Skip to main content

Cross-Bridges Affect Both TnC Structure and Calcium Affinity in Muscle Fibers

  • Chapter
Mechanism of Myofilament Sliding in Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 332))

Abstract

In vertebrate striated muscle, calcium binding to troponin initiates contraction, a strong interaction of actin and myosin. In isolated proteins and skinned fibers, the strong interaction of myosin with actin also affects troponin. Fluorescent labels attached to troponin C show structural changes in the TnC environment with crossbridge attachment and also with calcium binding. Evidence that this effect of crossbridges also occurs in intact striated muscle comes from studies in partially activated cardiac or skeletal muscle by others and in barnacle muscle by us. Length changes which detach myosin cross-bridges produce a brief burst of extra calcium that can be detected by aequorin in activated, voltage clamped single barnacle muscle fibers. That this calcium is coming from calcium bound to the activating site (troponin-C) is supported by several pieces of evidence. Studies on the dependence of the extra calcium on force and the time of the length change are consistent with the amplitude of the extra calcium being proportional to the bound calcium (CaTnC) and with increased cross-bridge attachment and force increasing calcium binding to troponin-C by up to a factor of 10. Importantly, stretch of active muscle (which first detaches cross-bridges and then enhances steady force) gives a biphasic response: first extra calcium (presumably due to cross-bridge detachment) and then, decreased calcium (presumably due to enhanced calcium binding to TnC). The enhanced calcium binding we see with elevated force (via strained cross-bridges) implies that calcium binding to TnC is enhanced not only be cross-bridge attachment but also by cross-bridge (or thin filament) strain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ebashi, S. & Endo, M. Prog. Biophys. Mol. Biol. 18, 123–183 (1968).

    Article  PubMed  CAS  Google Scholar 

  2. Bremel, R.D. & Weber, A. Nature 238, 97–101 (1972).

    CAS  Google Scholar 

  3. Gordon, A.M. in Muscular Contraction (ed. Simmons, R.M.) 163–179 (Cambridge University Press, 1992).

    Google Scholar 

  4. Gordon, A.M. & Yates, L.D. in Molecular and Cellular Aspects of Muscle Contraction and Cell Motility (éd. Sugi, H.) 1–36 (Springer-Verlag, 1992).

    Google Scholar 

  5. Weber, A. & Murray, J.M. Physiol. Rev. 53, 612–673 (1973).

    PubMed  CAS  Google Scholar 

  6. Eisenberg, E. & Hill, T.L. Science 227, 999–1006 (1985).

    Article  PubMed  CAS  Google Scholar 

  7. El-Saleh, S.C., Warber, K.D. & Potter, J.D. J. Muscle Res. Cell Motility 7, 387–404 (1986).

    Article  CAS  Google Scholar 

  8. Gordon, A.M., Ridgway, E.B., Yates, L.D. & Allen, T. Adv. Exp. Med. Biol. 226, 89–98 (1988).

    PubMed  CAS  Google Scholar 

  9. Güth, K. & Potter, J.D. J. Biol. Chem. 262, 13627–13635 (1987).

    PubMed  Google Scholar 

  10. Morano, I. & Rüegg, J.C. Pflügers Arch. 418, 333–337 (1991).

    Article  PubMed  CAS  Google Scholar 

  11. Reuben, J.P., Brandt, P.W., Berman, M. & Grundfest, H. J. Gen. Physiol. 57, 385–407 (1971).

    Article  PubMed  CAS  Google Scholar 

  12. Goldman, Y.E., Hibberd, M.G. & Trentham, D.R. J. Physiol. (Lond.) 354, 605–624 (1984).

    CAS  Google Scholar 

  13. Fuchs, F. Biochim. Biophys. Acta 491, 523–531 (1977).

    Article  PubMed  CAS  Google Scholar 

  14. Hoftnann, P.A. & Fuchs, F. Am. J. Physiol. 253, C541–C546 (1987).

    Google Scholar 

  15. Fuchs, F. J. Muscle Res. Cell Motility 6, 477–486 (1985).

    Article  CAS  Google Scholar 

  16. Kress, M., Huxley, H.E., Faruqi, A.R. & Hendrix, J. J. Mol. Biol. 188, 325–342 (1986).

    Article  PubMed  CAS  Google Scholar 

  17. Gordon, A.M. & Ridgway, E.B. Eur. J. Cardiol. 7, 27–34 (1978).

    PubMed  Google Scholar 

  18. Ridgway, E.B. & Gordon, A.M. J. Gen. Physiol. 83, 75–103 (1984).

    Article  PubMed  CAS  Google Scholar 

  19. Allen, D.G. & Kurihara, S. J. Physiol. (Lond.) 327, 79–94 (1982).

    CAS  Google Scholar 

  20. Stephenson, D.G. & Wendt, I.R. J. Muscle Res. Cell Motility 5, 243–272 (1984).

    Article  CAS  Google Scholar 

  21. Allen, D.G. & Kentish, J.C. J. Physiol. (Lond.) 407, 489–503 (1988).

    CAS  Google Scholar 

  22. Endo, M. Nature New Biol. 237, 211–213 (1972).

    Article  PubMed  CAS  Google Scholar 

  23. Gordon, A.M. & Ridgway, E.B. J. Gen. Physiol. 90, 321–340 (1987).

    Article  PubMed  CAS  Google Scholar 

  24. Kurihara, S., Saeki, Y., Hongo, K., Tanaka, E. & Sudo, N. Jpn. J. Physiol. 40, 915–920 (1990).

    Article  PubMed  CAS  Google Scholar 

  25. Collins, J.H., Theibert, J.L., Francois, J.-M., Ashley, C.C. & Potter, J.D. Biochem. 30, 702–707 (1991).

    Article  CAS  Google Scholar 

  26. Ashley, C.C, Kerrick, W.G., Lea, T.J., Khalil, R. & Potter, J.D. Biophys. J. 51, 327a (1987).

    Google Scholar 

  27. Qian, Y., Gordon, A.M. & Luo, Z.X. Biophys. J. 59, 584a (1991).

    Google Scholar 

  28. Dubyak, G.R. J. Muscle Res. Cell Motility 6, 275–292 (1985).

    Article  CAS  Google Scholar 

  29. Griffiths, P.J., Duchateau, J.J., Maéda, Y., Potter, J.D. & Ashley, C.C. Pflügers Arch. 415, 554–565 (1990).

    Article  PubMed  CAS  Google Scholar 

  30. Sugi, H. & Tsuchiya, T. J. Physiol. (Lond.) 407, 215–229 (1988).

    CAS  Google Scholar 

  31. Gordon, A.M. & Ridgway, E.B. J. Gen. Physiol. 96, 1013–1035 (1990).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gordon, A.M., Ridgway, E.B. (1993). Cross-Bridges Affect Both TnC Structure and Calcium Affinity in Muscle Fibers. In: Sugi, H., Pollack, G.H. (eds) Mechanism of Myofilament Sliding in Muscle Contraction. Advances in Experimental Medicine and Biology, vol 332. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2872-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2872-2_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6245-6

  • Online ISBN: 978-1-4615-2872-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics