (1984) Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 223: 1296–1299

    PubMed  CAS  Google Scholar 

  • Shing Y, Folkman J, Haudenschild C, Lund D, Crum R, Klagsbrun M (1985) Angio- genesis is stimulated by a tumor-derived endothelial cell growth factor. J Cell Bio- chem 29: 275–287

    CAS  Google Scholar 

  • Smith S, Basu P (1970) Mast cells in corneal immune reaction. Can J Ophthalmol 5: 175–183

    PubMed  CAS  Google Scholar 

  • Sommer A, Brewer MT, Thompson RC, Moscatelli D, Presta M, Rifkin DB (1987) A form of human fibroblast growth factor with an extended amino terminus. Biochem Biophys Res Commun 42: 543–550

    Google Scholar 

  • Splawinski J, Michna M, Palczak R, Konturek S, Splawinski B (1988) Angiogenesis: quantitative assessment by the chick chorioallantoic membrane assay. Meth Find Exp Clin Pharmacol 10: 221–226

    CAS  Google Scholar 

  • Sporn MB, Roberts AB (1988) Peptide growth factors are multifunctional. Nature 332: 217–219

    PubMed  CAS  Google Scholar 

  • Sporn MB, Roberts AB, Wakefield LM, de Crombrugghe B (1987) Some recent advances in the chemistry and biology of transforming growth factor-beta. J Cell Biol 105: 1039–1045

    PubMed  CAS  Google Scholar 

  • St. Clair DK, Rybak SM, Riordan JF, Vallee BL (1987) Angiogenin abolishes cell-free protein synthesis by specific ribonucleolytic inactivation of ribosomes. Proc Natl Acad Sci USA 84: 8330–8334

    Google Scholar 

  • Stangroom JE, Weavers R (1962) Anticoagulant activity of equine follicular fluid. J ReprodFertil 3: 269–282

    PubMed  CAS  Google Scholar 

  • Starkey JR, Crowle PK, Taubenberger S (1988) Mast-cell deficient W/Wv mice exhibit a decreased rate of tumor angiogenesis. Int J Cancer 42: 48–52

    PubMed  CAS  Google Scholar 

  • Strydom DJ, Fett JW, Lobb RR, Alderman EM, Bethune JL, Riordan JF, Vallee BL (1985) Amino acid sequence of human tumor-derived angiogenin. Biochemistry 24: 5486–5494

    PubMed  CAS  Google Scholar 

  • Sullivan R, Klagsbrun M (1985) Purification of cartilage-derived growth factor by heparin affinity chromatography. J Biol Chem 260: 2399–2401

    PubMed  CAS  Google Scholar 

  • Taira M, Yoshida T, Miyagawa K, Sakamoto H, Terada M, Sugimura T (1987) cDNA sequence of human transforming gene hst and identification of the coding sequence required for transforming activities. Proc Natl Acad Sci USA 84: 2980–2984

    Google Scholar 

  • Takehara K, LeRoy EC, Grotendorst GR (1987) TGF-p inhibition of endothelial cell proliferation: alteration of EGF binding and EGF-induced growth-regulatory (competence) gene expression. Cell 49: 415–422

    PubMed  CAS  Google Scholar 

  • Taylor CM, Weiss JB (1984) The chick vitelline membrane as a new test system for angiogenesis and antiangiogenesis. Int J Microcirc Clin Exp 3: 337

    Google Scholar 

  • Taylor S, Folkman J (1982) Protamine is an inhibitor of angiogenesis. Nature 297: 307–31

    PubMed  CAS  Google Scholar 

  • Terranova VP, DiFlorio R, Lyall RM, Hie S, Friesel R, Maciag T (1985) Human endothelial cells are chemotactic to endothelial cell growth factor and heparin. J Cell Biol 101: 2330–2334

    PubMed  CAS  Google Scholar 

  • Thakral K, Goodson W, Hunt T (1979) Stimulation of wound blood vessel growth by wound macrophages. J Surg Res 26: 430

    PubMed  CAS  Google Scholar 

  • Thomas KA (1987) Fibroblast growth factors. FASEB J1: 434–40

    CAS  Google Scholar 

  • Thomas K, Gimemez-Gallego G (1986) Fibroblast growth factors: broad spectrum mitogens with potent angiogenic activity. Trends Biochem Sci 11: 81–84

    CAS  Google Scholar 

  • Thomas KA, Rios-Candelore M, Fitzpatrick S (1984) Purification and characterization of acidic fibroblast growth factor from bovine brain. Proc Natl Acad Sci USA 81: 357–361

    PubMed  CAS  Google Scholar 

  • Thomas KA, Riley MC, Lemmon SK, Baglan NC, Bradshaw RA (1980) Brain fibro-blast growth factor. J Biol Chem 255: 5517–5520

    PubMed  CAS  Google Scholar 

  • Thompson JA, Anderson KD, DiPietro JM, Zweibel JA, Zametta M, Anderson WF, Maciag T (1988) Site-directed neovessel formation in vivo. Science 241: 1349–1352

    PubMed  CAS  Google Scholar 

  • Thompson WD, Campbell R, Evans T (1985) Fibrin degradation response in the chick embryo chorioallantoic membrane. J Pathol 145: 27–37

    PubMed  CAS  Google Scholar 

  • Thornton S, Mueller S, Levine E (1983) Human endothelial cells: use of heparin in cloning and long-term serial cultivation. Science 222: 623–625

    PubMed  CAS  Google Scholar 

  • Tilton RG, Kilo C, Williamson JR (1979) Pericyte-endothelial relationships in cardiac and skeletal muscle capillaries. Microvasc Res 18: 325–335

    PubMed  CAS  Google Scholar 

  • Tilton RG, Miller EJ, Kilo C, Williamson JR (1985) Pericyte form and distribution in rat retinal and uveal capillaries. Invest Ophthalmol Vis Sci 26: 68–73

    PubMed  CAS  Google Scholar 

  • Todaro GJ, Fryling C, DeLarco JE (1980) Transforming growth factors produced by certain human tumor cells: polypeptides that interact with epidermal growth factor receptors. Proc Natl Acad Sci USA 77: 5258–5262

    PubMed  CAS  Google Scholar 

  • Tuan D, Smith S, Folkman J, Merler E (1973) Isolation of the non-histone proteins of rat Walker carcinoma and their association with tumor angiogenesis. Biochemistry 12: 3159–3165

    PubMed  CAS  Google Scholar 

  • Tucker RF, Shipley GD, Moses HL, Holley RW (1984) Growth inhibitor from BSC–1 cells closely related to platelet type beta transforming growth factor. Science 226: 705–707

    PubMed  CAS  Google Scholar 

  • Vlodavsky I, Fuks Z, Bar-Ner M, Ariav Y, Schirrmacher V (1983) Lymphoma cell mediated degradation of sulfated proteoglycans in the subendothelial cell ex-tracellular matrix: relationship to tumor metastasis. Cancer Res 43: 2704–2711

    PubMed  CAS  Google Scholar 

  • Vlodavsky I, Sullivan R, Fridman R, Sasse J, Folkman J, Klagsbrun M (1986) Heparin-binding endothelial cell growth factor produced by endothelial cells and sequestered by the endothelial extracellular matrix. J Cell Biol 103 (2):98 a

    Google Scholar 

  • Vlodavsky I, Folkman J, Sullivan R, Fridman R, Ishai-Michaeli R, Sasse J, Klagsbrun M (1987 a) Endothelial cell-derived basic fibroblast growth factor; synthesis and deposition into subendothelial extracellular matrix. Proc Natl Acad Sci USA 84: 2292–2296

    CAS  Google Scholar 

  • Vlodavsky I, Friedman R, Sullivan R, Sasse J, Klagsbrun M (1987 b) Aortic endothelial cells synthesize basic fibroblast growth factor which remains cell-associated and platelet-derived growth factor-like protein which is secreted. J Cell Physiol 131: 402–408

    Google Scholar 

  • Wahl SM, Hunt DA Wakefield LM, McCartney-Francis N, Wahl LM, Roberts AB, Sporn MB (1987) Transforming growth-factor beta ( TGF-beta) induces monocyte Chemotaxis and growth factor production. Proc Natl Acad Sci USA 84: 5788–5792

    Google Scholar 

  • Weiner HL, Weiner LH, Swain JL (1987) Tissue distribution and developmental expression of the messenger RNA encoding angiogenin. Science 237: 280–282

    PubMed  CAS  Google Scholar 

  • Whalen GF, Zetter BR (1989) Angiogenesis and wound healing. In: Diegelman RF, Cohen K, Lindblatt WJ (eds) Wound healing: Biochemical and clinical aspects. Saunders, Philadelphia (in press)

    Google Scholar 

  • Zeleznik A, Schuller H, Reichert L Jr (1981) Gonadatotropin-binding sites in the rhesus monkey ovary: role of the vasculature in the selective distribution of human chorionic gonadotropin to the preovulatory follicle. Endocrinology 109: 356–362

    PubMed  CAS  Google Scholar 

  • Zetter BR (1980) Migration of capillary endothelial cells is stimulated by tumor-derived factors. Nature 285: 41–43

    PubMed  CAS  Google Scholar 

  • Zhan X, Bates B, Hu X, Goldfarb M (1988) The human FGF-5 oncogene encodes a novel protein related to fibroblast growth factors. Mol Cell Biol 8: 3487

    PubMed  CAS  Google Scholar 

  • Ziehe M, Jones J, Gullino P (1982) Role of prostaglandin El and copper in angiogenesis. JNCI 69: 475–482.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klagsbrun, M., Folkman, J. (1990). Angiogenesis. In: Sporn, M.B., Roberts, A.B. (eds) Peptide Growth Factors and Their Receptors II. Handbook of Experimental Pharmacology, vol 95 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74781-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74781-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74783-0

  • Online ISBN: 978-3-642-74781-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics