Skip to main content

Ventilatory Response at the Onset of Exercise: An Update of the Neurohumoral Theory

  • Chapter
Neurobiology and Cell Physiology of Chemoreception

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 337))

  • 101 Accesses

Abstract

There appears to be agreement on the fact that the ventilatory response at the onset of a constant-load exercise is characterized in man by two components (Dejours, 1963): a) an abrupt reflex response (“phase I”, ph 1 ventilatory response, according to the definition of Wasserman, 1978), most probably originating from the contracting muscles, whose afferent pathway is presumably represented by the group III spinal afferent fibers (Mitchell et al., 1977; Mitchell, 1990); b) a delayed response (“phase II and III”, ph2 and ph3), mainly controlled by the endogenous production of CO2. The way these components interact has been for a long time, and still is, a matter for discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asmussen, E., 1973. Ventilation in the transition from rest to exercise. Acta Physiol. Scand. 89:68

    CAS  Google Scholar 

  • Asmussen, E. and M. Nielsen, 1948. Studies on the initial changes in respiration in the transition from rest to work and from work to rest. Acta Physiol. Scand. 16: 270

    Google Scholar 

  • Cerretelli, P., B. Grassi, G. Ferretti, A. Colombini, M. Rieu, L. Xi, M. Meyer and C. Marconi, 1989. Regulation of ventilation at exercise after lung and heart denervation in humans. FASEB J. 3:A855 (Abstract)

    Google Scholar 

  • Dejours, P., 1963. The regulation of breathing during muscular exercise in man. A neurohumoral theory. In: “The regulation of Human Respiration”, D.J.C. Cunningham and B.B. Lloyd, ed. Blackwell, Oxford (pp. 535–547)

    Google Scholar 

  • Dill, D B., H.T. Edwards and W.V. Consolazio, 1937. Blood as a physicochemical system. XI. Man at rest. J. Biol. Chem. 118:635

    CAS  Google Scholar 

  • Eldridge, F. L., D. E. Millhorn and T.G. Waldrop, 1981. Exercise hyperpnea and locomotion: parallel activation from the hypothalamus. Science 211: 844

    Article  PubMed  CAS  Google Scholar 

  • Jones, P.W., A. Huszczuk and K. Wasserman, 1982. Cardiac output as a controller of ventilation through changes in right ventricular load. J. Appl. Physiol. 53: 218

    Article  PubMed  CAS  Google Scholar 

  • Lefrancois, R. and P. Dejours, 1964. Etude des relations entre stimulus ventilatoire gaz carbonique et stimulus ventilatoire neurogeniques de l’exercice musculaire chez l’homme. Rev. Franc. Etudes Clin. Biol 9:498.

    PubMed  CAS  Google Scholar 

  • Meyer, M., P. Cerretelli, C. Marconi, M. Rieu and C. Cabrol, 1989. Cardiorespiratory adjustment to exercise after cardiac transplantation. In: “Clinical Aspects of O2 Transoprt and Tissue Oxygenation”, K. Reinhart and K. Eyrich, ed. Springer Verlag, Berlin, (pp. 477–499)

    Google Scholar 

  • Mitchell, J.H., 1990. Neural control of the circulation during exercise. Med. Sci. Sports Exercise 22:141

    CAS  Google Scholar 

  • Mitchell, J.H., W.C. Reardon and D.J. McCloskey, 1977. Reflex effects on circulation and respiration from contracting skeletal muscle. Am. J. Physiol. 233: H374

    PubMed  CAS  Google Scholar 

  • Miyamura, M., L. Xi, K. Ishida, F. Schena and P. Cerretelli, 1990. Effects of acute hypoxia on ventilatory response at the onset of submaximal exercise. Jpn. J. Physiol. 40:417

    Article  PubMed  CAS  Google Scholar 

  • Ward, S.A., B.J. Whipp, S. Koyal and K. Wasserman, 1983. Influence of body CO2 stores on ventilatory dynamics during exercise. J. Appl. Physiol. 55:742

    PubMed  CAS  Google Scholar 

  • Wasserman, K., 1978. Breathing during exercise. N. Engl. J. Med. 298:780

    Article  PubMed  CAS  Google Scholar 

  • Wasserman, K., B. J. Whipp, R. Casaburi and W.L. Beaver, 1977. Carbon dioxide flow and exercise hyperpnea. Cause and effect. Am. Rev. Respir. Dis. 115:225

    PubMed  CAS  Google Scholar 

  • Wasserman, K., B.J. Whipp and J. Castagna, 1974. Cardiodynamic hyperpnea: hyperpnea secondary to cardiac output increase. J. Appl. Physiol. 36:457

    PubMed  CAS  Google Scholar 

  • Zuntz, N. and J. Geppert, 1886. Uber die Natur der normalen Atemreize and den Ort ihrer Wirkung. Pfliigers Arch. ges. Physiol. 38:337

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cerretelli, P. et al. (1993). Ventilatory Response at the Onset of Exercise: An Update of the Neurohumoral Theory. In: Data, P.G., Acker, H., Lahiri, S. (eds) Neurobiology and Cell Physiology of Chemoreception. Advances in Experimental Medicine and Biology, vol 337. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2966-8_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2966-8_46

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6290-6

  • Online ISBN: 978-1-4615-2966-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics