Skip to main content

Hydroxylation of (-)-β-Pinene and (-)-α-Pinene by a Cytochrome P-450 System from Hyssop (Hyssopus Officinalis)

  • Chapter
Secondary-Metabolite Biosynthesis and Metabolism

Part of the book series: Environmental Science Research ((ESRH,volume 44))

Abstract

Hyssop (Hyssopus officinalis) produces an essential oil containing the saturated bicyclic monoterpene ketones pinocamphone and isopinocamphone, with lesser amounts of myrtenol derivatives. A microsomal preparation from leaf epidermis oil glands of this species converts the parent olefin (-)-β -pinene to the allylic alcohol (+)-trans-pinocarveol that presumably gives rise to (-)-pinocamphone and (-)-isopinocamphone by subsequent oxidation and two stereochemical alternatives for reduction of the conjugated double bond. The same preparation catalyzes the hydroxylation of (-)-α-pinene to (-)-myrtenol at a slower rate. The pinene hydroxylase from the oil glands Hyssop has characteristics of a distinct cytochrome P-450 species, yet shares properties with other monoterpene olefin P-450 hydroxylases from the oil glands of several essential oil-producing plants. These results with pinane-type monoterpenes extend the observation that parent cyclic olefins are metabolized by a pathway involving allylic oxidation and conjugate reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literature

  1. R. Croteau, Biosynthesis and Catabolism of Monoterpenoids, Chem. Rev. 87:929 (1987).

    Article  CAS  Google Scholar 

  2. R. Croteau, Biochemistry of Monoterpenes and Sesquiterpenes of the Essential Oils,in: “Herbs, Spices and Medicinal Plants -Recent Advances in Botany, Horticulture and Pharmacology,” Vol. 1, L. E. Craker and J. E. Simon, eds., Oryx Press, Phoenix (1986).

    Google Scholar 

  3. F. Karp, J. L. Harris, and R. Croteau, Metabolism of Monoterpenes: Demonstration of the Hydroxylation of (+)-Sabinene to (+)-cw-Sabinol by an Enzyme Preparation from Sage (Salvia ojficinalis) Leaves, Arch. Biochem. Biophys. 256:179 (1987).

    Article  PubMed  CAS  Google Scholar 

  4. F. Karp, C. A. Mihaliak, J. L. Harris, and R. Croteau, Monoterpene Biosynthesis:Specificity of the Hydroxylations of (-)-Limonene by Enzyme Preparations from Peppermint (Mentha piperita) ,Spearmint (Mentha spicata) ,and Perilla (Perillafrutescens) Leaves, Arch. Biochem. Biophys. 276:219 (1990).

    Article  PubMed  CAS  Google Scholar 

  5. J. Gershenzon, D. McCaskill, J. Rajaonarivony, C. Mihaliak, F. Karp, and R.Croteau, Biosynthetic Methods for Plant Natural Products: New Procedures for the Study of Glandular Trichome Constituents, Recent Adv. Phytochem. 25:347 (1991).

    CAS  Google Scholar 

  6. R. Croteau, C. L. Hooper, and M. Felton, Biosynthesis of Monoterpenes: Partial Purification and Characterization of a Bicyclic Monoterpenol Dehydrogenase from Sage (Salvia officinalis), Arch. Biochem. Biophys. 188:182 (1978).

    Article  PubMed  CAS  Google Scholar 

  7. R. Croteau and M. Felton, Substrate Specificity of Monoterpenol Dehydrogenases from Foeniculwn vulgare and Tanacetum vulgare ,Phytochemistry 19:1343 (1980).

    CAS  Google Scholar 

  8. R. Kjonaas, C. Martinkus-Taylor, and R. Croteau, Metabolism of monoterpenes: Conversion of /-Menthone to l-Menthol and d-Neomenthol by Stereospecifìc Dehydrogenases from Peppermint (Mentha piperita) Leaves, Plant Physiol. 69:1013 (1982).

    Article  PubMed  CAS  Google Scholar 

  9. R. B. Kjonaas, K. V. Venkatachalem, and R. Croteau, Metabolism of Monoterpenes: Oxidation of Isopiperitenol to Isopiperitenone, and Subsequent Isomerization to Piperitenone, by Soluble Enzyme Preparations from Peppermint (Mentha piperita) Leaves, Arch. Biochem. Biophys. 238:49 (1985).

    Article  PubMed  CAS  Google Scholar 

  10. R. Croteau and K. V. Kenkatachalam, Metabolism of Monoterpenes: Demonstration that (+)-cw-Isopulegone, not Piperitenone, is the Key Intermediate in the Conversion of (-)-Isopiperitenone to (+)-Pulegone in Peppermint (Mentha piperita), Arch. Biochem. Biophys. 249:306 (1986).

    Article  PubMed  CAS  Google Scholar 

  11. B. M. Lawrence, Progress in Essential Oils, Perfumer and Flavorist 9:38 (1984).

    Google Scholar 

  12. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein Measurement with Folin Phenol Reagent, J. Bid. Chem. 193:265 (1951).

    CAS  Google Scholar 

  13. T. Omura and R. Sato, The Carbon Monoxide-Binding Pigment of Liver Microsomes, J. Bid. Chem. 239:2379 (1964).

    CAS  Google Scholar 

  14. R. Croteau and M. A. Johnson, Biosynthesis of Terpenoids in Glandular Trichomes, in: “Biology and Chemistry of Plant Trichomes,” E. Rodriguez, P. L. Healy, and I. Mehta, eds., Plenum, New York (1984).

    Google Scholar 

  15. J. T. Groves and D. V. Subramanian, Hydroxylation by Cytochrome P-450 and Metalloporphyrin Models. Evidence for Allylic Rearrangement, J. Am. Chem. Soc. 106:2177 (1984).

    Article  CAS  Google Scholar 

  16. C. A. West, Hydroxylases, Monooxygenases, and Cytochrome P-450, in: “The Biochemistry of Plants,” Vol. 2, D. D. Davies, ed., Academic, New York (1980).

    Google Scholar 

  17. R. W. Estabrook and J. Werringloer, The Measurement of Difference Spectra:Application to the Cytochromes of Microsomes, in: “Methods in Enzymology,” Vol. 52, S. Fleischer and L. Packer, eds., Academic, New York (1978).

    Google Scholar 

  18. B. Testa and P. Jenner, Inhibitors of Cytochrome P-450s and Their Mechanism of Action, Drug Metab. Rev. 12:1 (1981).

    Article  PubMed  CAS  Google Scholar 

  19. R. C. Coolbaugh, S. S. Hirano, and C. W. West, Studies on the Specificity and Site of Action of α-Cyclopropyl-α-[p-methoxyphenyl]-5-pyrimidine Methyl Alcohol (Ancymidol), a Plant Growth Regulator, Plant Physiol. 62:571 (1978).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Karp, F., Croteau, R. (1992). Hydroxylation of (-)-β-Pinene and (-)-α-Pinene by a Cytochrome P-450 System from Hyssop (Hyssopus Officinalis). In: Petroski, R.J., McCormick, S.P. (eds) Secondary-Metabolite Biosynthesis and Metabolism. Environmental Science Research, vol 44. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3012-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3012-1_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6312-5

  • Online ISBN: 978-1-4615-3012-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics