Advertisement

Ventilatory Response at the Onset of Exercise: An Update of the Neurohumoral Theory

  • P. Cerretelli
  • L. Xi
  • F. Schena
  • C. Marconi
  • B. Grassi
  • G. Ferretti
  • M. Meyer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 337)

Abstract

There appears to be agreement on the fact that the ventilatory response at the onset of a constant-load exercise is characterized in man by two components (Dejours, 1963): a) an abrupt reflex response (“phase I”, ph 1 ventilatory response, according to the definition of Wasserman, 1978), most probably originating from the contracting muscles, whose afferent pathway is presumably represented by the group III spinal afferent fibers (Mitchell et al., 1977; Mitchell, 1990); b) a delayed response (“phase II and III”, ph2 and ph3), mainly controlled by the endogenous production of CO2. The way these components interact has been for a long time, and still is, a matter for discussion.

Keywords

Work Load Ventilatory Response Lung Transplant Recipient Typical Subject Impedance Cardiography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asmussen, E., 1973. Ventilation in the transition from rest to exercise. Acta Physiol. Scand. 89:68Google Scholar
  2. Asmussen, E. and M. Nielsen, 1948. Studies on the initial changes in respiration in the transition from rest to work and from work to rest. Acta Physiol. Scand. 16: 270Google Scholar
  3. Cerretelli, P., B. Grassi, G. Ferretti, A. Colombini, M. Rieu, L. Xi, M. Meyer and C. Marconi, 1989. Regulation of ventilation at exercise after lung and heart denervation in humans. FASEB J. 3:A855 (Abstract)Google Scholar
  4. Dejours, P., 1963. The regulation of breathing during muscular exercise in man. A neurohumoral theory. In: “The regulation of Human Respiration”, D.J.C. Cunningham and B.B. Lloyd, ed. Blackwell, Oxford (pp. 535–547)Google Scholar
  5. Dill, D B., H.T. Edwards and W.V. Consolazio, 1937. Blood as a physicochemical system. XI. Man at rest. J. Biol. Chem. 118:635Google Scholar
  6. Eldridge, F. L., D. E. Millhorn and T.G. Waldrop, 1981. Exercise hyperpnea and locomotion: parallel activation from the hypothalamus. Science 211: 844PubMedCrossRefGoogle Scholar
  7. Jones, P.W., A. Huszczuk and K. Wasserman, 1982. Cardiac output as a controller of ventilation through changes in right ventricular load. J. Appl. Physiol. 53: 218PubMedCrossRefGoogle Scholar
  8. Lefrancois, R. and P. Dejours, 1964. Etude des relations entre stimulus ventilatoire gaz carbonique et stimulus ventilatoire neurogeniques de l’exercice musculaire chez l’homme. Rev. Franc. Etudes Clin. Biol 9:498.PubMedGoogle Scholar
  9. Meyer, M., P. Cerretelli, C. Marconi, M. Rieu and C. Cabrol, 1989. Cardiorespiratory adjustment to exercise after cardiac transplantation. In: “Clinical Aspects of O2 Transoprt and Tissue Oxygenation”, K. Reinhart and K. Eyrich, ed. Springer Verlag, Berlin, (pp. 477–499)Google Scholar
  10. Mitchell, J.H., 1990. Neural control of the circulation during exercise. Med. Sci. Sports Exercise 22:141Google Scholar
  11. Mitchell, J.H., W.C. Reardon and D.J. McCloskey, 1977. Reflex effects on circulation and respiration from contracting skeletal muscle. Am. J. Physiol. 233: H374PubMedGoogle Scholar
  12. Miyamura, M., L. Xi, K. Ishida, F. Schena and P. Cerretelli, 1990. Effects of acute hypoxia on ventilatory response at the onset of submaximal exercise. Jpn. J. Physiol. 40:417PubMedCrossRefGoogle Scholar
  13. Ward, S.A., B.J. Whipp, S. Koyal and K. Wasserman, 1983. Influence of body CO2 stores on ventilatory dynamics during exercise. J. Appl. Physiol. 55:742PubMedGoogle Scholar
  14. Wasserman, K., 1978. Breathing during exercise. N. Engl. J. Med. 298:780PubMedCrossRefGoogle Scholar
  15. Wasserman, K., B. J. Whipp, R. Casaburi and W.L. Beaver, 1977. Carbon dioxide flow and exercise hyperpnea. Cause and effect. Am. Rev. Respir. Dis. 115:225PubMedGoogle Scholar
  16. Wasserman, K., B.J. Whipp and J. Castagna, 1974. Cardiodynamic hyperpnea: hyperpnea secondary to cardiac output increase. J. Appl. Physiol. 36:457PubMedGoogle Scholar
  17. Zuntz, N. and J. Geppert, 1886. Uber die Natur der normalen Atemreize and den Ort ihrer Wirkung. Pfliigers Arch. ges. Physiol. 38:337CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • P. Cerretelli
    • 1
    • 2
  • L. Xi
    • 3
  • F. Schena
    • 1
  • C. Marconi
    • 2
  • B. Grassi
    • 2
  • G. Ferretti
    • 1
  • M. Meyer
    • 3
  1. 1.Dept. of PhysiologyUniv. of GenevaSchweiz
  2. 2.I.T.B.A. C.N.RMilano IGermany
  3. 3.Max-Planck-Institute for Exp. MedGöttingenGermany

Personalised recommendations