Skip to main content

Part of the book series: Developments in Molecular and Cellular Biochemistry ((DMCB,volume 12))

  • 91 Accesses

Abstract

ADP-ribosylation reaction, that is the transfer of the ADP-ribose moiety of NAD+ to acceptor protein, is catalyzed by two classes of ADP-ribosyltransferases, i.e., poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferases. These two types differ not only in the number of transferring ADP-ribose units but also in the acceptor amino acid(s) and protein. Their inhibitors, particularly those of poly(ADP-ribose) synthetase, have been successfully employed in studies on biological functions of the enzymes and other related fields of research. Recently, we found many potent and specific inhibitors of poly(ADP-ribose) synthetase, and broadened their chemical as well as biochemical variety. More recently, we found several potent inhibitors of arginine-specific mono(ADP-ribosyl)transferases and activators of poly(ADP-ribose) synthetase. (Mol Cell Biochem 138: 185–197, 1994)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fujimura S, Hasegawa S, Shimizu Y, Sugimura T: Polymerization of the adenosine 5 ’-diphosphate-ribose moiety of nicotinamide-adenine dinucleotide by nuclear enzyme. I. Enzymatic reactions. Biochim Biophys Acta 145: 247–259, 1967

    Article  PubMed  CAS  Google Scholar 

  2. Römer V, Lambrecht J, Kittler M, Hilz H: Identity of nuclear NAD nucleosidase with a polyADP-ribose forming enzyme in Ehrlich ascites tumor cells. Hoppe-Seyler’s Z Physiol Chem 349: 109–112, 1968

    PubMed  Google Scholar 

  3. Sugimura T, Fujimura S, Hasegawa S, Shimizu Y, Okuyama H: Polymerization of ADPR moiety of NAD by nuclear enzyme preparation. J Vitaminol 14: 135–142, 1968

    Article  CAS  Google Scholar 

  4. Nishizuka Y, Ueda K, Nakazawa K, Reeder RH, Honjo T, Hayaishi O: Poly adenosine diphosphate ribose synthesis and nicotinamide adenine dinucleotide transglycosidases. J Vitaminol 14: 143–152, 1968

    Article  CAS  Google Scholar 

  5. Clark JB, Ferris GM, Pinder S: Inhibition of nuclear NAD nucleosidase and poly ADP-ribose polymerase activity from rat liver by nicotinamide and 5’-methyl nicotinamide. Biochim Biophys Acta 238:82–85, 1971

    Article  PubMed  CAS  Google Scholar 

  6. Preiss J, Schlaeger R, Hilz H: Specific inhibition of poly ADPribose polymerase by thymidine and nicotinamide in HeLa cells. FEBS Lett 19: 244–246, 1971

    Article  PubMed  CAS  Google Scholar 

  7. Shall S, Brightwell M,O’Farrell MK, Stone P, Whish WJD: Propertiesof poly(ADP-ribose) polymerase in Physarum polycephalum and mouse fibroblasts. Hoppe-Seyler’s Z Physiol Chem 353:846–847, 1972

    Google Scholar 

  8. Stone PR, Shall S: Poly(adenosine diphosphoribose) polymerase in mammalian nuclei. Characterization of the activity in mouse fibroblasts (LS cells). Eur J Biochem 38: 146–152, 1973

    Article  PubMed  CAS  Google Scholar 

  9. Ueda K, Fukushima M, Okayama H, Hayaishi O: Nicotinamide adenine dinucleotide glycohydrolase from rat live Eur J Biochemr nuclei. Isolation and characterization of a new enzyme. J Biol Chem 250: 7541–7546, 1975

    PubMed  CAS  Google Scholar 

  10. Claycomb WC: Poly(adenosine diphosphate ribose) polymerase activity and nicotinamide adenine dinucleotide in differentiating cardiac muscle. Biochem J 154: 387–393, 1976

    PubMed  CAS  Google Scholar 

  11. Müller WEG, Zahn RK: Poly ADP-ribosylation of DNA-dependent RNA polymerase I from quail oviduct. Dependence on progesterone stimulation. Mol Cell Biochem 12: 147–159, 1976

    Article  PubMed  Google Scholar 

  12. Berger NA, Weber G, Kaichi AS: Characterization and comparison of poly(adenosine diphosphoribose) synthesis and DNA synthesis in nucle-otide-permeable cells. Biochim Biophys Acta 519:87–104, 1978

    Article  PubMed  CAS  Google Scholar 

  13. Levi V, Jacobson EL, Jacobson MK: Inhibition of poly(ADP-ribose) polymerase by methylated xanthines and cytokinins. FEBS Lett 88: 144–146, 1978

    Article  PubMed  CAS  Google Scholar 

  14. Ito S, ShizutaY, Hayaishi O: Purification and characterization of poly(ADP-ribose) synthetase from calf thymus. J Biol Chem 254:3647–3651, 1979

    PubMed  CAS  Google Scholar 

  15. Niedergang C, Okazaki H, Mandel P: Properties of purified calf thymus poly(adenosine diphosphate ribose) polymerase. Comparison of the DNA-independent and the DNA-dependant enzyme. Eur J Biochem 102:43–57, 1979

    Article  PubMed  CAS  Google Scholar 

  16. Terada M, Fujiki H, Marks PA, Sugimura T: Induction of erythroid differentiation of murine erythroleukemia cells by nicotinamide and related compounds. Proc Natl Acad Sci USA 76:6411–6414, 1979

    Article  PubMed  CAS  Google Scholar 

  17. Ohgushi H, Yoshihara K, Kamiya Y: Bovine thymus poly(adenosine diphosphate ribose) polymerase. Physical properties and binding to DNA. J Biol Chem 255: 6205–6211, 1980

    PubMed  CAS  Google Scholar 

  18. Yamamoto H, Okamoto H: Protection by picolinamide, a novel inhibitor of poly(ADP-ribose) synthetase, against both streptozotocin-induced depression of proinsulin synthesis and reduction of NAD content in pancreatic islets. Biochem Biophys Res Commun 95:474–481, 1980

    Article  PubMed  CAS  Google Scholar 

  19. Hayaishi O, Ueda K: On the roles of DNA and DNA fragments in the enzymic synthesis and degradation of poly(ADP-ribose). In: M. Harris (ed). Poly(ADP-Ribose). An International Symposium. Fogarty International Center Proceedings No. 26, Bethesda, Maryland, 1974, pp 69–76

    Google Scholar 

  20. Shimoyama M, Kawai M, Nasu S, Shioji K, Hoshi Y, Ueda I: Inhibition of adenosine 3’,5’-monophosphate phosphodiesterase by nicotinamide and its homologues in vitro. Physiol Chem & Physics 7: 125–132, 1975

    CAS  Google Scholar 

  21. Berger NA, Sikorski GW: Nicotinamide stimulates repair of DNA damage in human lymphocytes. Biochem Biophys Res Commun 95:67–72, 1980

    Article  PubMed  CAS  Google Scholar 

  22. Grunfeld C, Shigenaga JK: Nicotinamide and other inhibitors of ADP-ribosylation block deoxyglucose uptake in cultured cells. Biochem Biophys Res Commun 123: 785–791, 1984

    Article  PubMed  CAS  Google Scholar 

  23. Morris NR, Reichard P, Fischer GA: Studies concerning the inhibition of cellular reproduction by deoxyribonucleotides. II. Inhibition of the synthesis of deoxycytidine by thymidine, deoxyadenosine and deoxyguanosine. Biochim Biophys Acta 68:93–99, 1963

    Article  CAS  Google Scholar 

  24. Johnson GS, D’Armiento M, Carchman RA: N6-Substituted adenines induce cell elongation irrespective of the intracellular cyclic AMP levels. Exp Cell Res 85: 47–56, 1974

    Article  PubMed  CAS  Google Scholar 

  25. Cleaver JE: Repair replication of mammalian cell DNA: effects of compounds that inhibit DNA synthesis or dark repair. Radiation Res 37: 334–348, 1969

    Article  PubMed  CAS  Google Scholar 

  26. Cleaver JE, Thomas GH: Single strand interruptions in DNA and the effects of caffeine in Chinese hamster cells irradiated with ultraviolet light. Biochem Biophys Res Commun 36:203–208, 1969

    Article  PubMed  CAS  Google Scholar 

  27. Lehmann AR, Kirk-Bell S: Post-replication repair of DNA in ultraviolet-irradiated mammalian cells. No gaps in DNA synthesized late after ultraviolet irradiation. Eur J Biochem 31:438–445, 1972

    Article  PubMed  CAS  Google Scholar 

  28. Purnell MR, Whish WJD: Novel inhibitors of poly(ADP-ribose) synthetase. Biochem J 185: 775–777, 1980

    PubMed  CAS  Google Scholar 

  29. Durkacz BW, Omidiji O, Gray DA, Shall S: (ADP-ribose)n participates in DNA excision repair. Nature (London) 283:593–596, 1980

    Article  CAS  Google Scholar 

  30. Oikawa A, Tohda H, Kanai M, Miwa M, Sugimura T: Inhibitors of poly-(adenosine diphosphate ribose) polymerase induce sister chromatid exchanges. Biochem Biophys Res Commun 97:1311–1316, 1980

    Article  PubMed  CAS  Google Scholar 

  31. Cleaver JE, Bodell WJ, Morgan WF, Zelle B: Diffrences in regulation by poly(ADP-ribose) of repair of DNA damage from alkylating agents and ultraviolet light according to cell type. J Biol Chem 258:9059–9068, 1983

    PubMed  CAS  Google Scholar 

  32. Cleaver JE: Differential toxicity of 3-aminobenzamide to wild-type and 6-thioguanine-resistant Chinese hamster cells by interference with pathways of purine biosynthesis. Mutat Res 131: 123–127, 1984

    Article  PubMed  CAS  Google Scholar 

  33. Milam KM, Cleaver JE: Inhibitors of poly(adenosine diphosphate-ribose) synthesis: effect on other metabolic processes. Science 223:589–591, 1984

    Article  PubMed  CAS  Google Scholar 

  34. Borek C, Morgan WF, Ong A, Cleaver JE: Inhibition of malignant transformation in vitro by inhibitors of poly(ADP-ribose) synthesis. Proc Natl Acad Sci USA 81:243–247, 1984

    Article  PubMed  CAS  Google Scholar 

  35. Hunting DJ, Gowans BJ, Henderson JF: Specificity of inhibitors of poly-(ADP-ribose) synthesis. Effects on nucleotide metabolism in cultured cells. Mol Pharmacol 28: 200–206, 1985

    PubMed  CAS  Google Scholar 

  36. Snyder RD: 3-Aminobenzamide does not alter DNA repair in human fibroblasts through modulation of deoxynucleoside triphosphate pools. Biochem Biophys Res Commun 124:457–461, 1984

    Article  PubMed  CAS  Google Scholar 

  37. Ben-Hur E, Chen C-C, Elkind MM: Inhibitors of poly(adenosine diphosphoribose) synthetase, examination of metabolic perturbations, and enhancement of radiation response in Chinese hamster cells. Cancer Res 45: 2123–2127, 1985

    PubMed  CAS  Google Scholar 

  38. Johnson GS: Benzamide and its derivatives inhibit nicotinamide methylation as well ADP-ribosylation. Biochem Int 2: 611–617, 1981

    CAS  Google Scholar 

  39. Bender ML, Gibian MJ, Whelan DJ: The alkaline pH dependence of chymotrypsin reactions: postulation of a pH-dependent intramolecular competitive inhibition. Proc Natl Acad Sci USA 56: 833–839, 1966

    Article  PubMed  CAS  Google Scholar 

  40. Davies RC, Auld DS, Vallee BL:The effect of modifiers on the hydrolysis of esters and peptides by carboxypeptidase A. Biochem Biophys Res Commun 31: 628–633, 1968

    Article  PubMed  CAS  Google Scholar 

  41. Banasik M, Komura H, Shimoyama M, Ueda K: Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase. J Biol Chem 267: 1569–1575, 1992

    PubMed  CAS  Google Scholar 

  42. Purnell MR, Kidwell WR, Minshall L, Whish WJD: Specificity of poly-(ADP-ribose) synthetase inhibitors. In: FR. Althaus, H. Hilz, and S. Shall (eds). ADP-Ribosylation of Proteins. Springer-Verlag, Berlin, 1985, pp 98–

    Chapter  Google Scholar 

  43. Tavassoli M, Shall S: Covalent modification of poly(ADP-ribose) polymerase by reactive benzamides. In: GG. Poirier and P. Moreau (eds). ADP-Ribosylation Reactions. Springer-Verlag, New York, 1992, pp 290–296

    Chapter  Google Scholar 

  44. Bauer PI, Hakam A, Kun E: Mechanisms of poly(ADP-ribose) polymerase catalysis; mono-ADP-ribosylation of poly(ADP-ribose) polymerase at nanomolar concentrations of NAD. FEBS Lett 195: 331–338, 1986

    Article  PubMed  CAS  Google Scholar 

  45. Rankin PW, Jacobson EL, Benjamin RC, Moss J, Jacobson MK: Quantitative studies of inhibitors of ADP-ribosylation in vitro and in vivo. J Biol Chem 264: 4312–4317, 1989

    PubMed  CAS  Google Scholar 

  46. Farzaneh F, Shall S, Michels P, Borst P: ADP-ribosyltransferase activity in Trypanosoma brucei. In: FR. Althaus, H. Hilz, and S. Shall (eds). ADP-Ribosylation of Proteins. Springer-Verlag, Berlin, 1985, pp 367–371

    Chapter  Google Scholar 

  47. McLick J, Bauer PI, Hakam A, Kun E: Covalent binding of 4-carbamoyl-benzenediazonium chloride to deoxyguanine bases of DNA resulting in apparent irreversible inhibition of poly(adenosine diphosphoribose) polymerase at the nicotinamide binding site. Biochemistry 26: 2226–2231, 1987

    Article  PubMed  CAS  Google Scholar 

  48. Hakam A, McLick J, Buki K, Kun E: Catalytic activities of synthetic octadeoxyribonucleotides as coenzymes of poly(ADP-ribose) polymerase and the identification of a new enzyme inhibitory site. FEBS Lett 212: 73–78, 1987

    Article  PubMed  CAS  Google Scholar 

  49. Bauer PI, Kline K, Kun E: Apparent role of adenosine diphosphoribosyl transferase in the development of Mytilus edulis and the inhibition of differentiation by ligands of the enzyme protein. Proc Soc Exp Biol Med 196: 396–400, 1991

    PubMed  CAS  Google Scholar 

  50. Leone E, Suzuki H, Farina B, Pivazian AD, Karpeisky MYA: Inhibition of ADP-ribosylation reaction by 2’,5’-oligoadenylates. In: FR. Althaus, H. Hiltz, and S. Shall (eds). ADP-Ribosylation of Proteins. Springer-Verlag, Berlin, 1985, pp 106–110

    Chapter  Google Scholar 

  51. Banasik M, Komura H, Ueda K: Specific inhibitors of poly(ADP-ribose) synthetase. In: GG. Poirier and P. Moreau (eds). ADP-Ribosylation Reactions. Springer-Verlag, New York, 1992, pp 343–350

    Chapter  Google Scholar 

  52. Banasik M, Komura H, Ueda K: Inhibition of poly(ADP-ribose) synthetase by fatty acids, vitamins and vitamin-like substances. FEBS Lett 263: 222–224, 1990

    Article  PubMed  CAS  Google Scholar 

  53. Shall S:ADP-ribosylation, DNA repair, cell differentiation and cancer. In: M. Miwa, O. Hayaishi, S. Shall, M. Smulson, and T. Sugimura (eds). ADP-Ribosylation, DNA Repair and Cancer. Japan Sci Soc Press,Tokyo/VNU Science Press BV, Utrecht, The Netherlands, 1983, pp 3–25

    Google Scholar 

  54. Tseng A Jr, Lee WMF, Kirsten E, Hakam A, McLick J, Buki K, Kun E: Prevention of tumorigenesis of oncogene-transformed rat fibroblasts with DNA site inhibitors of poly(ADP-ribose) polymerase. Proc Natl Acad Sci USA 84: 1107–1111, 1987

    Article  PubMed  CAS  Google Scholar 

  55. Tanaka Y, Matsunami N, Yoshihara K: Inhibition of ADP-ribosylation of histone by diadenosine 5’, 5’’-p1, p4-tetraphosphate. Biochem Biophys Res Commun 99:837–843, 1981

    Article  PubMed  CAS  Google Scholar 

  56. Suzuki H, Tanaka Y, Buonamassa DT, Farina B, Leone E: Inhibition of ADP-ribosylation of histone H1 by analogs of diadenosine 5’, 5’ ’-p1, p4-tetraphosphate. Mol Cell Biochem 74: 17–20, 1987

    Article  PubMed  CAS  Google Scholar 

  57. Müller WEG, Zahn RK: Influence of agents that act on DNA and RNA synthesis on the activity of poly(ADP-rib) polymerase. Experientia 31: 1014–1015, 1975

    Article  PubMed  Google Scholar 

  58. Müller WEG, Rohde HJ, Steffen R, Maidhof A, Lachmann M, Zahn RK, Umezawa H: Influence of formycin B on polyadenosine diphosphoribose synthesis in vitro and in vivo. Cancer Res 35:3673–3681, 1975

    PubMed  Google Scholar 

  59. Brightwell MD, Leech CE, O’Farrell MK, Whish WJD, Shall S: Poly(adenosine diphosphate ribose) polymerase in Physarum polycephalum. Biochem J 147: 119–129, 1975

    PubMed  CAS  Google Scholar 

  60. Rickwood D, Osman MS:Characterisation of poly(ADP-rib) polymerase activity in nuclei from the slime mould Dictyostelium discoideum. Mol Cell Biochem 27: 79–84, 1979

    Article  PubMed  CAS  Google Scholar 

  61. Benjamin RC, Gill DM: Poly(ADP-ribose) synthesis in vitro programmed by damaged DNA. A comparison of DNA molecules containing different types of strand breaks. J Biol Chem 255: 10502–10508, 1980

    PubMed  CAS  Google Scholar 

  62. Buki KG, Bauer PI, Mendeleyev J, Hakam A, Kun E: Destabilization of Zn2+ coordination in ADP-ribose transferase (polymerizing) by 6-nitroso-1,2-benzopyrone coincidental with inactivation of the polymerase but not the DNA binding function. FEBS Lett 290:181–185, 1991

    Article  PubMed  CAS  Google Scholar 

  63. Sestili P, Spadoni G, Balsamini C, Scovassi I, Cattabeni F, Duranti E, Cantoni O, Higgins D, Thomson C: Structural requirements for inhibitors of poly(ADP-ribose) polymerase. J Cancer Res Clin Oncol 116:615–622, 1990

    Article  PubMed  CAS  Google Scholar 

  64. Ueda K, Banasik M: Inhibition of poly(ADP-ribose) synthetase activity by tryptophan metabolites. In: I. Ishiguro, R. Kido, T. Nagatsu, Y. Nagamura, and Y. Ohta (eds). Advances in Tryptophan Research 1992. Fujita Health University Press, Japan, 1992, pp 141–144

    Google Scholar 

  65. Larsen AG, Østvold AC, Holtlund J, Kristensen T, Laland SG: The inhibitory effect of Zn2+ on poly(ADP-ribose) polymerase activity and its reversal. Biochem J 203: 511–513, 1982

    PubMed  CAS  Google Scholar 

  66. Sims JL, Sikorski GW, Catino DM, Berger SJ, Berger NA: Poly(adenosine-diphosphoribose) polymerase inhibitors stimulate unscheduled deoxyribonucleic acid synthesis in normal human lymphocytes. Biochemistry 21: 1813–1821, 1982

    Article  PubMed  CAS  Google Scholar 

  67. Banasik M, Komura H, Saito I, Abed NAN, Ueda K: New inhibitors of poly(ADP-ribose) synthetase. In: MK. Jacobson and E.L. Jacobson (eds). ADP-RiboseTransfer Reactions: Mechanisms and Biological Significance, Springer-Verlag, New York, 1989,pp 130–133

    Google Scholar 

  68. Tanigawa Y, Tsuchiya M, Imai Y, Shimoyama M:ADP-ribosyltransferase from hen liver nuclei. Purification and characterization. J Biol Chem 259: 2022–2029, 1984

    PubMed  CAS  Google Scholar 

  69. Moss J, Stanley SJ, Watkins PA: Isolation and properties of an NAD-and guanidine-dependent ADP-ribosyltransferase from turkey erythrocytes. J Biol Chem 255: 5838–5840, 1980

    PubMed  CAS  Google Scholar 

  70. Nakayasu M, Shima H, Aonuma S, Nakagama H, Nagao M, Sugimura T: Deletion of transfected oncogenes from NIH 3T3 transformants by inhibitors of poly(ADP-ribose) polymerase. Proc Natl Acad Sci USA 85: 9066–9070, 1988

    Article  PubMed  CAS  Google Scholar 

  71. Shima H, Nakayasu M, Aonuma A, Sugimura T, Nagao M: Loss of the MYC gene amplified in human HL-60 cells after treatment with inhibitors of poly(ADP-ribose) polymerase or with dimethyl sulfoxide. Proc Natl Acad Sci USA 86: 7442–7445, 1989

    Article  PubMed  CAS  Google Scholar 

  72. Ikushima T: Bimodal induction of sister-chromatid exchanges by luminol, an inhibitor of poly( ADP-ribose) synthetase, during the S-phase of the cell cycle. Chromosoma 99:360–364, 1990

    Article  PubMed  CAS  Google Scholar 

  73. Rice WG, Hillyer CD, Harten B, Schaeffer CA, Dorminy M, Lackey III DA, Kirsten E, Mendeleyev J, Buki KG, Hakam A, Kun E: Induction of endonuclease-mediated apoptosis in tumor cells by C-nitroso-substituted ligands of poly(ADP-ribose) polymerase. Proc Natl Acad Sci USA 89: 7703–7707, 1992

    Article  PubMed  CAS  Google Scholar 

  74. Rice WG, Schaeffer CA, Harten B, Villinger F, South TL, Summers MF, Henderson LE, Bess JW Jr, Arthur LO, McDougal JS, Orloff SL, Mendeleyev J, Kun E: Inhibition of HIV-1 infectivity by zinc-ejecting aromatic C-nitroso compounds. Nature (London) 361:473–475, 1993

    Article  CAS  Google Scholar 

  75. Benjamin RC, Cook PF, Jacobson MK: Kinetic mechanism of poly(ADP-ribose) polymerase. In: FR. Althaus, H. Hilz, and S. Shall (eds).ADP-Ribosylation of Proteins. Springer-Verlag, Berlin, 1985, pp 93–97

    Chapter  Google Scholar 

  76. Zahradka P, Ebisuzaki K: Poly(ADP-ribose) polymerase is a zinc metal-loenzyme. Eur JBiochem 142: 503–509, 1984

    Article  CAS  Google Scholar 

  77. Schneeweiss FHA, Xia F, Sharan RN, Feinendegen LE: A strong static magnetic field inhibits the poly-ADP-ribosylation of proteins in human kidneyT1-cells. Bioelectrochem Bioenergetics 30: 111–117, 1993

    Article  CAS  Google Scholar 

  78. Berger NA, Petzold SJ: Identification of minimal size requirements of DNA for activation of poly(ADP-ribose) polymerase. Biochemistry 24: 4352–4355, 1985

    Article  PubMed  CAS  Google Scholar 

  79. Yoshihara FC, Koide SS: Influence of polynucleotides on poly(adenosine diphosphate ribose) synthetase activity of rat liver. FEBS Lett 30: 261–264, 1973

    Article  PubMed  CAS  Google Scholar 

  80. Tanaka Y, Hashida T, Yoshihara H, Yoshihara K: Bovine thymus poly(ADP-ribose) polymerase histone-dependent and Mg2+-dependent reaction. J Biol Chem 254: 12433–12438, 1979

    PubMed  CAS  Google Scholar 

  81. Yoshihara K, Tanaka Y, Yoshihara H, Hashida T, Ohgushi H, Arai R, Kamiya T: Effect of histone, DNA, and Mg2+ on purified poly(ADP-ri-bose) polymerase reaction: the histone-dependent and the Mg2+-dependent reaction. In: ME. Smulson and T. Sugimura (eds). Novel ADP-Ribosylations of Regulatory Enzymes and Proteins. Elsevier, North-Holland, 1980, pp 33–44

    Google Scholar 

  82. Tanaka Y, Yoshihara K, Ohashi Y, Itaya A, Nakano T, Ito K, Kamiya T: A method for determining oligo-and poly(ADP-ribosyl)ated enzymes and proteins in vitro. Anal Biochem 145: 137–143, 1985

    Article  PubMed  CAS  Google Scholar 

  83. Caplan AI, Niedergang C, Okazaki H, Mandel P: Poly ADP-ribose polymerase: self-ADP-ribosylation, the stimulation by DNA, and the effects on nucleosome formation and stability. Arch Biochem Biophys 198: 60–69, 1979

    Article  PubMed  CAS  Google Scholar 

  84. Kun E, Minaga T, Kirsten E, Jackowski G, McLick J, Peller L, Oredsson SM, Martin L, Pattabiraman N, Milo G: Biochemical basis of the regulatory role of polyadenosine diphosphoribose. Adv Enzyme Regul 21: 177–199, 1983

    Article  PubMed  CAS  Google Scholar 

  85. Ueda K, Banasik M: Activators of poly(ADP-ribose) synthetase. Oji International Seminar on ADP-ribosylation Reaction: Mechanism and Biological Function. 1992, Abstracts, p 19

    Google Scholar 

  86. Althaus FR: Poly(ADP-ribose) biosynthesis. In: FR. Althaus and C. Richter (eds). ADP-Ribosylation of Proteins: Enzymology and Biological Signficance. Springer-Verlag, Berlin, 1987,pp 12–37

    Chapter  Google Scholar 

  87. Yoshihara K, Hashida T, TanakaY, Matsunami N, Yamaguchi A, Kamiya T: Mode of enzyme-bound poly(ADP-ribose) synthesis and histone modification by reconstituted poly(ADP-ribose) polymerase-DNA-cellulose complex. J Biol Chem 256: 3471–3478, 1981

    PubMed  CAS  Google Scholar 

  88. Zahradka P, Ebisuzaki K: A shuttle mechanism for DN A-protein interactions. The regulation of poly(ADP-ribose) polymerase. Eur J Biochem 127: 579–585, 1982

    Article  PubMed  CAS  Google Scholar 

  89. Byrne RH, Stone PR, Kidwell WR: Effect of polyamines and divalent cations on histone H1-poly (adenosine diphosphate ribose) complex formation. Exp Cell Res 115: 277–283, 1978

    Article  PubMed  CAS  Google Scholar 

  90. Kawamura M, Tanigawa Y, Kitamura A, Miyake Y, Shimoyama M: Effect of polyamines on purified poly(ADP-ribose) synthetase from rat liver nuclei. Biochim Biophys Acta 652: 121–128, 1981

    Article  PubMed  CAS  Google Scholar 

  91. Tanigawa Y, Kawamura M, Shimoyama M: Effect of polyamines on ADP-ribosylation of nuclear proteins from rat liver nuclei. Biochem Biophys Res Commun 76: 406–412, 1977

    Article  CAS  Google Scholar 

  92. Tanigawa Y, Kawakami K, Imai Y, Shimoyama M: Effect of polyamines on ADP-ribosylation by chick-embryo-liver nuclei. Biochim Biophys Acta 608: 82–95, 1980

    Article  PubMed  CAS  Google Scholar 

  93. Perrella FW, Lea MA: Spermine-induced variations in the adenosine 5’-diphosphate ribosylation patterns of nuclear proteins from rat liver and hepatoma. Cancer Res 39: 1382–1389, 1979

    PubMed  CAS  Google Scholar 

  94. Whitby AJ, Stone PR, Whish WJD: Effect of polyamines and Mg++ on poly(ADP-ribose) synthesis and ADP-ribosylation of histones in wheat. Biochem Biophys Res Commun 90:1295–1304, 1979

    Article  PubMed  CAS  Google Scholar 

  95. Perrella FW, Lea MA: Polyamine induced changes in the ADP-ribosylation of nuclear proteins from rat liver. Biochem Biophys Res Commun 82: 575–581, 1978

    Article  PubMed  CAS  Google Scholar 

  96. Kristensen T, Holtlund J: Poly(ADP-ribose) polymerase from Ehrlich as cites tumor cells. Properties of the purified polymerase. Eur J Biochem 88: 495–501, 1978

    Article  PubMed  CAS  Google Scholar 

  97. Sims JL, Benjamin RC: Mechanism of ethanol stimulation of poly(ADP-ribose) synthetase. In: FR. Althaus, H. Hilz, and S. Shall (eds). ADP-Ribosylation of Proteins. Springer-Verlag, Berlin, 1985,pp 124–128

    Chapter  Google Scholar 

  98. Juarez-Salinas H, Duran-Torres G, Jacobson MK: Alteration of poly(ADP-ribose) metabolism by hyperthermia. Biochem Biophys Res Commun 122: 1381–1388, 1984

    Article  PubMed  CAS  Google Scholar 

  99. Mazen A, de Murcia JM, Molinete M, Simonin F, Gradwohl G, Poirier G, de Murcia G: Poly(ADP-ribose) polymerase: a novel finger protein. Nucleic Acids Res 17:4689–4698, 1989

    Article  PubMed  CAS  Google Scholar 

  100. Gradwohl G, de Murcia JM, Molinete M, Simonin F, Koken M, Hoeijmakers JHJ, de Murcia G: The second zinc-finger domain of poly(ADP-ribose) polymerase determines specificity for single-stranded breaks in DNA. Proc Natl Acad Sci USA 87: 2990–2994, 1990

    Article  PubMed  CAS  Google Scholar 

  101. Jones J, Patel BN, Skidmore CJ: Benzamides can stimulate as well as inhibit the activity of nuclear ADP-ribosyltransferase. Carcinogenesis 9: 2023–2026, 1988

    Article  PubMed  CAS  Google Scholar 

  102. Cleaver JE, Morgan WF: 3-Aminobenzamide, an inhibitor of poly(ADP-ribose) polymerase, is a stimulator, not an inhibitor, of DNA repair. Exp Cell Res 172:258–264, 1987

    Article  PubMed  CAS  Google Scholar 

  103. Bohr V, Klenow H: 3-Aminobenzamide stimulates unscheduled DNA synthesis and rejoining of strand breaks in human lymphocytes. Biochem Biophys Res Commun 102: 1254–1261, 1981

    Article  PubMed  CAS  Google Scholar 

  104. Wakabayashi K, Nagao M, Esumi H, Sugimura T: Food-derived mutagens and carcinogens. Cancer Res (Suppl) 52:2092s–2098s, 1992

    PubMed  CAS  Google Scholar 

  105. Yost DA, Moss J:Amino acid-specific ADP-ribosylation. Evidence for two distinct NAD:arginine ADP-ribosyltransferases in turkey erythrocytes. J Biol Chem 258:4926–4929, 1983

    PubMed  CAS  Google Scholar 

  106. West RE, Moss J: Amino acid specific ADP-ribosylation: specific NAD:arginine mono-ADP-ribosyltransferases associated with turkey erythrocyte nuclei and plasma membranes. Biochemistry 25:8057–8062, 1986

    Article  PubMed  CAS  Google Scholar 

  107. Moss J, Stanley SJ, Osborne JC Jr: Effect of self-association on activity of an ADP-ribosyltransferase from turkey erythrocytes. Conversion of inactive oligomers to active protomers by chaotropic salts. J Biol Chem 256: 11452–11456, 1981

    PubMed  CAS  Google Scholar 

  108. Moss J, Stanley SJ, Osborne JC Jr: Activation of an NAD:arginine ADP-ribosyltransferase by histone. J Biol Chem 257: 1660–1663, 1982

    PubMed  CAS  Google Scholar 

  109. Moss J, Osborne JC Jr, Stanley SJ: Activation of an erythrocyte NAD:arginineADP-ribosyltransferase by lysolecithin and nonionic and zwitterionic detergents. Biochemistry 23:1353–1357, 1984

    Article  PubMed  CAS  Google Scholar 

  110. Moss J, Stanely SJ: Histone-dependent and histone-independent forms of an ADP-ribosyltransferase from human and turkey erythrocytes. Proc Natl Acad Sci USA 78: 4809–4812, 1981

    Article  PubMed  CAS  Google Scholar 

  111. Moss J, Stanley SJ: Isolation of an avian erythrocyte protein possessing ADP-ribosyltransferase activity and capable of activating adenylate cyclase. Proc Natl Acad Sci USA 75: 3621–3624, 1978

    Article  PubMed  CAS  Google Scholar 

  112. Watkins PA, Moss J: Effects of nucleotides on activity of a purified ADP-ribosyltransferase from turkey erythrocytes. Arch Biochem Biophys 216: 74–80, 1982

    Article  PubMed  CAS  Google Scholar 

  113. Osborne JC Jr, Stanley SJ, Moss J: Kinetic mechanisms of two NAD:arginine ADP-ribosyltransferases: the soluble, salt-stimulated transferase from turkey erythrocytes and choleragen, a toxin from Vibrio cholerae. Biochemistry 24: 5235–5240, 1985

    Article  PubMed  CAS  Google Scholar 

  114. Sabir J, Tavassoli M, Shall S: Purification and characterization of NAD:arginine mono ADP-ribosyl transferase from chicken erythrocytes; identification of some enzyme inhibitors. In: GG. Poirier and P. Moreau (eds).ADP-Ribosylation Reactions. Springer-Verlag, New York, 1992, pp 397–401

    Chapter  Google Scholar 

  115. Larew JS-A, Peterson JE, Graves DJ: Determination of kinetic mechanism of arginine-specific ADP-ribosyltransferases using a high performance liquid Chromatographic assay. J Biol Chem 266:52–57, 1991

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Banasik, M., Ueda, K. (1994). Inhibitors and activators of ADP-ribosylation reactions. In: Moss, J., Zahradka, P. (eds) ADP-Ribosylation: Metabolic Effects and Regulatory Functions. Developments in Molecular and Cellular Biochemistry, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2614-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2614-8_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6120-6

  • Online ISBN: 978-1-4615-2614-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics