Skip to main content

Entrapment of Purified α-Hemoglobin Chains in Normal Erythrocytes as a Model for Human β Thalassemia

  • Chapter
The Use of Resealed Erythrocytes as Carriers and Bioreactors

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 326))

Abstract

The β thalassemias result from a number of underlying genetic defects that interfere with the synthesis of the β hemoglobin chain and the subsequent production of the normal α2β2 hemoglobin tetramer.1 As a consequence of this decreased β chain synthesis, unpaired α-hemoglobin chains (α-chains) are found within the erythrocyte. The presence of these α-chains are associated with a number of cellular defects including: membrane bound globin; membrane thiol oxidation; altered cytoskeletal proteins; decreased cellular and membrane deformability; and increased susceptibility to both endogenous and exogenous oxidants.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.J. Weatherall, The Thalassemia revisited.in: “Hematology, 3 Ed” W.J. Williams, E. Beutler, A.J. Erslev, and M.A. Lichtman, eds., McGraw-Hill, New York (1991).

    Google Scholar 

  2. M.D. Scott, P. Rouyer-Fessard, B.H. Lubin and Y. Beuzard, Entrapment of Purified a-Hemoglobin Chains in Normal Erythrocytes: A Model for 13 Thalassemia. J. Biol. Chem. 265:17953 (1990).

    PubMed  CAS  Google Scholar 

  3. M.D. Scott, P. Rouyer-Fessard, B.H. Lubin and Y. Beuzard, a-and β-hemoglobin chain induced changes in normal red cell deformability: comparison to β thalassemia intermedia and Hb H disease. Br. J. Haem., in press (1992)

    Google Scholar 

  4. M.D. Scott, J. van den Berg, T.C. Wagner, P. Rouyer-Fessard, Y. Beuzard and B.H. Lubin, Effect of entrapped α-hemoglobin chains on erythrocyte oxidation. Blood 76 (suppl. 1):290 (1990).

    Google Scholar 

  5. P. Rouyer-Fessard, M.D. Scott„ M.C. Garel, D. Bachir, F. Galacteros and Y. Beuzard, Fate of α-hemoglobin chains and erythrocyte defects in β Thalassemia, in: “Sixth Cooley’s Anemia Symposium,” A. Bank, ed., Annals of the New York Academy of Sciences, 612:106 (1990).

    Google Scholar 

  6. M.D. Scott, T. Repka, R.P. Hebbel, J.J.M. van den Berg, T.C. Wagner and B.H. Lubin, Membrane deposition of heure and non-heme iron in model β thalassemic erythrocytes. Blood, 78 (Suppl. 1):771 (1991).

    Google Scholar 

  7. M.D. Scott, T.C. Wagner, B.H. Lubin and J.W. Eaton, ‘Loose’ iron: an important element in the pathogenesis of damage within β thalassemic erythrocytes. Blood, 78 (Suppl. 1):772 (1991).

    Google Scholar 

  8. M.D. Scott, J.W. Eaton, D.T.Y. Chiu, F.A. Kuypers and B.H. Lubin, Enhancement of erythrocyte superoxide dismutase activity: Effect on cellular oxidant defense. Blood 74:2542 (1989).

    PubMed  CAS  Google Scholar 

  9. M.D. Scott, F.A. Kuypers, P. Bütikofer, R.M. Bookchin, O. Ortiz and B.H. Lubin, Effect of osmotic lysis-resealing on red cell structure and function. J. Lab. Clin. Med. 115: 470 (1990).

    PubMed  CAS  Google Scholar 

  10. E. Bucci and C. Fronticelli, A new method for the preparation of a and ß subunits of human hemoglobin. J. Biol. Chem. 240:551 (1965).

    Google Scholar 

  11. P. Rouyer-Fessard, M.C. Garel, C. Domenget, D. Guetarni, D. Bachir, P. Colonna and Y. Beuzard, A study of membrane protein defects and a hemoglobin chains of red blood cells in human f3 thalassemia. J. Biol. Chem. 264:19092 (1989).

    PubMed  CAS  Google Scholar 

  12. D. Koutsouris, R. Guillet, J.C. Lelievre, M.T. Guillemin, P. Berthoeom, Y. Beuzard and M. Boynard, Determination of erythrocyte transit time through micropores. I. Basic operational principles. Biorheology 25: 763 (1988).

    PubMed  CAS  Google Scholar 

  13. D. Koutsouris, R. Guillet, R.B. Wenby and H.J. Meiselman, Determination of erythrocyte transit time through micropores. H. Influence of Experimental and physicochemical factors. Biorheology. 25:773 (1988).

    PubMed  CAS  Google Scholar 

  14. J.-C. Zhu, P.C.W. Stone and J. Stuart, Measurement of erythrocyte deformability by cell transit analyzer. Clin. Hemorheology. 9:897 (1989).

    Google Scholar 

  15. J.T. Dodge, C. Mitchell and D.J. Hanahan, The preparation and characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem. Biophys. 100:119 (1963).

    Article  PubMed  CAS  Google Scholar 

  16. G. Cohen and P. Hochstein, Generation of hydrogen peroxide by hemolytic agents. Biochem. 3:895 (1969).

    Google Scholar 

  17. E. Margoliash, A. Novogrodsky and A. Schejter, Irreversible reaction of 3-amino1,2,4-triazole and related inhibitors with the protein of catalase. Biochem. J. 74:339 (1960).

    PubMed  CAS  Google Scholar 

  18. M.D. Scott, B.H. Lubin, L. Zuo and F.A. Kuypers, Erythrocyte defense against H2O2: Preeminent importance of catalase. J. Lab. Clin. Med. 118:7 (1991).

    PubMed  CAS  Google Scholar 

  19. E. Beutler, E., Red Cell Metabolism: A Manual of Biochemical Methods, 3 Ed., Grune & Stratton, Orlando, FL (1984).

    Google Scholar 

  20. M.D. Scott, L. Zuo, B.H. Lubin and D.T.Y. Chiu, NADPH, not glutathione, status modulates oxidant susceptibility of hemoglobin in normal and glucose-6-phosphate dehydrogenase deficient erythrocytes. Blood 77:2059 (1991).

    PubMed  CAS  Google Scholar 

  21. F.A. Kuypers, J.J.M. van den Berg, C. Schalkwijk, B. Roelofsen and J.A.F. Op den Kamp, Parinaric acid as a sensitive fluorescent probe for the determination of lipid peroxidation. Biochim. Biophys. ACTA 921:266 (1987).

    Article  CAS  Google Scholar 

  22. J.J.M. van den Berg, F.A. Kuypers, B. Roelofsen, B.H. Lubin and J.A.F. Op den Kamp, Direct and continuous measurement of hydroperoxide-induced oxidative stress in intact erythrocytes. Free Rad. Biol. Med. 11:255 (1991).

    Article  PubMed  Google Scholar 

  23. J.L. Buttriss and A.T. Diplock, High-performance liquid chromatography method for vitamin E in tissues. Meth. Enzymol. 105:131 (1984).

    Article  PubMed  CAS  Google Scholar 

  24. D.D. Stump, E.F. Roth jr. and H.S. Gilbert, Simultaneous determination by high-performance liquid chromatography of tocopherol isomers, a-tocopheryl quinone, and cholesterol in red blood cells and plasma. J. Chrom. 306:371 (1984).

    Article  CAS  Google Scholar 

  25. J.J.M. van den Berg, F.A. Kuypers, B. Roelofsen and J.A.F. Op den Kamp, The cooperative action of vitamins E and C in the protection against peroxidation of parinaric acid in human erythrocyte membranes. Chem. Phys. Lipids 53:309 (1990).

    Article  PubMed  Google Scholar 

  26. E.J. van Kampen and W.G. Zijlstra, Standardization of hemoglobinometry. II. The hemiglobincyanide method. Clin Chim ACTA 6:538 (1961).

    Article  PubMed  Google Scholar 

  27. B.H. Rank, J. Carlsson and R.P. Hebbel, Abnormal redox status of membrane-protein thiols in sickle erythrocytes. J. Clin. Invest. 75:1531 (1985).

    Article  PubMed  CAS  Google Scholar 

  28. S.A. Kuross and R.P. Hebbel, Nonheme iron in sickle erythrocyte membranes: Association with phospholipids and potential role in lipid peroxidation. Blood, 72:1278 (1988).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scott, M.D. (1992). Entrapment of Purified α-Hemoglobin Chains in Normal Erythrocytes as a Model for Human β Thalassemia. In: Magnani, M., DeLoach, J.R. (eds) The Use of Resealed Erythrocytes as Carriers and Bioreactors. Advances in Experimental Medicine and Biology, vol 326. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3030-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3030-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6321-7

  • Online ISBN: 978-1-4615-3030-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics