Skip to main content

Ionic Channels Involved in the Myocardial Response to Metabolic Stress

  • Chapter
Membrane Physiopathology

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 159))

Abstract

In 1944, Erk and Schaefer (1) reported that anoxemia shortened and decreased the amplitude of monophasic action potentials recorded with suction electrodes in in situ hearts of guinea pigs and cats. These effects were accompanied by flattening of the plateau and were correlated with the shortening of the QT interval and the T wave alterations previously observed in human electrocardiograms. In 1954, Trautwein et al. (2) showed that intracellularly recorded action potentials underwent similar changes on transition from 95 % to 0 % oxygen in the fluid superfusing a ventricular muscle preparation. Within 15 min, the total action potential duration decreased by 20% whereas the plateau duration fell to 50% of the control. These early changes occurred without modification of the resting potential. In addition, it was later shown that action potential shortening also occurs within seconds of coronary ligation (3). This provides a suitable explanation for the deviation of the S-T segment in ischemia which is later followed by a T-Q segment depression arising from depolarization of the resting membrane (4,5). We have made a long way since these pioneer observations and our knowledge and understanding of the ionic basis of the heart electrical activity have considerably deepened in the last years through the development and application of the patch clamp technique (6) to isolated cardiac cells. Although this technique allows a precise determination of the ionic currents underlying the myocardial electrical activity under physiological or simulated pathological conditions, the state of the art is such that the responses observed in single cells cannot yet fully account for the effects observed in multicellular preparations or in the whole heart.

The author wishes to express her appreciation to Dr Jorge Suarez Estrade (University of Cuyo, Argentina) who introduced her to the exploration of the fascinating world of research in the field of cardiac hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Erk C and Schaefer H (1944) Pflügers Arch 248:515–520

    Article  Google Scholar 

  2. Trautwein W, Gottstein V and Dudel J (1954) Pflügers Arch 260:40–60

    Article  PubMed  CAS  Google Scholar 

  3. Samson WE and Scher AM (1960) Circ Res 8: 780–787

    Article  PubMed  CAS  Google Scholar 

  4. Sano T, Masaru O and Shimamoto T (1956) Circ Res 4:444–450

    Article  PubMed  CAS  Google Scholar 

  5. Scher AM (1962) In:Hamilton WF and Dow P (eds) Handbook of Physiology, Section 2, Circulation vol 1 American Physiological Society, Washington, pp 287–322

    Google Scholar 

  6. Hamill OP, Marty A, Neher E, Sakmann B and Sigworth FJ (1981) Pflügers Arch 391:85–110

    Article  PubMed  CAS  Google Scholar 

  7. Carmeliet E (1978) Circ Res 42:577–587

    Article  PubMed  CAS  Google Scholar 

  8. Hercus VM, McDowall JS and Mendel D (1955) J Physiol 129:177–183

    PubMed  CAS  Google Scholar 

  9. Hill JL and Gettes LS (1980) Circ Res 61:768–778

    CAS  Google Scholar 

  10. Noma A (1983) Nature 305:147–148

    Article  PubMed  CAS  Google Scholar 

  11. Reimer KA and Jennings RB (1986) In:Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (eds) The Heart and Cardiovascular System Scientific Foundations, vol 2, Raven Press, New York, pp 1133–1201

    Google Scholar 

  12. Rovetto MJ, Whitmer JT and Neely JR (1973) Circ Res 32:699–711

    Article  PubMed  CAS  Google Scholar 

  13. Rovetto MJ, Lamberton WF and Neely JR (1975) Circ Res 37: 742–751

    Article  PubMed  CAS  Google Scholar 

  14. Kentish JC and Allen DG (1986) J Mol Cell Cardiol 18:879–882

    Article  PubMed  CAS  Google Scholar 

  15. Stern MD, Silverman HS, Houser SR, Josephson RA, Capogrossi MC, Nichols CG, Lederer WJ and Lakatta ED (1988) Proc Natl Acad Sci USA 85:6954–6958

    Article  PubMed  CAS  Google Scholar 

  16. Gettes LS (1986) In:Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (eds) The Heart and Cardiovascular System, Scientific Foundations, vol 2, chap 57, Raven Press, New York, pp 1317–1341

    Google Scholar 

  17. Ruiz-Ceretti E, Ragault P, Leblanc N and Ponce Zumino AZ (1983) J Mol Cell Cardiol 15:845–854

    Article  PubMed  CAS  Google Scholar 

  18. Whitman G, Kieval R, Wetstein L, Seeholzer S, McDonald G and Harken A (1983) J. Surg Res 35:332–339

    Article  PubMed  CAS  Google Scholar 

  19. McDonald TF and MacLeod DP (1971) Pflügers Arch 325:305–322

    Article  PubMed  CAS  Google Scholar 

  20. Kobayashi K and Neely JR (1979) Circ Res 44:166–175

    Article  PubMed  CAS  Google Scholar 

  21. Weiss J and Hiltbrand B (1985) J Clin Invest 75:436–447

    Article  PubMed  CAS  Google Scholar 

  22. Glitsch HG and Tappe A (1993) Pflügers Arch 422:380–385

    Article  PubMed  CAS  Google Scholar 

  23. Van Blisen M, Van Der Vusse GJ, Coumans WA, de Groot MJM, Willemsen PHM and Reneman RS (1989) Am J Physiol 257 (Heart Circ Physiol 26):H47–H54

    Google Scholar 

  24. Poston JM and Parenteau GL (1992) Arch Biochem Biophys 295:35–41

    Article  PubMed  CAS  Google Scholar 

  25. Murry CE, Reimer KA, Hill ML, Yamasawa I and Jennings RB (1985) Fed Proc 44:823 (Abstract)

    Google Scholar 

  26. Steenbergen C, Delleuw G, Rich T and Williamson JR (1977) Circ Res 41:849–858

    Article  PubMed  CAS  Google Scholar 

  27. Jennings RB, Reimer KA and Steenbergen C Jr (1986) J Mol Cell Cardiol 18:769–780

    Article  PubMed  CAS  Google Scholar 

  28. Vander Heide RS, Rim D, Hohl CM and Ganote CE (1990) J Mol Cell Cardiol. 22:165–181

    Article  Google Scholar 

  29. Armstrong SC and Ganote CE (1991) J Mol Cell Cardiol 23:1001–1014

    Article  PubMed  CAS  Google Scholar 

  30. Karmazyn M and Moffat MP (1993) Cardiovasc Res 27:915–924

    Article  PubMed  CAS  Google Scholar 

  31. Allen DG, Morris PG, Orchard CH and Pirolo JS (1985) J Physiol 361:185–204

    PubMed  CAS  Google Scholar 

  32. Allen DG and Orchard CH (1983) J Physiol 339:107–122

    PubMed  CAS  Google Scholar 

  33. Taegtmeyer H, Peterson MB Ragavan VV, Ferguson AG and Lesch M (1977) J Biol Chem 252:5010–5018

    PubMed  CAS  Google Scholar 

  34. Kingsley PB, Sako EY, Yang MQ, Zimmer SD, Ugurbil K, Foker JE and From AHL (1991) Am J Physiol 261:H469–H478

    PubMed  CAS  Google Scholar 

  35. Dahl G and Isenberg G (1980) J Membrane Biol 53:63–75

    Article  CAS  Google Scholar 

  36. Wojtczak J (1979) Circ Res 44:88–95

    Article  PubMed  CAS  Google Scholar 

  37. Jongsma HJ and Gros D (1991) NIPS 6:34–39

    Google Scholar 

  38. Piper HM, Schwartz P and Siegmund B (1989) In:Piper HM and Isenberg G (eds) Isolated Adult Cardiomyocytes, vol 1, Structure and Metabolism, Chap 11, CRC Press, Florida, pp 259–285

    Google Scholar 

  39. Piper HM, Koop A, Nool T, Schlüter KD and Siegmund B (1990) In:Vereecke J, van Bogaert PP and Verdonck F (eds) Ionic Currents and Ischemia, Leuven University Press, pp 17–49

    Google Scholar 

  40. Piper HM, Spahr R, Hütter JF and Spieckermann PG (1984) In:Piper HM and Spieckermann PG (eds) Adult Heart Muscle Cells. Isolation Properties and Applications, Springer Verlag, New York, pp 143–147

    Google Scholar 

  41. Fantini E, Athias P, Courtois M, Khatami S, Grynberg A and Chevalier A (1990) Can J Physiol Pharmacol 68:1148–1156

    Article  PubMed  CAS  Google Scholar 

  42. Hagve T-A, Sprecher H and Hohl CM (1990) J Mol Cell Cardiol 22:1467–1475

    Article  PubMed  CAS  Google Scholar 

  43. Smolenski RT, Schrader J, deGroot H and Deussen A (1991) Am J Physiol 260:C708–C714

    PubMed  CAS  Google Scholar 

  44. Ruiz-Petrich ECC, Ponce Zumino AZ, Caballero OH and Suarez JRE (1962) Rev Soc Argent Biol 38:311–319

    Google Scholar 

  45. Goerke J and Page E (1965) J Gen Physiol 48:933–948

    Article  PubMed  CAS  Google Scholar 

  46. Nguyen-Thi A, Ruiz-Ceretti E and Schanne OF (1981) Can J Physiol Pharmacol 59:876–883

    Article  PubMed  CAS  Google Scholar 

  47. Nakaya H, Kimura S and Kanno M (1985) Am J Physiol 249:H1078–H1085

    PubMed  CAS  Google Scholar 

  48. Leblanc N, Ruiz-Ceretti E and Chartier D (1987) Can J Physiol Pharmacol 65:861–866

    Article  PubMed  CAS  Google Scholar 

  49. Ruiz-Petrich E, deLorenzi F and Chartier D (1991) Cardiovasc Res 25:17–26

    Article  PubMed  CAS  Google Scholar 

  50. Gerlings ED, Miller DT and Gilmore JP (1969) Am J Physiol 216:559–562

    PubMed  CAS  Google Scholar 

  51. Rau EE, Shine KI and Langer GA (1977) Am J Physiol 232: H85–H94

    PubMed  CAS  Google Scholar 

  52. Rau EE and Langer GA (1978) Am J Physiol 235: H537–H543

    PubMed  CAS  Google Scholar 

  53. Lee CO and Fozzard HA (1975) J Gen Physiol 65:695–708

    Article  PubMed  CAS  Google Scholar 

  54. Vleugels A, Carmeliet E, Bosteels S and Zaman M (1976) Pflügers Arch 365:159–166

    Article  PubMed  CAS  Google Scholar 

  55. Weiss J and Shine KI (1982) Am J Physiol 242:H619–H628

    PubMed  CAS  Google Scholar 

  56. Gettes LS (1986) In:Fozzard HA, Haber E, Jennings RS, Kartz AM, Morgan HE (eds) The Heart and Cardiovascular System, Scientific Foundations vol 2, chap 57, Raven Press, New York, pp 1317–1341

    Google Scholar 

  57. Kleber AG (1983) Circ Res 52:442–450

    Article  PubMed  CAS  Google Scholar 

  58. Kleber AG (1984) J Mol Cell Cardiol 16:389–394

    Article  PubMed  CAS  Google Scholar 

  59. Weiss J and Shine KI (1986) Am J Physiol 250:H982–H991

    PubMed  CAS  Google Scholar 

  60. Chiao JJC, Minei JP, Shires III GT and Shires GT (1990) Am J Physiol 258:R684–R689

    PubMed  CAS  Google Scholar 

  61. January CT and Fozzard HA (1984) Circ Res 54:652–665

    Article  PubMed  CAS  Google Scholar 

  62. Wallert MA and Frohlich O (1989) Am J Physiol 257:C207–C213

    PubMed  CAS  Google Scholar 

  63. Samson JP, Reisin I, Ruiz-Ceretti E and Schanne OF (1977) J Mol Cell Cardiol 9:39–50

    Article  PubMed  CAS  Google Scholar 

  64. Reimer KA, Jennings RB and Hill ML (1981) Circ Res 49:901–911

    Article  PubMed  CAS  Google Scholar 

  65. Shen AC and Jennings RB (1972) Am J Physiol 67:417–433

    CAS  Google Scholar 

  66. Shine KI, Douglas AM and Ricchuiti N (1976) Am J Physiol 231:1225–1232

    PubMed  CAS  Google Scholar 

  67. Shine KI, Douglas AM and Ricchuiti NV (1978) Circ Res 43:712–720

    Article  PubMed  CAS  Google Scholar 

  68. Shine KI, Weiss J and Bersohn M (1985) In:Stone HL and Weglicki WB (eds) Pathobiology of Cardiovascular Injury, Martinus Nijhoff Publishing, Boston, pp 180–189

    Chapter  Google Scholar 

  69. Tani M (1990) Ann Rev Physiol 52:543–559

    Article  CAS  Google Scholar 

  70. Duan J and Moffat MP (1992) Adv Exp Med Biol 311:435–436

    Article  PubMed  CAS  Google Scholar 

  71. Allen DG, Lee JA and Smith GL (1989) J Physiol (London) 410:297–323

    CAS  Google Scholar 

  72. Hayashi H, Miyata H, Noda N, Kobayashi A, Hirano M, Kawai T and Yamazaki N (1992) Am J Physiol 262:C628–C634

    PubMed  CAS  Google Scholar 

  73. Gaspardone A, Shine KI, Seabrooke SR and Poole Wilson PA (1986) J Mol Cell Cardiol 18:389–399

    Article  PubMed  CAS  Google Scholar 

  74. Mathur PP and Case RB (1973) J Mol Cell Cardiol 5:375–393

    Article  PubMed  CAS  Google Scholar 

  75. Kameyama K, Kiyosue T and Soejima M (1983) Jpn J Physiol 33:1039–1056

    Article  PubMed  CAS  Google Scholar 

  76. Wilde AAM, Escande D, Schumacher CA, Thuringer D, Mestre M, Fiolet JWT and Janse MJ (1990) Circ Res 67:835–843

    Article  PubMed  CAS  Google Scholar 

  77. Wilde A, Schumacher C, Fiolet J, Opthof T and Janse M (1992) J Mol Cell Cardiol 24 (supp 1), (Abstract) no P-09-47

    Google Scholar 

  78. Weiss JN, Lamp ST and Shine KI (1989) Am J Physiol 256:H1165–H1175

    PubMed  CAS  Google Scholar 

  79. Wilde AAM, Peters RJG and Janse MJ (1988) J Mol Cell Cardiol 20:887–896

    Article  PubMed  CAS  Google Scholar 

  80. Leblanc N and Ruiz-Ceretti E (1987) Can J Physiol Pharmacol 65:246–251

    Article  PubMed  CAS  Google Scholar 

  81. McDonald TF and MacLeod DP (1973) J Physiol (London) 229:559–582

    CAS  Google Scholar 

  82. Page E and Storm SR (1965) J Gen Physiol 48:957–972

    Article  PubMed  CAS  Google Scholar 

  83. Sperelakis N (1979) In:Handbook of Physiology. The Cardiovascular System sec 2, vol 1, part 1, chap 6, American Physiological Society, Bethesda MD, pp 187–267

    Google Scholar 

  84. Isenberg G and Trautwein W (1974) Pflügers Arch 350:41–54

    Article  PubMed  CAS  Google Scholar 

  85. Glitsch HG, Pusch H, Schumacher TH and Verdonck F (1982) Pflügers Arch 394:256–263

    Article  PubMed  CAS  Google Scholar 

  86. Daut J and Rudel R (1980) J Physiol (London) 305:22

    Google Scholar 

  87. Ruiz-Ceretti E, Nguyen-Thi A, Schanne OF and Caillé J-P (1981) Am J Physiol 240:C28–C34

    PubMed  CAS  Google Scholar 

  88. Marmor MF and Gorman ALF (1970) Science 167:65–67

    Article  PubMed  CAS  Google Scholar 

  89. Ruiz-Ceretti E, Caillé J-P and Dorticos F (1982) J Mol Cell Cardiol 14:301–305

    Article  PubMed  CAS  Google Scholar 

  90. Baumgarten CM, Cohen CJ and McDonald TF (1981) Circ Res 49:1181–1189

    Article  PubMed  CAS  Google Scholar 

  91. Guarnieri T and Strauss HC (1982) J Clin Invest 69:435–442

    Article  PubMed  CAS  Google Scholar 

  92. Lee JA and Allen DG (1988) Pflügers Arch 413:83–89

    Article  PubMed  CAS  Google Scholar 

  93. Steenbergen C, Deleeuw G, Barlow C, Chance B and Williamson JR (1977) Circ Res 41:606–615

    Article  PubMed  CAS  Google Scholar 

  94. Dresdner K and Boyden P (1986) Biophys J 49:346a (Abstract) no T-Pos 284

    Google Scholar 

  95. Vanheel B and de Hemptinne A (1992) Cardiovasc Res 26:1030–1039

    Article  PubMed  CAS  Google Scholar 

  96. Imanishi S and Arita M (1987) Jpn J Physiol 37:393–410

    Article  PubMed  CAS  Google Scholar 

  97. Ruiz-Ceretti E, deLorenzi F, Lafond JS and Chartier D (1988) Can J Physiol Pharmacol 66:202–206

    Article  PubMed  CAS  Google Scholar 

  98. Moore RD (1983) Biochim Biophys Acta 737:1–49

    Article  PubMed  CAS  Google Scholar 

  99. Imoto Y, Ehara T and Matsuura H (1987) Am J Physiol 252:H325–H333

    PubMed  CAS  Google Scholar 

  100. Litovsky S and Antzelevitch C (1988) Circ Res 62:116–126

    Article  PubMed  CAS  Google Scholar 

  101. Litovsky SH and Antzelevitch C (1989) J Am Coll Cardiol 14:1053–1066

    Article  PubMed  CAS  Google Scholar 

  102. Schneider JA and Sperelakis N (1974) J Surg Res 16:389–403

    Article  PubMed  CAS  Google Scholar 

  103. Shigenobu K, Asano T and Kasuya Y (1981) J Pharmacol Dynam 4:317–328

    Article  CAS  Google Scholar 

  104. Wahler GM and Sperelakis N (1984) Can J Physiol Pharmacol 62:569–574

    Article  PubMed  CAS  Google Scholar 

  105. Sperelakis N and Schneider JA (1976) Am J Cardiol 37:1079–1085

    Article  PubMed  CAS  Google Scholar 

  106. Payet MD, Schanne OF, Ruiz-Ceretti E and Demers J-M (1978) J Physiol, Paris 74:31–35

    CAS  Google Scholar 

  107. Vleugels A, Vereecke J and Carmeliet E (1980) Circ Res 47:501–508

    Article  PubMed  CAS  Google Scholar 

  108. Alvarez J, Dorticos F and Morlans J (1981) J Physiol, Paris 77:807–812

    CAS  Google Scholar 

  109. Asano T, Shigenobu K and Kasuya Y (1985) Jap J Pharmacol 38:65–72

    Article  PubMed  CAS  Google Scholar 

  110. Isenberg G, Vereecke J, Van der Heyden G and Carmeliet E (1983) Pflügers Arch 397:251–259

    Article  PubMed  CAS  Google Scholar 

  111. Van der Heyden G, Vereecke J and Carmeliet E (1984) In:Piper HM and Spieckermann PG (eds) Adult Heart Muscle Cells. Isolation, Properties and Applications, Springer Verlag, New York, pp 93–96

    Google Scholar 

  112. Noma A and Shibasaki T (1985) J Physiol (London) 363:463–480

    CAS  Google Scholar 

  113. Spruce AE, Standen NB and Stanfied PR (1985) Nature 316:736–738

    Article  PubMed  CAS  Google Scholar 

  114. Ashford MLJ, Sturgess NC, Trout NJ, Gardner N.J. and Hales CN (1988) Pflügers Arch 412:297–304

    Article  PubMed  CAS  Google Scholar 

  115. Cook DL and Hales CN (1984) Nature 311:271–273

    Article  PubMed  CAS  Google Scholar 

  116. Kakei M, Noma A and Shibasaki T (1985) J Physiol (London) 363:441–462

    CAS  Google Scholar 

  117. Allen DG and Orchard CH (1987) Circ Res 60:153–168

    Article  PubMed  CAS  Google Scholar 

  118. Elliott AC, Smith GL and Allen DG (1989) Circ Res 64:583–591

    Article  PubMed  CAS  Google Scholar 

  119. Weiss JN and Lamp ST (1989) J Gen Physiol. 94:911–935

    Article  PubMed  CAS  Google Scholar 

  120. Nichols CG and Lederer WJ (1990) J Physiol (London) 423:91–110

    CAS  Google Scholar 

  121. Findlay I and Faivre J-F (1991) FEBS 279:95–97

    Article  CAS  Google Scholar 

  122. Fosset M, De Weille JR, Green RD, Schmid-Antomarchi H and Lazdunski M (1988) J Biol Chem 263:7933–7936

    PubMed  CAS  Google Scholar 

  123. Ruiz-Petrich E, Leblanc N, deLorenzi, F., Allard Y and Schanne OF (1992) Br J Pharmacol 106:924–930

    Article  PubMed  CAS  Google Scholar 

  124. Carmeliet E, Storms L and Vereecke J (1990) In:Zipers DP and Jalife J (eds) Cardiac Electrophysiology from Cell to Bedside, chap 12, Saunders Co, pp 103–108

    Google Scholar 

  125. Arena JP and Kass RS (1989) Am J Physiol 257:H2092–H2096

    PubMed  CAS  Google Scholar 

  126. Nakaya H, Takeda Y, Tohse N and Kanno M (1991) Br J Pharmacol 103:1019–1026

    Article  PubMed  CAS  Google Scholar 

  127. Gasser RNA and Vaughan-Jones RD (1990) J Physiol (London) 431:713–741

    CAS  Google Scholar 

  128. Sanguinetti MC, Scott AL, Zingaro GJ and Siegel PKS (1988) Proc Natl Acad Sci USA 85:8360–8364

    Article  PubMed  CAS  Google Scholar 

  129. Caillé J-P, Ruiz-Ceretti E and Schanne OF (1981) Am J Physiol 240:C183–C188

    PubMed  Google Scholar 

  130. Deutsch N, Klitzner TS, Lamp ST and Weiss JN (1991) Am J Physiol 261:H671–H676

    PubMed  CAS  Google Scholar 

  131. Friedrich M, Benndorf K, Schwalb M and Hirche Hj (1990) Pflügers Arch 416:207–209

    Article  PubMed  CAS  Google Scholar 

  132. Benndorf K, Friedrich M and Hirche Hj (1991) Pflügers Arch 419:108–110

    Article  PubMed  CAS  Google Scholar 

  133. Venkatesh N, Lamp ST and Weiss JN (1991) Circ Res 69:623–637

    Article  PubMed  CAS  Google Scholar 

  134. Weiss JN, Venkatesh N and Lamp ST (1992) J Physiol (London) 447:649–673

    CAS  Google Scholar 

  135. Siegmund B, Koop A and Piper HM (1989) Pflügers Arch 413:435–437

    Article  PubMed  CAS  Google Scholar 

  136. Belles B, Hescheler J and Trube G (1987) Pflügers Arch 409:582–588

    Article  PubMed  CAS  Google Scholar 

  137. Ruiz-Petrich E and Leblanc N (1989) Can J Physiol Pharmacol 67:780–787

    Article  PubMed  CAS  Google Scholar 

  138. Kimura S, Bassett AL, Furukawa T, Furukawa N and Myerburg J (1991) Circ Res 84:768–777

    CAS  Google Scholar 

  139. Kimura S, Nakaya H and Kanno M (1982) J Cardiovasc Pharmacol 4:658–667

    Article  PubMed  CAS  Google Scholar 

  140. Gilmour RF and Zipes DP (1980) Circ Res 46:814–825

    Article  PubMed  Google Scholar 

  141. Furukawa T, Kimura S, Furukawa N, Bassett AL and Myerburg RJ (1991) Circ Res 68: 1693–1702

    Article  PubMed  CAS  Google Scholar 

  142. Hiraoka M and Kawano S (1989) J Physiol 410:187–212

    PubMed  CAS  Google Scholar 

  143. Zygmunt AC and Gibbons WR (1991) Circ Res 68:424–437

    Article  PubMed  CAS  Google Scholar 

  144. Kameyama M, Kakei M, Sato R, Shibasaki T, Matsuda H and Irisawa H (1984) Nature 309:354–356

    Article  PubMed  CAS  Google Scholar 

  145. Rodrigo GC and Chapman RA (1990) Exper Physiol 75:839–842

    CAS  Google Scholar 

  146. Luk H-N and Carmeliet E (1990) Pflügers Arch 416:766–768

    Article  PubMed  CAS  Google Scholar 

  147. Harvey RD, Clark CD and Hume JR (1990) J Gen Physiol 95:1077–1102

    Article  PubMed  CAS  Google Scholar 

  148. Hume JR and Harvey RD (1991) Am J Physiol 261:C399–C412

    PubMed  CAS  Google Scholar 

  149. Karwatowska-Krynska E and Beresewicz A (1983) J Mol Cell Cardiol 15:523–536

    Article  PubMed  CAS  Google Scholar 

  150. Ruiz Petrich E, Ponce Zumino A, Yergeau P and Chartier D (1992) J Mol Cell Cardiol 24 (supp 1) (Abstract) no 0-23-5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ghassan Bkaily

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Petrich, E.R., deLorenzi, F., Cai, S., Schanne, O.F. (1994). Ionic Channels Involved in the Myocardial Response to Metabolic Stress. In: Bkaily, G. (eds) Membrane Physiopathology. Developments in Cardiovascular Medicine, vol 159. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2616-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2616-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6121-3

  • Online ISBN: 978-1-4615-2616-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics